

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003

SAR EVALUATION REPORT

For Gobi2000 PCI Express Mini Card (Tested inside of Panasonic Tablet PC CF-H2)

> MODEL NUMBER: GOBI2000 FCC ID: N7NGOBI2

REPORT NUMBER: 11J13819-1

ISSUE DATE: June 15, 2011

Prepared for SIERRA WIRELESS INC. 13811 WIRELESS WAY RICHMOND, BC, V6V 3A4 CANADA

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	June 15, 2011	Initial Issue	

Page 2 of 39

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS							
2.	TEST METHODOLOGY							
3.	FACILITIES AND ACCREDITATION							
4 . 4 4	CALIBRATION AND UNCERTAINTY64.1. MEASURING INSTRUMENT CALIBRATION64.2. MEASUREMENT UNCERTAINTY7							
5.	EQUIPMENT UNDER TEST	8						
6.	SYSTEM SPECIFICATIONS	9						
7.	COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	. 10						
8.	TISSUE DIELECTRIC PARAMETERS	. 11						
8	3.1. LIQUID CHECK RESULTS	. 12						
9.	SYSTEM VERIFICATION	. 14						
9	0.1. SYSTEM CHECK RESULTS	. 14						
10.	SAR MEASUREMENT PROCEDURES	. 15						
11.	RF OUTPUT POWER VERIFICATION	. 16						
1	1.1. GSM	. 16						
1	1.2. UMTS RELEASE 99	. 17						
1	1.3. CDMA2000	. 18						
12.	SUMMARY OF TEST RESULT	. 19						
1	2.1. GPRS 850 & 1900	. 20						
1	2.2. UMTS BAND V & II	. 21						
1	2.3. CDMA2000 Cell & PCS Band	. 22						
13.	WORST-CASE SAR TEST PLOTS	. 23						
14.	ATTACHMENTS	. 35						
15.	ANTENNA LOCATIONS AND SEPARATION DISTANCES	. 36						
16.	TEST SETUP PHOTOS	. 37						
17.	HOST DEVICE	. 39						

1. ATTESTATION OF TEST RESULTS

Applicant name:	Sierra Wireless Inc.						
	13811 Wireless Way						
	Richmond, BC, V6	5V 3A4					
	Canada						
EUT description:	The EUT is the Si	erra Wireless Gobi2000					
	850/1900 GSM/W	CDMA/GPRS/EDGE/CDMA Module					
	(Tested inside of F	Panasonic Tablet PC, Model CF-H2)					
Model number:	GOBI2000						
Device category:	Portable						
Exposure category:	General Population/Uncontrolled Exposure						
Date tested:	June 2 – June 3 ,	2011					
FCC / IC Rule Parts	Freq. Range [MHz]	Highest 1g SAR (mW/g)	Limit (mW/g)				
0011 / DOC 400	004 040	0.691 mW/g (GPRS)					
2211/ 833-132	824 - 849	Primary Portrait	16				
21E / DSS 122	1950 1010	0.113 mW/g (UMTS Band II)	1.0				
24E / ROO-100	Secondary Landscape						
Applicable Standards							

OET Bulletin 65 Supplement C 01-01, IEEE STD 1528: 2003, RSS-102 Issue 4, March 2010, RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011 Pass

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For CCS By:

Suray Shih

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS) Tested By:

David Rodgers RF Engineer Compliance Certification Services (UL CCS)

Page 4 of 39

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528:2003, and the following KDB Procedures.

- 248227 SAR measurement procedures for 802.11a/b/g transmitters
- 447498 D01 Mobile Portable RF Exposure v04

