

FCC CFR47 PART 22H AND PART 24E & INDUSTRY CANADA RSS-132 AND RSS-133

FOR

850/900/1800/1900/2100 MHZ USB MODEM

MODEL NUMBER: COMPASS 888

FCC ID: N7NC888 IC: 2417C-C888

REPORT NUMBER: 08U11897-1C

ISSUE DATE: AUGUST 07, 2008

Prepared for SIERRA WIRELESS INC. 13811 WIRELESS WAY RICHMOND, BC V6V 3A4, CANADA

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	07/11/08	Initial Issue	T. Chan
А	07/18/08	Revised model name, FCC ID, and IC ID	A. Zaffar
В	08/07/08	Revised model name, FCC ID, and IC ID	A. Zaffar
С	09/03/08	Revised report based upon FCC comments	M.Kuo

Page 2 of 39

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	.4
2.	TE	ST METHODOLOGY	.5
3.	FA	CILITIES AND ACCREDITATION	.5
4.	CA	LIBRATION AND UNCERTAINTY	.5
4	4.1.	MEASURING INSTRUMENT CALIBRATION	5
4	4.2.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	.6
4	5.1.	DESCRIPTION OF EUT	6
4	5.2.	SOFTWARE AND FIRMWARE	6
4	5.3.	WORST-CASE CONFIGURATION AND MODE	9
4	5.4.	DESCRIPTION OF TEST SETUP	9
6.	TE	ST AND MEASUREMENT EQUIPMENT1	1
7.	LIN	MITS AND RESULTS1	12
7	7.1.	RADIATED OUTPUT POWER	12
7	7.2.	POWER LINE CONDUCTED EMISSION	34
8.	SE	TUP PHOTOS	38

Page 3 of 39

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	SIERRA WIRELESS
	13811 WIRELESS WAY
	RICHMOND, BC V6V 3A4, CANADA

EUT DESCRIPTION: 850/900/1800/1900/2100 MHZ USB MODEM

MODEL: COMPASS 888

SERIAL NUMBER: S7411280028E1-0C

DATE TESTED: JUNE 20 - 23, 2008

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
FCC PART 22H and 24E	PASS			
(Radiated Emissions)				
IC RSS-132 ISSUE 2 and RSS-133 ISSUE 4	PASS			
(Radiated Emissions)				

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES menyizh mekenon.

MENGISTU MEKURIA EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 39

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA/EIA 603C (2004), FCC CFR 47 Part 2, FCC CFR 47 Part 22H, 24E, RSS-GEN, RSS132, RSS133, SPSR503, and SPSR510.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Power Line Conducted Emission	+/- 2.3 dB
Radiated Emission	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 39

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a multi-band wireless modem operating on the GSM/GPRS/EDGE/UMTS network. In the US and Canada, only cellular and PCS bands are used for EDGE/GPRS/UMTS operation, so this test report only contains data for these two bands (850MHz and 1900MHz). The EUT was tested in all modes of operation: GMSK Modulation, 8PSK and WCDMA modulation.

5.2. SOFTWARE AND FIRMWARE

The following settings were used to configure the Wireless Communications Test Set, Agilent 8960 Series 10, E5515C.

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

<u>Rev, License</u>
A.09.06
A.06.31

GSM Mode

- To reset the Agilent 8960 to default all values > Shift & Preset
- To adjust Input/Output offset, press SYSTEM CONFIG button above the control knob > RF IN/OUT Amptd Offset
 - > RF IN/OUT Amptd Offset Setup

> Enter frequencies to be tested and corresponding offsets (enter negative values for offset, i.e.-35 is greater than -30).

Control

- Operating Mode > Active Cell (GSM)
- Connection Type > Auto (For Voice Mode)

Call Parms

- BCH Parameters > Cell Power > adjust to (~ -50dBm) to maintain strong link OTA > Cell Band > PCS or GSM850 (US band)
- TCH Parameters > Timeslot >1

> Traffic Channel	> PCS	Channel 512 / 661 / 810
	> GSM850	Channel 128 / 190 / 251

- > MS TX Level > 1 (for both PCS or GSM850)
- > Timeslot > 1
- > Speech Setup > Speech Source > Echo (Default)
- Press "Originate Call"

Page 6 of 39

GPRS Mode

- To reset the Agilent 8960 to default all values > Shift & Preset
- To adjust Input/Output offset, press SYSTEM CONFIG button above the control knob
 - > RF IN/OUT Amptd Offset
 - > RF IN/OUT Amptd Offset Setup

> Enter frequencies to be tested and corresponding offsets (enter negative values for offset, i.e.-35 is greater than -30).

Control

- Operating Mode > Active Cell (GPRS)
- Connection Type > ETSI Type A (For Data Mode)

Call Parms

- BCH Parameters > Cell Power > adjust to (~ -50dBm) to maintain strong link OTA > Cell Band > PCS or GSM850 (US band)
- TCH Parameters > Traffic Channel > PCS Channel 512 / 661 / 810 > GSM850 Channel 128 / 190 / 251 > MS TX Level > 3 (33dBm for Cell band); 3 (30dBm for PCS band)
- PDTCH > Multislot Config > 1 Down, 2 Up > MS TX Level > 5 (33dBm Cell band); 1 (30dBm PCS band) > Coding Scheme > CS-4
- After the 8960 attaches to the EUT, then press "Start Data Connection"

EGPRS Mode

- To reset the Agilent 8960 to default all values > Shift & Preset
- To adjust Input/Output offset, press SYSTEM CONFIG button above the control knob > RF IN/OUT Amptd Offset
 - > RF IN/OUT Amptd Offset Setup

> Enter frequencies to be tested and corresponding offsets (enter negative values for offset, i.e.-35 is greater than -30).