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>

Page 5 of 39

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufaaturar	Turse/Madal	Carial Na	Cal. Due date			
Name of Equipment	Manufacturer	турелиодеі	Senai No.	MM	DD	Year	
Robot - Six Axes	Stäubli	TX90	C01209			N/A	
Robot Remote Control	Stäubli	CS8C	N/A			N/A	
DASY5 Measurement Server	SPEAG	SEUMS014AA	1064			N/A	
Probe Alignment Unit	SPEAG	LB5 / 80	N/A			N/A	
SAM Phantom	SPEAG	QP 000 P40 CC	1602			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1099			N/A	
Dielectronic Probe kit	HP	85070C	N/A			N/A	
ESA Series Network Analyzer	Agilent	E5071B	MY 42100131	8	2	2011	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
Wireless comunication test set	Agilent	E5515C (8960)	GB46160222	6	17	2012	
E-Field Probe	SPEAG	EX3DV3	3749	12	12 13 2		
Data Acquisition Electronics	SPEAG	DAE 4	1239	11	17	2011	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
System Validation Dipole	SPEAG	D835V2	4d002	4	4	2013	
System Validation Dipole	SPEAG	*D1900V2	5d043	11	24	2012	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3	13	2012	
Power Meter	Boonton	4541	12405	4	5	2012	
Power Sensor	Boonton	57006	6940	3	31	2012	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		N/A	
Simulating Liquid	SPEAG	MSL1900	N/A	Withir	n 24 hr	s of first test	
Simulating Liquid	SPEAG	MSL835	N/A	Withir	Within 24 hrs of first test		

*Note:

Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5 Ω of calibrated measurement (test data on file in UL CCS)

Page 6 of 39

5.50

0.47

0.94

0.52

1.99

0.58

0.30

0.46

1.50

1.73

1.73

0.23

1.67

0.58

2.90

3.60

2.89

2.31

1.85

0.81

1.73

-1.51

9.60

dB

4.2. MEASUREMENT UNCERTAINTY

Specific Absorption Rate (SAR) uncertainty calculation Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram error, % Distribution Divisor Component Sensitivity U (Xi), % Measurement System Probe Calibration (k=1) 5.50 Normal 1 1.15 1.732 0.7071 Axial Isotropy Rectangular 2.30 Rectangular 0.7071 Hemispherical Isotropy 1.732 0.90 Rectangular Boundary Effect 1.732 1 Probe Linearity 3.45 Rectangular 1.732 1 System Detection Limits 1.00 Rectangular 1.732 1 Readout Electronics 0.30 Normal 1 0.80 Response Time Rectangular 1.732 1 2.60 Rectangular 1.732 Integration Time 1 **RF Ambient Conditions - Noise** 3.00 Rectangular 1.732 1 Rectangular **RF Ambient Conditions - Reflections** 3.00 1.732 1 0.40 Probe Positioner Mechanical Tolerance Rectangular 1.732 1 2.90 Probe Positioning with respect to Phantom Rectangular 1.732 1 Extrapolation, Interpolation and Integration 1.00 Rectangular 1.732 1 **Test Sample Related** Test Sample Positioning 2.90 Normal 1 Device Holder Uncertainty 3.60 Normal 1 Output Power Variation - SAR Drift 5.00 Rectangular 1.732 1 Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) 4.00 Rectangular 1.732 1 Rectangular Liquid Conductivity - deviation from target 5.00 1.732 0.64 Liquid Conductivity - measurement (835MHz) 1.27 Normal 0.64 Liquid Permittivity - deviation from target 5.00 Rectangular 1.732 0.6 Liquid Permittivity - measurement uncertainty (1900MHz) -2.52 Normal 0.6 Combined Standard Uncertainty Uc(y) = Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 19.19 Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 1.52

Page 7 of 39

5. EQUIPMENT UNDER TEST

The EUT is the Sierra Wireles Tested inside Panasonic Tabl	es Gobi 2000 850/1900 for GSM/WCDMA/GPRS/EDGE/CDMA Module. et PC, CF-H2
Normal operation:	Multiple display orientations supporting both portrait and landscape configurations.
Antenna tested:	<u>Part number:</u> ANTENNA WWAN MAIN:DFUP2071ZA(1) <u>Manufactured by:</u> Panasonic
Antenna-to-antenna/user separation distances:	See Section 15 for details of antenna locations and separation distances.
Simultaneous transmission:	WWAN can transmit simultaneously with WiFi
	 WWAN can transmit simultaneously with Bluetooth
	 WiFi can transmit simultaneously with Bluetooth
Assessment for SAR evaluation for Simultaneous transmission:	 WiFi and BT The Bluetooth's maximum output power is ≤ 60/f_(GHz) mW. Therefore stand-alone SAR evaluation is not required. Additionally, simultaneous transmission SAR evaluation is not required for WiFi/Bluetooth antenna pair. (Bluetooth - FCC ID: ACJ9TGBT11B; IC: 216A-CFBT11B) WWAN and BT Same as WiFi and BT WWAN and WiFi SAR is not required due to ∑ (SAR_{1g}) < SAR limit.