Control

- Operating Mode > Active Cell (EGPRS)
- Connection Type > ETSI Type A (For Data Mode)

Call Parms

- BCH Parameters > Cell Power > adjust to (~ -50dBm) to maintain strong link OTA > Cell Band > PCS or GSM850 (US band)
- TCH Parameters > Traffic Band > PCS Channel 512 / 661 / 810 > GSM850 Channel 128 / 190 / 251 > MS TX Level > 6 (27 dBm Cell band); 5 (26 dBm PCS band)
- PDTCH > Multislot Config > 1 Down, 2 Up
 - > MS TX Level > 6 (27dBm Cell band); 5 (26dBm PCS band)
 - > Modulation Coding Scheme
 - > Uplink Modulation Coding Scheme > MCS 9
- After the 8960 attaches to the EUT, then press "Start Data Connection"

Page 7 of 39

ApplicationRev. LicenseWCDMA Mobile TestA.09.06

<u>WCDMA</u>

- Call Setup > Shift & Preset
- Cell Parameters: PS Domain Information > Present
 ATT (IMSI Attach) Flag State > Set
- Security Parameter System Operations > None
- Channel Type:
 - RMC: 12.2k, 64k, 144k, or 384k
 - AMC: 12.2 UL / 64/ DL AM RMC, 12.2 UL / 144/ DL AM RMC, or 12.2 UL / 384/ DL AM RMC,
- Paging Service: RB Test Mode
- Channel (UARFCN) Parms:
- PCS band Cell band
- DL Channel: 9662 / 9800 / 9938 / 4357 / 4407 / 4458
- UL Channel: 9262 / 9400 / 9538 / 4132 / 4182 / 4233
- DL DTCH Data: All Ones
- RLC Reestablish: Off
- Call Limit State: Off
- Call Drop Timer: Off
- SRB Config.: 13.6k DCCH
- UE Target Power: 25 dBm
- UL CL Power Ctrl Parameters
 - UL CL Power Ctrl Mode: All Up Bits

Page 8 of 39

5.3. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

5.4. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number FCC ID						
Laptop	Dell	LATITUDE D620	(01)07898349890528	DoC		
Laptop AC Adapter	Dell	LA65NS0-00	CN-0DF263-71615-66C-2E23	DoC		
Communications Test Set	Agilent	E5515C	GB46160222	DoC		

I/O CABLES

I/O CABLE LIST							
Cable	Port	# of	Connector	Cable	Cable	Remarks	
No.		Identical	Туре	Туре	Length		
		Ports			_		
1	AC Input	1	2-Prong	Un-Shielded	2.0 m	N/A	
2	AC Input	1	3-Prong	Un-Shielded	2.0 m	N/A	
3	DC Input	1	Mini-Jack	Un-Shielded	2.0 m	Ferrites on Cradle and PC Ends	
4	RF In/Out	1	SMA	Un-shielded	1.5 m	N/A	

TEST SETUP

The EUT directly plugged into the laptop during the tests. The Wireless Communication test set exercised the EUT.

Page 9 of 39

RADIATED TEST SETUP DIAGRAM

Page 10 of 39

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Serial	Cal Due				
			Number			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	3/31/2009		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	8/3/2008		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	8/3/2008		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	9/28/2008		
Antenna, Horn, 18 GHz	EMCO	3115	C00872	4/22/2009		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	4/22/2009		
Signal Generator 2 -40 GHz	R & S	SMP04	DE 34210	2/16/2009		
Signal Generator 1024 MHz	R & S	SMY01	DE 12311	5/28/2009		
Dipole	EMCO	3121C-DB2	22435	6/28/2009		
2.7GHz HPF	MicroTronic	HPM13194	2	CNR		
1.5GHz HPF	MicroTronic	HPM13195	1	CNR		
Communication Test Set	R & S	CMU 200	C01131	5/16/2009		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY45300064	10/27/2008		

Page 11 of 39

7. LIMITS AND RESULTS

7.1. RADIATED OUTPUT POWER

<u>LIMIT</u>

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(b) & RSS133 § 6.4 Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

RSS-132 § 4.4 The maximum ERP shall be 6.3 Watts for mobile stations.

TEST PROCEDURE

RSS-132, RSS-133, & ANSI / TIA / EIA 603C Clause 2.2.17

RESULTS

Page 12 of 39

850 MHz GPRS Mode

Channel	Frequency	ERP	ERP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	824.2	32.90	1949.84
Middle	837.0	32.10	1621.81
High	848.8	30.20	1047.13

850 MHz EGPRS Mode

Channel	Frequency	ERP	ERP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	824.2	30.50	1122.02
Middle	837.0	29.60	912.01
High	848.8	27.60	575.44

850 MHz WCDMA Modulation

Channel	Frequency	ERP	ERP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	826.2	23.30	213.80
Middle	836.4	26.20	416.87
High	846.6	24.50	281.84

Page 13 of 39

1900 MHz GPRS Mode

Channel	Frequency	EIRP	EIRP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	1850.2	31.70	1479.11
Middle	1880.0	31.60	1445.44
High	1909.8	31.90	1548.82

1900 MHz EGPRS Mode

Channel	Frequency	EIRP	EIRP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	1850.2	27.80	602.56
Middle	1880.0	27.20	524.81
High	1909.8	26.90	489.78

1900 MHz WCDMA Modulation

Channel	Frequency	EIRP	EIRP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	1852.4	28.70	741.31
Middle	1880.0	28.70	741.31
High	1907.6	28.80	758.58

CELL BAND GPRS OUTPUT POWER (ERP)

High Frequency Substitution Measurement Compliance Certification Services, Fremont 5m Chamber

Company:	SIERRA WIRELESS
Project #:	08U11897
Date:	6/21/2008
Test Engineer:	MENGISTU MEKURIA
Configuration:	EUT WITH SUPORT LAPTOP
Mode:	TX , CELL GPRS MODE

<u>Test Equipment:</u>

Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002, Thanh cable

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
824.20	105.3	v	29.7	0.5	0.0	29.2	38.5	-9.3	
824.20	107 <i>9</i>	Η	33.4	0.5	0.0	32.9	38.5	-5.5	
836.60	103.6	v	28.0	0.6	0.0	27.4	38.5	-11.0	
836.60	107.8	H	32.7	0.0	0.0	32.1	38.5	-6.4	
848.80	102.3	v	27.1	0.7	0.0	26.4	38.5	-12.0	
848.80	106.9	H	30.9	0.7	0.0	30.2	38.5	-8.3	

Page 15 of 39

CELL BAND EGPRS OUTPUT POWER (ERP)

High Frequency Substitution Measurement Compliance Certification Services, Fremont 5m Chamber

Company:	SIERRA WIRELESS
Project #:	08U11897
Date:	6/21/2008
Test Engineer:	MENGISTU MEKURIA
Configuration:	EUT WITH SUPORT LAPTOP
Mode:	TX , CELL EGPRS MODE

Test Equipment:

Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002, Thanh cable

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
824.20	102.9	v	27.3	0.5	0.0	26.8	38.5	-11.7	
824.20	105.5	H	31.0	0.5	0.0	30.5	38.5	-79	
836.60	101.2	v	25.6	0.0	0.0	25.0	38.5	-13.5	
836.60	105.3	Н	30.2	6.0	0.0	29.6	38.5	-8.8	
848.80	99.9	v	24.7	0.7	0.0	24.0	38.5	-14.4	
848.80	104.3	Н	28.3	0.7	0.0	27.6	38.5	-10.9	

Page 16 of 39

CELL BAND WCDMA OUTPUT POWER (ERP)

	High Frequ	ency Substit	ution Measure	ment					
Complianc	e Certificatio	n Services, F	Fremont 5m Ch	amber A					
Company:		SIERRA WIREL	LESS						
Project #:		08U11897							
Date:		6/22/2008							
Test Engin	eer:	MENGISTU ME	EKURIA						
Configurati	ion:	EUT WITH SUPORT LAPTOP							
Mode:		TX, CELL WCI	DMA MODE						
Test Equip	ment:								
Receiving:	Sunol T130,	and 5m Chan	aber N-type Ca	ble (Setup	this one for	testing EU	T)		
Substitutio	n: Dipole S/N	: 00022117, a	and 4ft SMA C:	able Wareh	ouse S/N: 18	37208002.	,		
	-								
f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
826.20	94.9	Y	20.4	0.5	0.0	19.9	38.5	-18.5	
826.20	100.0	H	23.8	0.5	QO	23.3	38.5	-15.2	
836.40	97.0	v	22.2	6.0	0.0	21.6	38.5	-169	
836.40	102.4	H	26.8	0.0	0.0	26.2	38.5	-12.3	
046.60	05.0		41.0	0.7	0.0	41.1		150	
840.00	93.9 100.0	¥	21.8	0.7	0.0	21.1	38.2	-1/-3	
040,00	1003	п	47.4	U./	. 0.0	1 44.2	30.2	-14.0	
Rev. 1 247									
1007.1.24.)									

Page 17 of 39

PCS BAND GPRS OUTPUT POWER (EIRP)

High Frequency Fundamental Measurement Compliance Certification Services, Fremont 5m Chamber A

 Company:
 SIERRA WIRELESS

 Project #:
 08U11897

 Date:
 6/20/2008

 Test Engineer:
 MENGISTU MEKURIA

 Configuration:
 EUT WITH SUPORT LAPTOP

 Mode:
 TX, PCS GPRS MODE

<u>Test Equipment:</u>

Receiving: Horn T60, and 12ft S/N: 197209005 (Setup this one for testing EUT) Substitution: Horn T73 Substitution, 4ft SMA Cable Warehouse S/N: 177081003

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
.850	96.8	v	24.2	0.7	8.3	31.7	33.0	-13	
.850	88.9	Н	15.7	0.7	8.3	23.3	33.0	-9.7	
.880	96.4	v	24.0	0.7	8.3	31.6	33.0	-1.4	
.880	87.7	Н	14.7	0.7	83	22.3	33.0	-10.7	
.910	96.6	v	24.2	0.7	8.4	31.9	33,0	-1.1	
.910	88.6	н	15.7	0.7	8.4	23.4	33.0	-9.7	

Page 18 of 39

PCS BAND EGPRS OUTPUT POWER (EIRP)