Page 8 of 39

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 9 of 39

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Page 10 of 39

8. TISSUE DIELECTRIC PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Body (for 300 – 3000 MHz and 5800 MHz)

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body (Supplement C 01-01)			
rarger requercy (wriz)	٤ _r	σ (S/m)		
300	58.20	0.92		
450	56.70	0.94		
835	55.20	0.97		
900	55.00	1.05		
915	55.00	1.06		
1450	54.00	1.30		
1610	53.80	1.40		
1800 - 2000	53.30	1.52		
2450	52.70	1.95		
3000	52.00	2.73		
5800	48.20	6.00		

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 11 of 39

8.1. LIQUID CHECK RESULTS

Measured by: David Rodgers

Date	Freq. (MHz)		Liqu	iid Parameters	Measured	Target	Delta (%)	Limit ±(%)	
6/2/2011	e' 53.6256		Relative Permittivity (ε_r):	53.63	55.20	-2.85	5		
0/2/2011	B00y 655	e"	21.1569	Conductivity (o):	0.98	0.97	1.27	5	
Liquid Check									
Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 40%									
June 02, 2011 11:51 AM									
Frequency	e'			e''					
800000000.	5	53.9	733	21.3307					
805000000.	5	53.9	227	21.3032					
810000000.	5	53.8	696	21.2811					
815000000.	5	53.8	183	21.2550					
820000000.	5	53.7	660	21.2319					
825000000.	5	53.7	181	21.2102					
830000000.	5	53.6	686	21.1831					
835000000.	5	53.6	256	21.1569					
840000000.	5	3.5	782	21.1324					
845000000.	5	3.5	340	21.1118					
850000000.	5	3.4	987	21.0860					
855000000.	53.4534			21.0661					
860000000.	5	03.4 	160	21.0524					
865000000.	53.3694		694	21.0341					
870000000.	5	03.3 	257	21.0166					
875000000.	5	03.Z	811	21.0073					
880000000.	5	03.Z	251	20.9975					
885000000.	5	03.1	703	20.9789					
890000000	0	00. I. 20 0	210	20.9624					
895000000.	5	03.U	744	20.9460					
9000000000	5	ວ.ບ ເວັດ	240 794	20.9299	20.9299				
903000000.	5	52.9 52.0	734 260	20.9150					
910000000.	5	ວ2.ອ ເລັດ	200	20.0920					
915000000.	5	2.0 2 8	242	20.0702					
9250000000	5	52.0 52.7	242	20.0000					
920000000.	5	52.7	296	20.0443					
9350000000	5	52.6	877	20.0200					
940000000	5	52.0 52.6	391	20.0000					
945000000	5	52.5	904	20 7793					
950000000.	5	52.5	440	20.7663					
The Conduct	ivity (σ) can be	e giv	ven as:						
$\sigma = \omega \varepsilon_0 e^{\prime \omega}$	=2πfε ₀ e"								
where $f = ta$	arget f * 10^6								
$\boldsymbol{\varepsilon}_{0} = 8.854 * 10^{-12}$									

Page 12 of 39

Measured by: David Rodgers

Date	Freq. (MHz)		Liquid Parameters		Measured	Target	Delta (%)	Limit ±(%)		
6/2/2011	Pody 1000	e'	51.8200	Relative Permittivity (ε_r):	51.82	53.30	-2.78	5		
0/3/2011	BOUY 1900	e"	14.0252	Conductivity (σ):	1.48	1.52	-2.52	5		
Liquid Check	iquid Check									
Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 42%										
June 03, 2011 09:11 AM										
Frequency	e'			e"						
171000000.	5	52.4	287	13.3623						
1720000000.	5	52.4	102	13.3906						
1730000000.	5	52.3	910	13.4229						
174000000.	5	52.3	712	13.4539						
1750000000.	5	52.3	498	13.4968						
1760000000.	5	52.3	242	13.5403						
1770000000.	5	52.2	930	13.5882						
1780000000.	5	52.2	611	13.6329						
1790000000.	5	52.2	230	13.6769						
1800000000.	5	52.1	887	13.7182						
1810000000.	5	52.1	480	13.7549						
1820000000.	5	52.1	048	13.7905						
1830000000.	5	52.0	652	13.8214						
1840000000.	5	52.0	223	13.8522						
1850000000.	5	51.9	845	13.8839						
1860000000.	5	51.9	505	13.9138						
1870000000.	5	51.9	144	13.9406						
1880000000.	5	51.8	799	13.9718						
1890000000.	5	51.8	502	13.9985						
190000000.	5	51.8	200	14.0252						
191000000.	5	51.7	922	14.0542						
The Conducti	vity (σ) can be	e giv	ven as:							
$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$										
where $f = ta$	arget f * 10^6									
E ₀ = 8	$\varepsilon_0 = 8.854 * 10^{-12}$									