Compan	V:	SIERRA WIRE	LESS							
Project #	₩:	081111897								
Date:		6/20/2008								
Test En	gineer:	MENGISTII MI	FKURIA							
Configu	ration:	EUT WITH SUPORT LAPTOP								
Mode:		TX PCS EGPR	SMODE							
Keceivii Substitu	ng: Horn T60, a tion: Horn T73	nd 12ft S/N: 1 Substitution	197209005 (Sett 4ft SMA Cable	ıp this one Warehous	for testing l e S/N: 17709	EUT) 81003				
Keceivii Substitu	ng: Horn T60, a tion: Horn T73	und 12ft S/N: : Substitution,	197209005 (Sett 4ft SMA Cable	ıp this one Warehous	for testing l e S/N: 17708	81003				
Keceivir Substitu f	ng: Horn T60, a tion: Horn T73 SA reading	und 12ft S/N: Substitution, Ant. Pol.	197209005 (Sett 4ft SMA Cable SG reading	ıp this one Warehous CL	for testing l e S/N: 17708 Gain	EUT) 31003 EIRP	Limit	Margin	Notes	
Keceivii Substitu f GHz	ng: Horn T60, a tion: Horn T73 SA reading (dBuV/m)	und 12ft S/N: : Substitution, Ant. Pol. (H/V)	197209005 (Seta 4ft SMA Cable SG reading (dBm)	ıp this one Warehous CL (dB)	for testing e S/N: 17708 Gain (dBi)	EUI) 31003 EIRP (dBm)	Limit (dBm)	Margin (dB)	Notes	
Keceivii Substitu f GHz 1.850	ng: Horn T60, a tion: Horn T73 SA reading (dBuV/m) 928	und 12ft S/N: : Substitution, Ant. Pol. (H/V)	197209005 (Sett 4ft SMA Cable SG reading (dBm) 20.2	up this one Warehous CL (dB) 0.7	for testing e S/N: 17708 Gain (dBi) 8.3	EUT) 31003 EIRP (dBm) 27.8	Limit (dBm)	Margin (dB)	Notes	
Keceivii Substitu f GHz 1.850 1.850	ng: Horn T60, a tion: Horn T73 SA reading (dBuV/m) 92.8 87.6	und 12ft S/N: : Substitution, Ant. Pol. (H/V) V H	197209005 (Sett 4ft SMA Cable SG reading (dBm) 20.2 14.4	ip this one Warehous CL (dB) 0.7 0.7	for testing I e S/N: 17708 Gain (dBi) 8.3 8.3	EUT) 31003 EIRP (dBm) 27.8 21.9	Limit (dBm) 33.0 33.0	Margin (dB) -52 -11.1	Notes	
Keceivii Substitu f GHz 1.850 1.850 1.880	ng: Horn T60, a tion: Horn T73 SA reading (dBuV/m) 92.8 87.6 92.0	und 12ft S/N: : Substitution, Ant. Pol. (H/V) V H	197209005 (Sen 4ft SMA Cable SG reading (dBm) 20.2 14.4 19.6	ip this one Warehous CL (dB) 0.7 0.7 0.7	for testing l e S/N: 1770 Gain (dBi) 8.3 8.3 8.3	EUT) 81003 EIRP (dBm) 27.8 21.9 27.2	Limit (dBm) 33.0 33.0 33.0	Margin (dB) -5.2 -11.1	Notes	
Keceivii Substitu GHz 1.850 1.850 1.880 1.880	ng: Horn T60, a tion: Horn T73 SA reading (dBuV/m) 92.8 87.6 92.0 86.7	nd 12ft S/N: : Substitution, (H/V) V H V H	197209005 (Sen 4ft SMA Cable SG reading (dBm) 20.2 14.4 19.6 13.8	p this one Warehous CL (dB) 0.7 0.7 0.7 0.7	for testing e S/N: 17703 (dBi) 8.3 8.3 8.3 8.3 8.3 8.3	EURP (dBm) 27.8 21.9 27.2 21.4	Limit (dBm) 33.0 33.0 33.0 33.0 33.0	Margin (dB) -5.2 -11.1 -5.8 -11.7	Notes	
Receivii Substitu f GHz 1.850 1.850 1.880 1.880 1.880	ng: Horn T60, a tion: Horn T73 SA reading (dBuV/m) 92.8 87.6 92.0 86.7 91.6	nd 12ft S/N: 3 Substitution, Ant. Pol. (H/V) V H H V H	197209005 (Sen 4ft SMA Cable SG reading (dBm) 20.2 14.4 19.6 13.8 19.2	p this one Warehous CL (dB) 0.7 0.7 0.7 0.7 0.7	for testing e S/N: 17703 (dBi) 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	EUT) 81003 EIRP (dBm) 27.8 21.9 27.2 21.4 26.9	Limit (dBm) 33.0 33.0 33.0 33.0 33.0	Margin (dB) -52 -11.1 -58 -11.7 -6.1	Notes	

Page 19 of 39

PCS BAND WCDMA OUTPUT POWER (EIRP)

High Frequency Fundamental Measurement Compliance Certification Services, Fremont 5m Chamber A

Company:	SIERRA WIRELESS
Project #:	08U11897
Date:	6/22/2008
Test Engineer:	MENGISTU MEKURIA
Configuration:	EUT WITH SUPORT LAPTOP
Mode:	TX, PCS WCDMA MODE

Test Equipment:

Receiving: Horn T60, and 12ft S/N: 197209005 (Setup this one for testing EUT) Thanh Cable Substitution: Horn T73 Substitution, 4ft SMA Cable Warehouse S/N: 177081002, Thanh cable

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.852	90.0	v	21.3	0.9	8.3	28.7	33.0	-43	
1.852	86.4	H	16.9	0.9	8.3	24.3	33.0	-8.7	
Mid Ch							•		
1.880	89.6	v	21.3	0.9	8.3	28.7	33.0	-43	
1.880	84.5	H	15.2	0.9	8.3	22.6	33.0	-10.4	
High Ch									
1.908	89.5	v	21.3	0.9	8.4	28.8	33.0	-4.2	
1.908	85.4	Н	16.2	0.9	8.4	23.7	33.0	-9.4	

Page 20 of 39

FIELD STRENGTH OF SPURIOUS EMISSION

LIMIT

22.917 (e) and 24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

TEST PROCEDURE

RSS-132, RSS-133, & ANSI / TIA / EIA 603C Clause 2.2.12

RESULTS

<u>Note:</u> No emissions were found within 30-1000MHz & after the third harmonic of 20dB below the system noise.

Page 21 of 39

CELL BAND GPRS SPURIOUS & HARMONIC (ERP)

	ne contact.		FICKOR,	Onum.						
Company	<i>J</i> :	SIERRA WIREI	LESS							
Project #	e.	08U11897								
Date:	· · · · · · · · · · · ·	6/22/2008								
Test Eng	jneer:	MENGINI MENGINI	KURIA							
Comga. Mode:	ation:	EUI WIINSS.	PURI LAFIOI							
Mioue.		IA, UELL OIL	3 MODE							
<u>Test Equ</u>	<u>ipment:</u>									
	EMCOHorn 1-	18GHz		Horn >	18GHz			Limit		
T	60; S/N: 2238 @	∂3m -				-	ERP		-	High Pass Filter
, гн	Frequency Cables		1							
		(2, 2 0) [(1) A A V V (1)		F	re-amplifer l	-26 GHz		Pre-amplifer 20	5-40 GHz
	(2 TJ	(2~31) L	(4~0 IL) * (+2	nj	[F144 Miteq 30)08A0(🗸			•
f	CA reading	Ant Pol	C reading	CT	Cain	Cain	TOP	Timit	Morgin	Notos
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	110165
Low Ch. (8	24.2 MHz)	 			-1		~ .	140		
1.648	68.0 71.0	ν ν	-38.5	3.8	7.1	4.9 7 1	-37.4	-13.U 12.0	-24.4	
2.473	71.0 49.0	v V	-33.5	4.9 5.6	9.3	7.3	-31.1	-13.0 .13.0	-18.1	
1.648	62.4	н	-43.9	3.8	7.1	4.9	-42.9	-13.0	-29.9	
2.473	69 <i>.</i> 9	H	-34.1	49	9.3	7.1	-31.9	-13.0	-18.9	
3.297	45.7	H	-54.6	5.6	9.4	73	-52.9	-13.0	-39.9	
		1							ļ	
/0. /0/	36.6 MHz)	v	-41.0	20	7.2	50	_ 20_0	130	.26.0	
Mid Ch. (8.	66.0	2 Y	-41.0	4.9	9.3	7.1	-39.5	-13.0	-20.5	
Mid Ch. (8: 1.673 2.510	66.D 67.D	v	-37.1				50.7	-130	-37.7	
Mid Ch. (8: 1.673 2.510 3.346	66.D 67.D 47.9	v v	-37.1 -52.4	5.6	9.5	7.3	-20.7	-10.0	· · · · ·	
Mid Ch. (8: 1.673 2.510 3.346 1.673	66.0 67.0 47.9 62.8	V V H	-37.1 -52.4 -43 <u>-</u> 5	5.6 3.9	95 7.2	7.3 5.0	-42.4	-13.0	-29.4	
Mid Ch. (8: 1.673 2.510 3.346 1.673 2.510	66.0 67.0 47.9 62.8 64.8	V V H H	-37.1 -52.4 -43.5 -39.1	5.6 3.9 4.9	95 72 93	7_3 5.0 7.1	-42.4 -36.9	-13.0 -13.0	-29.4 -23.9	
Mid Ch. (8: 1.673 2.510 3.346 1.673 2.510 3.346	66.0 67.0 47.9 62.8 64.8 45.4	V V H H H	-37.1 -52.4 -43.5 -39.1 -54.7	5.6 3.9 4.9 5.6	95 72 93 95	73 50 71 73	-42.4 -36.9 -53.0	-13.0 -13.0 -13.0 -13.0	-29.4 -23.9 -40.0	
Mid Ch. (8: 1.673 2.510 3.346 1.673 2.510 3.346 44 Ch. (848	66.0 67.0 47.9 62.8 64.8 45.4	V V H H H	-37.1 -52.4 -43.5 -39.1 -54.7	5.6 3.9 4.9 5.6	95 72 93 95	73 50 7.1 7.3	-42.4 -36.9 -53.0	-13.0 -13.0 -13.0 -13.0	-29.4 -23.9 -40.0	
Mid Ch. (8: 1.673 2.510 3.346 1.673 2.510 3.346 Hi Ch. (848 1.698	66.0 67.0 47.9 62.8 64.8 45.4 3.8 MHz) 62.8	V V H H V	-37.1 -52.4 -43.5 -39.1 -54.7 -44.2	56 39 49 56 39	95 72 93 95 72	73 5.0 7.1 7.3 5.1	-42.4 -36.9 -53.0 -43.0	-13.0 -13.0 -13.0 -13.0 -13.0	-29.4 -23.9 -40.0 -30.0	
Mid Ch. (8: 1.673 2.510 3.346 1.673 2.510 3.346 Hi Ch. (848 1.698 2.546	66.0 67.0 47.9 62.8 64.8 45.4 3.8 MHz) 62.8 63.1	V V H H V V	-37.1 -52.4 -43.5 -39.1 -54.7 -44.2 -40.7	5.6 3.9 4.9 5.6 3.9 4.9	95 72 93 95 72 72 93	73 50 7.1 73 5.1 7.1	-42.4 -36.9 -53.0 -43.0 -38.6	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-29.4 -23.9 -40.0 -30.0 -25.6	
Mid Ch. (8: 1.673 2.510 3.346 1.673 2.510 3.346 Hi Ch. (848 1.698 2.546 3.395	66.0 67.0 47.9 62.8 64.8 45.4 38 MHz) 62.8 63.1 48.2	V V H H V V V V	-37.1 -52.4 -43.5 -39.1 -54.7 -44.2 -40.7 -51.8	5.6 3.9 4.9 5.6 3.9 4.9 5.7	95 72 93 95 72 72 93 95	73 50 7.1 73 5.1 7.1 73	-42.4 -36.9 -53.0 -43.0 -38.6 -50.1	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-29.4 -23.9 -40.0 -30.0 -25.6 -37.1	
Mid Ch. (8: 1.673 2.510 3.346 1.673 2.510 3.346 Hi Ch. (848 1.698 2.546 3.395 1.698	66.0 67.0 47.9 62.8 64.8 45.4 3.8 MHz) 62.8 63.1 48.2 60.6	V V H H V V V V H	-37.1 -52.4 -43.5 -39.1 -54.7 -44.2 -40.7 -51.8 -45.6	5.6 3.9 4.9 5.6 3.9 4.9 5.7 3.9	95 72 93 95 72 93 95 72 93 95 72	73 50 7.1 73 5.1 7.1 7.3 5.1 7.3 5.1	-42.4 -36.9 -53.0 -43.0 -38.6 -50.1 -44.4	-130 -130 -130 -130 -130 -130 -130 -130	-29.4 -23.9 -40.0 -30.0 -25.6 -37.1 -31.4	
Mid Ch. (8: 1 673 2 510 3 346 1 673 2 510 3 346 1 673 2 510 3 346 Hi Ch. (848 1 698 2 546 3 395 1 698 2 546	66.0 67.0 47.9 62.8 64.8 45.4 3.8 MHz) 62.8 63.1 48.2 60.6 61.8	V V H H V V V H H H		56 39 49 56 39 49 57 39 49 5.7 39	95 72 93 95 72 93 95 72 93 95 72 93	73 50 7.1 73 5.1 7.1 73 5.1 7.1 7.1	-42.4 -36.9 -53.0 -43.0 -38.6 -50.1 -44.4 -39.7	-130 -130 -130 -130 -130 -130 -130 -130	-29.4 -23.9 -40.0 -30.0 -25.6 -37.1 -31.4 -26.7 -25.2	