Page 13 of 39

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm.
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal cortificato #	Cal data	SAR Avg (mW/g)			
validation dipole		Cal. Uale	Tissue:	Head	Body	
D835V2	D835V2-4d002_Apr11	4/4/11	1g SAR:	9.36	10.2	
SN: 4d002			10g SAR:	6.12	6.68	
D1900V2	D1900V2-5d043_Nov09	11/24/09	1g SAR:	39.8	40.4	
SN: 5d043			10g SAR:	20.7	21.4	

9.1. SYSTEM CHECK RESULTS

System	Data Tastad	Measured (N	ormalized to 1 W)	Torgot	Dolto (%)	Tolerance	
validation dipole	Dale Tesleu	Tissue:	Body	Taiyei		(%)	
D835V2	06/02/11	1g SAR:	10.0	10.2	-2.25	.10	
SN: 4d002	06/02/11	10g SAR:	6.57	6.68	-1.65	±10	
D1900V2	06/02/11	1g SAR:	41.2	40.4	1.98	.10	
SN: 5d043	06/03/11	10g SAR:	21.7	21.4	1.40	±10	

Page 14 of 39

10. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

11. RF OUTPUT POWER VERIFICATION

11.1. GSM

GPRS (GMSK) - Coding Scheme: CS1

			Avg burst Pwr (dBm)				
Band	Ch No.	f (MHz)	1 slot	Frame Avg Pwr	2 slot	Frame Avg Pwr	
	128	824.2	32.1	23.1	32.0	26.0	
GSM850	190	836.6	32.2	23.2	32.0	26.0	
	251	848.8	32.0	23.0	31.9	25.9	
	512	1850.2	30.0	21.0	29.9	23.9	
GSM1900	661	1880	30.0	21.0	29.8	23.8	
	810	1909.8	29.8	20.8	29.8	23.8	

EGPRS (8PSK) - Coding Scheme: MCS5

			Avg burst Pwr (dBm)				
Band	Ch No.	f (MHz)	1 slot	Frame Avg Pwr	2 slot	Frame Avg Pwr	
	128	824.2	27.9	18.9	27.7	21.7	
GSM850	190	836.6	27.9	18.9	27.8	21.8	
	251	848.8	27.9	18.9	27.8	21.8	
	512	1850.2	26.7	17.7	26.7	20.7	
GSM1900	661	1880	26.7	17.7	26.7	20.7	
	810	1909.8	26.3	17.3	26.3	20.3	

Note:

1. Since the source-based time-averaged output power for EGPRS mode is lower than that in the GPRS mode, therefore Body SAR test reduction is applicable for this device.

2. Based on output power above and time slots, the following worst-case configurations were chosen for Body SAR testing.

a. GPRS850 2 time slots

b. GPRS1900 2 time slots

Page 16 of 39

11.2. UMTS RELEASE 99

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The EUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

	Mode	Rel99	
	Subtest	-	
	Loopback Mode	Test Mode 1	
WCDMA General	Rel99 RMC	12.2kbps RMC	
Settings	Power Control Algorithm	Algorithm2	
	βc/βd	8/15	

<u>Results</u>

Rel 99 (12.2kps RMC)								
Band	Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Tx Pwr (dBm)			
	Rel 99	4132	4357	826.4	24.6			
(Band V)	12.2kbps	4183	4408	836.6	25.0			
(Band V)	RMC	4233	4458	846.6	24.9			
	Rel 99	9262	9662	1852.4	24.7			
(Band II)	12.2kps	9400	9800	1880.0	25.1			
	RMC	9538	9938	1907.6	24.7			