Page 22 of 39

CELL BAND EGPRS SPURIOUS & HARMONIC (ERP)

omnany	•	SIFERA WIEFI	FSS							
Proiect #		08U11897								
Date:		6/22/2008								
Test Eng	ineer:	MENGISTU MI	EKURIA							
Configura	ntion:	EUT WITH SU	JPORT LAPTOP							
Mode:		TX, CELL EGP!	RS MODE							
Test Equ	<u>ipment:</u>									
					10.077			Limit		
-	EMCO Horm 1-J	18GHz		Horn >	18GHz			Duint		🔽 High Pass Filter
T	50; S/N: 2238 @)3m 👻				-	ERP		-	
— Ні	Frequency Cables									
		(2) 2 A) F		1.0		Pre-amplifer l	-26GHz		Pre-amplifer	26-40GHz
	(21)	(2~31)	(4~010)	510		T144 Miteq 30	008A0(🖵			•
f	SA reading	Ant Pol	SG reading	CL	Gain	Gain	FRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	110003
Low Ch (8	24.2 MHz)	(12.1)	(((((((((((((((((((((((((((((((((((((((((112))	(((((((((((((((((((((((((((((((((((((((((11)(1)		(abiii)	()	
1.648	63.5	v	-43.6	3.8	7.1	4.9	-42.6	-13.0	-29.6	
2.473	59.5	v	-44.8	4.9	93	7.1	-42.5	-13.0	-29.5	
3.297	46.5	v	-54.0	5.6	9.4	73	-52.3	-13.0	-39.3	
1.648	58 <i>3</i>	Н	-48.0	3.8	7.1	4.9	-47.0	-13.0	-34.0	
2.473	58.9	H	-45.1	49	93	7.1	-429	-13.0	-29.9	
3.297	46.1	H	-54.2	5.6	9.4	73	-52.5	-13.0	-39.5	
MGA C'L 70	26 6 MU-)									
1 673	60.4	v	-46.6	3.0	7.2	50	.45.5	-130	-32.5	
2.510	54.6	v	-49.5	4.9	93	7.1	-47.3	-13.0	-34.3	
3.346	46.4	v	-53.9	5.6	9.5	73	-52.2	-13.0	-39.2	
1.673	58.4	н	-47.9	39	7.2	5.0	-46.8	-13.0	-33.8	
2.510	51.2	н	-52.6	4.9	9.3	7.1	-50.4	-13.0	-37.4	
3.346	46.0	Н	-54.1	5.6	9.5	73	-52.4	-13.0	-39.4	
	O MIL									
	60 2		46.7	20	7.0	£ 1	45.5	120		
Hi Ch. (848 1 409	527		-40./	39	0.2		-43.5	-13.0	-32.5	
Hi Ch. (848 1.698 2.546		v	-51.1	5.7	0.5	73	-47.0	-13.0	-30.0	
Hi Ch. (848 1.698 2 <i>5</i> 46 3.305	46 3	•	_49 1	3.9	7.2	5.1	-47.9	-13.0	-34.9	
Hi Ch. (848 1.698 2 <i>5</i> 46 3.395 1.698	46.3 57.1	н			03	7.1	-49.6	-13.0	-36.6	
Hi Ch. (848 1.698 2.546 3.395 1.698 2.546	46.3 57.1 51.9	H H	-51.8	4.9						
Hi Ch. (848 1.698 2.546 3.395 1.698 2.546 3.395	463 57.1 51.9 46.5	H H H	-51.8 -53.5	4.9 5.7	9.5	7.3	-51.8	-13.0	-38.8	
Hi Ch. (848 1.698 2.546 3.395 1.698 2.546 3.395	463 57.1 51.9 465	H H H	-51.8 -53.5	4.9 5.7	9.5	7.3	-51.8	-13.0	-38.8	

Page 23 of 39

CELL BAND WCDMA SPURIOUS & HARMONIC (ERP)