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 17 of 39

11.3. CDMA2000

CDMA2000 1xRTT

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

Application Rev, License

CDMA2000 Mobile Test B.13.08, L

- Protocol Rev > 6 (IS-2000-0)
- System ID: 2004 (Cell & PCS); NID: 65535 (Cell & PCS); Reg. Ch. #.: 384 (Cell) & 600 (PCS)
- Radio Config (RC) > Please see following table for details
- FCH Service Option (SO) Setup > Please see following table or details
- Traffic Data Rate > Full
- TDSO SCH Info > F-SCH Parameters > F-SCH Data Rate > 153.6 kbps
 - > R-SCH Parameters > R-SCH Data Rate > 153.6 kbps
- Rvs Power Ctrl > All Up bits (Maximum TxPout)

RF Output Power for Cellular Band

Radio	Sonvice Option	Conducted Output Power (dBm)				
Configuration	(SO)	Ch. 1013/824.7 MHz	Ch. 384/836.52 MHz	Ch. 777/848.31 MHz		
(RC)	(30)	Average	Average	Average		
RC1	55 (Loopback)	24.5	24.5	24.5		
RC3	55 (Loopback)	24.6	24.5	24.6		
	32 (+ F-SCH)	24.5	24.5	24.6		

RF Output Power for PCS Band

Radio		Conducted Output Power (dBm)				
Configuration	Service Option	Ch. 25/1851.25 MHz	Ch. 600/1880 MHz	Ch. 1175/1908.75 MHz		
(RC)	(SO)	Average	Average	Average		
RC1	55 (Loopback)	24.7	25.0	24.7		
RC3	55 (Loopback)	24.7	25.1	24.8		
	32 (+ F-SCH)	24.9	25.1	25.0		

Page 18 of 39

12. SUMMARY OF TEST RESULT

Configuration	Antenna-to-User distance	SAR Require	Comments
(1) Bottom Face	78.7 mm From Antenna-to- user	Yes	
Primary Landscape	215 mm From Main-to-user	No	SAR is not required due to separation distance > 20 cm from antenna-to-user.
(2) Secondary Landscape	11 mm From antenna-to- user	Yes	This is the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.
Secondary Portrait	220 mm from antenna to Primary edge	No	SAR is not required due to separation distance > 20 cm from antenna-to-user.
(3) Primary Portrait	13 mm from antenna to edge	Yes	This is the second most conservative antenna- to-user distance at edge mode.

Page 19 of 39

12.1. GPRS 850 & 1900

(1) Bottom Face

Band	Slot	Ch No		SAR (mW/g)		
Danu	500	CITNO.		1-g	10-g	
		128	824.2			
GPRS850	2	190	836.6	0.056	0.042	
		251	848.8			
GPRS1900	2	512	1850.2			
		661	1880.0	0.037	0.025	
		810	1909.8			

(2) Secondary Landscape

Band	Slot	Ch No	Freq (MHz)	SAR (mW/g)	
Danu	500	CITINO.		1-g	10-g
		128	824.2		
GPRS850	2	190	836.6	0.161	0.110
		251	848.8		
GPRS1900	2	512	1850.2		
		661	1880.0	0.095	0.062
		810	1909.8		

(3) Primary Portrait

Band	Slot	Ch No	Frog (MHz)	SAR (mW/g)	
Danu	5101	CITINO.		1-g	10-g
		128	824.2		
GPRS850	2	190	836.6	0.691	0.460
		251	848.8		
		512	1850.2		
GPRS1900	2	661	1880.0	0.078	0.049
		810	1909.8		

Page 20 of 39

12.2. UMTS BAND V & II

Test reduction considerations:

KDB 941225 D01 – Body SAR is not required for HSDPA when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is < 75% of the SAR limit.

(1) Bottom Face

Band	Mode	Modo III. Ch No		f (MH7)	SAR (mW/g)	
Danu	Mode	OL CITNO.	DE CITINO.	1 (IVII 12)	1-g	10-g
	R99	4132	4357	826.4		
Band V	12.2kbps	4183	4408	836.6	0.070	0.052
	RMC	4233	4458	846.6		
	R99	9262	9662	1850.2		
Band II	12.2kbps	9400	9800	1880.0	0.055	0.036
	RMC	9538	9938	1907.6		

(2) Secondary Landscape

Dand	Modo			f (MILI-7)	SAR (mW/g)	
Danu	Mode	OL CHINO.	DE CITINO.		1-g	10-g
	R99	4132	4357	826.4		
Band V	12.2kbps	4183	4408	836.6	0.128	0.088
	RMC	4233	4458	846.6		
	R99	9262	9662	1850.2		
Band II	12.2kbps	9400	9800	1880.0	0.113	0.073
	RMC	9538	9938	1907.6		

(3) Primary Portrait

Band	Modo			f (N/H)	SAR (mW/g)	
Danu	Mode	OL CITNO.	DE CITINO.	1 (IVII 12)	1-g	10-g
	R99	4132	4357	826.4		
Band V	12.2kbps	4183	4408	836.6	0.452	0.303
	RMC	4233	4458	846.6		
	R99	9262	9662	1850.2		
Band II	12.2kbps	9400	9800	1880.0	0.086	0.053
	RMC	9538	9938	1907.6		

Page 21 of 39

12.3. CDMA2000 Cell & PCS Band

(1) Bottom Face

Band	Mode	Ch No	f (MHz)	SAR (mW/g)	
Bana	Mode	on No.	r (10112)	1-g	10-g
Cellular	1xRTT (RC3, SO32)	1013	824.70		
		384	836.52	0.072	0.054
		777	848.31		
PCS	1xRTT (RC3, SO32)	25	1851.25		
		600	1880.00	0.055	0.037
		1175	1908.75		

(2) Secondary Landscape

Band	Mode	Ch No	f (MHz)	SAR (mW/g)	
Dand	Mode	On No.	o. f (MHz) 3 824.70 836.52 0 7 848.31 1851.25	1-g	10-g
Cellular	1xRTT (RC3, SO32)	1013	824.70		
		384	836.52	0.106	0.072
		777	848.31		
PCS	1xRTT (RC3, SO32)	25	1851.25		
		600	1880.00	0.038	0.025
		1175	1908.75		

(3) Primary Portrait

Band	Mode	Ch No	f (MHz)	SAR (mW/g)
Dand	WOOC	On No.	1 (IVII 12)	1-g	10-g
	1xRTT (RC3, SO32)	1013	824.70		
Cellular		384	836.52	0.423	0.279
		777	848.31		
		25	1851.25		
PCS	(RC3, SO32)	600	1880.00	0.088	0.055
		1175	1908.75		

Page 22 of 39

13. WORST-CASE SAR TEST PLOTS

Date/Time: 6/3/2011 5:57:00 PM

Test Laboratory: UL CCS

Secondary Landscape GPRS1900

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: PCS1900; Frequency: 1880 MHz; Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; σ = 1.46 mho/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 23.0 deg. C; Liquid Temperature: 22.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Slot2 M CH 661/Area Scan (11x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.106 mW/g

Slot2 _M_CH 661/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 8.57 V/m; Power Drift = -0.012 dB Peak SAR (extrapolated) = 0.146 W/kg SAR(1 g) = 0.095 mW/g; SAR(10 g) = 0.062 mW/g

Maximum value of SAR (measured) = 0.112 mW/g

Page 23 of 39

Date/Time: 6/3/2011 6:32:20 PM

Test Laboratory: UL CCS

Secondary Landscape_GPRS1900

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: PCS1900; Frequency: 1880 MHz; Duty Cycle: 1:4

Slot2 _M_CH 661/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Maximum value of SAR (measured) = 0.109 mW/g

Page 24 of 39

Date/Time: 6/2/2011 6:20:11 PM

Test Laboratory: UL CCS

Primary Portrait Portrait

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.984 mho/m; ϵ_r = 53.6; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 23.0 deg. C; Liquid Temperature: 22.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS_2SIot_M_Ch /Area Scan (9x21x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.790 mW/g

GPRS_2Slot_M_Ch /Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 28.4 V/m; Power Drift = -0.015 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.691 mW/g; SAR(10 g) = 0.460 mW/g

Maximum value of SAR (measured) = 0.807 mW/g

Page 25 of 39

Date/Time: 6/2/2011 6:51:08 PM

Test Laboratory: UL CCS

Primary Portrait Portrait

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:4

GPRS_2SIot_M_Ch /Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Maximum value of SAR (measured) = 0.801 mW/g

Page 26 of 39

Date/Time: 6/3/2011 10:58:37 PM

Test Laboratory: UL CCS

Secondary Landscape_UMTS BAND II

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: UMTS Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.46 mho/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 23.0 deg. C; Liquid Temperature: 22.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