	e Certificati	on Services,	, Fremont 5m A-	Chamber						
Company:		SIERRA WIREJ	LESS							
Project #:	ſ	08U11897								
Date:	(6/22/2008								
Test Engin	leer:	MENGISTU MF	EKURIA							
Configurati	ion:	EUT WITH SU	PORT LAPTOP							
Mode:		TX, PCS WCD	MA MODE							
<u>Test Equip</u>	<u>ment:</u>									
EN	MCO Horn 1-	18GHz		Horn >	18GHz			Limit		
T60	1: S/N: 2238 @	ð3m 👻					ERP		•	High Pass Filter
1	,						I			
	equency Cables					Pre-amplifer l	-26 GHz		Pre-amplifer 26-	40 GHz
	(2 ft) 🗖	(2 ~ 3 ft)	(4∼6ft) 🔽 (12	ft)	Г	T144 Miteq 3(J08A0(🖵	Г		-
					L			1		
f f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch. (826	j.2 MHz)									
1.652	53.4	v	-53.7	3.8	7.1	4.9	-52.6	-13.0	-39.6	
2.479	49.2	v	-55.0	4.9	93	7.1	-52.8	-13.0	-39.8	
3.305	46.9	V	-53.5	5.6	9.4	73	-51.8	-13.0	-38.8	
1.652	55.3	H	-51.1	3.8	7.1	4.9	-50.0	-13.0	-37.0	
2.479	47.3	н ч	-50.8	4.9	93	7.1	-54.5	-13.0	-41.5	
3-302	435	<u>n</u>	-74.4	20	7.4	10	-74./	-15.0	-37./	
Mid Ch. (836	i.4 MHz)				-					
1.673	52.8	v	-54.2	39	7.2	5.0	-53.0	-13.0	-40.0	
2.509	48.6	v	-55.5	4.9	9.3	7.1	-53.3	-13.0	-40.3	
3.346	46.2	v	-54.0	5.6	9.5	73	-52.3	-13.0	-39.3	
1.673	54.0	H	-52.3	39	7.2	5.0	-51.2	-13.0	-38.2	
2.509	46.1	H	-57.8	49	9.3	7.1	-55.6	-13.0	-42.6	
3.346	44.3	H	-55.8	5.6	9.5	73	-54.1	-13.0	-41.1	
Hi Ch. (846.6	5 MHz)									
1.693	54.4	V	-52.6	3.9	7.2	5.1	-51.4	-13.0	-38.4	,
2.540	49.7	<u>v</u>	-54.2	49	93	7.1	-52.0	-13.0	-39.0	
3.380	4/3	<u>ү</u>	-52.8	20	72	51	-51.1	-13.0	-38.1	
1.093	473	н	-70.0	35	03	71	-47.4	-13.0	-30.4	
2540 -	45.3	H	-50.4	5.7	95	7.3	-54-4	-13.0	-41.4	
2.540 3.386		*-								
3.386	473 556 473 453	V H H H	-52.8 -50.6 -56.4 -54.7	5.7 3.9 4.9 5.7	95 72 93 95	7.3 5.1 7.1 7.3	-51.1 -49.4 -54.2 -53.0	-13.0 -13.0 -13.0 -13.0	-38.1 -36.4 -41.2 -40.0	

Page 24 of 39

PCS BAND GPRS SPURIOUS & HARMONIC (EIRP)

COMPLIANCE CERTIFICATION SERVICES DOCUMENT NO: CCSUP4031A 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

PCS BAND EGPRS SPURIOUS & HARMONIC (EIRP)

Page 26 of 39

PCS BAND WCDMA SPURIOUS & HARMONIC (EIRP)