UMTS Band II_Rel99_RMC_M_Ch/Area Scan (11x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.127 mW/g

UMTS Band II_Rel99_RMC_M_Ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=3mm Reference Value = 9.39 V/m; Power Drift = 0.130 dB Peak SAR (extrapolated) = 0.170 W/kg

SAR(1 q) = 0.113 mW/q; SAR(10 q) = 0.073 mW/q

Maximum value of SAR (measured) = 0.133 mW/g

Page 27 of 39

Date/Time: 6/3/2011 11:26:03 PM

Test Laboratory: UL CCS

Secondary Landscape_UMTS BAND II

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: UMTS Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

UMTS Band II_Rel99_RMC_M_Ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Maximum value of SAR (measured) = 0.134 mW/g

Page 28 of 39

Date/Time: 6/2/2011 9:53:03 PM

Test Laboratory: UL CCS

Primary Portrait Portrait

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: UMTS Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.984 mho/m; ϵ_r = 53.6; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 23.0 deg. C; Liquid Temperature: 22.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

UMTS Band V_M_Ch/Area Scan (9x21x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.506 mW/g

UMTS Band V_M_Ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = $2\overline{2.7}$ V/m; Power Drift = -0.019 dB Peak SAR (extrapolated) = 0.689 W/kg

SAR(1 g) = 0.452 mW/g; SAR(10 g) = 0.303 mW/g

Maximum value of SAR (measured) = 0.524 mW/g

Page 29 of 39

Date/Time: 6/2/2011 10:24:01 PM

Test Laboratory: UL CCS

Primary Portrait Portrait

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: UMTS Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1

UMTS Band V_M_Ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm.

Maximum value of SAR (measured) = 0.516 mW/g

Page 30 of 39

Date/Time: 6/3/2011 3:11:25 AM

Test Laboratory: UL CCS

Primary Protrait

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: CDMA Cell Band; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.984 mho/m; ϵ_r = 53.6; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 23.0 deg. C; Liquid Temperature: 22.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

CDMA2000 Cell Band_M_Ch/Area Scan (11x19x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.467 mW/g

CDMA2000 Cell Band_M_Ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 21.9 V/m; Power Drift = 0.018 dB Peak SAR (extrapolated) = 0.656 W/kg

SAR(1 g) = 0.423 mW/g; SAR(10 g) = 0.279 mW/g Maximum value of SAR (measured) = 0.497 mW/g

Page 31 of 39

Date/Time: 6/3/2011 3:43:18 AM

Test Laboratory: UL CCS

Primary Protrait

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: CDMA Cell Band; Frequency: 836.52 MHz;Duty Cycle: 1:1

CDMA2000 Cell Band_M_Ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Maximum value of SAR (measured) = 0.487 mW/g

Page 32 of 39

Date/Time: 6/3/2011 7:36:42 PM

Test Laboratory: UL CCS

Primary Portrait_CDMA2000

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: PCS1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.46 mho/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 23.0 deg. C; Liquid Temperature: 22.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

CDMA2000 PCS_1xRTT_Ch-M/Area Scan (11x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.095 mW/g

CDMA2000 PCS_1xRTT_Ch-M/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 8.11 V/m; Power Drift = -0.014 dB Peak SAR (extrapolated) = 0.157 W/kg SAR(1 g) = 0.088 mW/g; SAR(10 g) = 0.055 mW/g Maximum value of SAR (measured) = 0.106 mW/g

Page 33 of 39

Date/Time: 6/3/2011 8:03:45 PM

Test Laboratory: UL CCS

Primary Portrait_CDMA2000

DUT: Panasonic; Type: N/A; Serial: N/A

Communication System: PCS1900; Frequency: 1880 MHz;Duty Cycle: 1:1

CDMA2000 PCS_1xRTT_Ch-M/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Maximum value of SAR (measured) = 0.106 mW/g

Page 34 of 39

14. ATTACHMENTS

No.	Contents	No. of page (s)
1	System Check Plots	4
2-1	SAR Test Plots for 850MHz	18
2-2	SAR Test Plots for 1900MHz	18
3	Certificate of E-Field Probe - EX3DV3 SN 3749	11
4	Certificate of System Validation Dipole - D835V2 SN:4d002	9
5	Certificate of System Validation Dipole - D1900V2 SN:5d043	9

Page 35 of 39