Compan	v. ,		1 893								
Company Project ±	у- • #- (021111207	2600								
Date:	л. (5011097 6/77/7009									
Date. Tost Fne	dineer:	MENCISTII MI	FKIIRIA								
Configu	ation:	FUT WATH SU	INCOLUM								
Connigui Mode		TX PCS WCD									
Test Equ	uipment:										
	EMCO Harm 1-1	8GHz		Horn >	18GHz			Limit			
							ETD			🗹 High Pa	ss Filter
T	60; S/N: 2238 @	3m 👻				-	EIRP		-		
,			,								
Гн	i Frequency Cables								n	A6 40 CTL	
		0 28 F			1	Pre-amplifer l	-26 GHz		rre-ampilier	20-40 GHZ	
		1 / 64 / 111	14 ~ 0 0 1 2	. [1]							1
Г	(2 ft)	(2.0010)		- T		T144 Miteq 30)08A0(🖵	I		-	•
Г	(2 ft)	(a ~ 5 10)				T144 Miteq 30	008A0(•	•
Г	(2 ft)	(2.0.210)				T144 Miteq 30	008A0(11	·	
f	(2 ft) SA reading	Ant. Pol.	SG reading	CL	Gain	T144 Miteq 30 Gain	EIRP	Limit	Margin	• •	Notes
f GHz	(2 ft) SA reading (dBuV/m)	Ant. Pol. (H/V)	SG reading (dBm)	CL (dB)	Gain (dBi)	T144 Miteq 30 Gain (dBd)	EIRP (dBm)	Limit (dBm)	Margin (dB)	1	Notes
f GHz Low Ch. (1	(2 ft) SA reading (dBuV/m) 852.4 MHz)	Ant. Pol. (H/V)	SG reading (dBm)	CL (dB)	Gain (dBi)	T144 Mitteq 30 Gain (dBd)	EIRP (dBm)	Limit (dBm)	Margin (dB)]	Notes
f GHz Low Ch. (1 3.705	(2 ft) SA reading (dBuV/m) 852.4 MHz) 53.8	Ant. Pol. (H/V)	SG reading (dBm)	CL (dB) 59	Gain (dBi) 9.7	T144 Miteq 30 Gain (dBd)	EIRP (dBm)	Limit (dBm) -13.0	Margin (dB) -28.3]	Notes
f GHz Low Ch. (1 3.705	(2 ft) SA reading (dBuV/m) 852.4 MHz) 53.8 44.1 55.7	Ant. Pol. (H/V)	SG reading (dBm) -45.0 -49.3	CL (dB) 59 74	Gain (dBi) 9.7 11.0	T144 Mitteq 30 Gain (dBd) 7.5 8.9	EIRP (dBm)	Limit (dBm) -13.0 -13.0	Margin (dB) -28.3 -32.6]	Notes
f GHz Low Ch. (1 3.705 5.557 3.705	(2 ft) SA reading (dBuV/m) 852.4 MHz) 53.8 44.1 55.7 43.9	Ant. Pol. (H/V) V H H	SG reading (dBm) -45.0 -49.3 -43.0 -48.5	CL (dB) 59 74 59 74	Gain (dBi) 9.7 11.0 9.7	T144 Miteq 30 Gain (dBd) 7.5 8.9 7.5 8.9	EIRP (dBm) -41.3 -45.6 -39.3 -44.9	Limit (dBm) -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9]	Notes
f GHz Low Ch. (1 3.705 5.557 3.705 5.557	(2 ft) SA reading (dBuV/m) 8524 MHz) 538 44.1 55.7 43.9	Ant. Pol. (H/V) V H H	SG reading (dBm) -45.0 -49.3 -43.0 -48.5	CL (dB) 59 74 59 74	Gain (dBi) 9.7 11.0 9.7 11.0	G ain (dBd) 7.5 8.9 7.5 8.9 8.9	EIRP (dBm) -41.3 -45.6 -39.3 -44.9	Limit (dBm) -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9]	Notes
f GHz Low Ch. (1 3.705 5.557 3.705 5.557 Miid Ch. (1	(2 ft) SA reading (dBuV/m) 852.4 MHz) 53.8 44.1 55.7 43.9 880 MHz)	Ant. Pol. (H/V) V H H	SG reading (dBm) -45.0 -49.3 -43.0 -48.5	CL (dB) 59 74 59 74 74	G ain (dBi) 9.7 11.0 9.7 11.0	Gain (dBd) 7.5 8.9 7.5 8.9	EIRP (dBm) -41.3 -45.6 -39.3 -44.9	Limit (dBm) -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9]	Notes
f GHz Low Ch. (1 3.705 5.557 3.705 5.557 Mid Ch. (1 3.760	(2 ft) SA reading (dBuV/m) 852.4 MHz) 53.8 44.1 55.7 43.9 880 MHz) 46.0	Ant. Pol. (H/V) V H H V	SG reading (dBm) -45.0 -49.3 -43.0 -48.5 -52.7	CL (dB) 59 74 59 74 59 74 60	Gain (dBi) 9.7 11.0 9.7 11.0 9.7	Gain (dBd) 7.5 8.9 7.5 8.9 7.5 8.9	EIRP (dBm) -41.3 -45.6 -39.3 -44.9 -49.0	Limit (dBm) -13.0 -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9 -36.0]	Notes
f GHz Low Ch. (1 3.705 5.557 3.705 5.557 Mid Ch. (1 3.760 5.640	(2 ft) SA reading (dBuV/m) 852.4 MHz) 53.8 44.1 55.7 43.9 880 MHz) 46.0 43.7	Ant. Pol. (H/V) V H H H V V V V V	SG reading (dBm) -45.0 -49.3 -43.0 -48.5 -52.7 -49.8	CL (dB) 59 74 59 74 60 74	Gain (dBi) 9.7 11.0 9.7 11.0 9.7 11.2	G ain (dBd) 7.5 8.9 7.5 8.9 7.5 8.9 7.5 9.0	EIRP (dBm) -41.3 -45.6 -39.3 -44.9 -49.0 -46.1	Limit (dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9 -36.0 -33.1]	Notes
f GHz Low Ch. (1) 3.705 5.557 3.705 5.557 Mid Ch. (1) 3.760 5.640 3.760	(2 ft) SA reading (dBuV/m) 852.4 MHz) 53.8 44.1 55.7 43.9 880 MHz) 46.0 43.7 47.6	Ant. Pol. (H/V) V H H H V V H	SG reading (dBm) -45.0 -49.3 -43.0 -48.5 -52.7 -49.8 -50.9	CL (dB) 59 74 59 74 60 74 60	Gain (dBi) 9.7 11.0 9.7 11.0 9.7 11.2 9.7	G ain (dBd) 7.5 8.9 7.5 8.9 7.5 8.9 7.5 8.9 7.5 8.9 7.5 7.5 9.0 7.5	EIRP (dBm) -41.3 -45.6 -39.3 -44.9 -49.0 -46.1 -47.2	Limit (dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9 -36.0 -33.1 -34.2		Notes
f GHz Low Ch. (1) 3.705 5.557 3.705 5.557 Mid Ch. (1) 3.760 5.640 3.760 5.640	(2 ft) SA reading (dBuV/m) 8524 MHz) 5338 44.1 55.7 43.9 880 MHz) 46.0 43.7 47.6 43.4	Ant. Pol. (H/V) V V H H H H H	SG reading (dBm) -45.0 -49.3 -49.3 -48.5 -52.7 -49.8 -50.9 -49.0	CL (dB) 59 74 59 74 59 74 60 74 60 74	Gain (dBi) 9.7 11.0 9.7 11.0 9.7 11.2 9.7 11.2	Gain (dBd) 7.5 8.9 7.5 8.9 7.5 8.9 7.5 9.0 7.5 9.0	EIRP (dBm) -41.3 -45.6 -39.3 -44.9 -49.0 -46.1 -47.2 -45.3	Limit (dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9 -36.0 -33.1 -34.2 -32.3		Notes
f GHz Low Ch. (1 3.705 5.557 3.705 5.557 Mid Ch. (1 3.760 5.640 5.640 5.640	(2 ft) SA reading (dBuV/m) (852.4 MHz) 53.8 44.1 55.7 43.9 880 MHz) 46.0 43.7 47.6 43.4	Ant. Pol. (H/V) V H H H H H	SG reading (dBm) -45.0 -49.3 -43.0 -43.0 -43.0 -43.0 -43.0 -43.0 -43.0 -43.0 -43.0 -43.0 -43.0 -43.0 -49.0 -49.0	CL (dB) 59 74 59 74 60 74 60 74	Gain (dBi) 9.7 11.0 9.7 11.0 9.7 11.2 9.7 11.2	G ain (dBd) 7.5 8.9 7.5 8.9 7.5 8.9 7.5 9.0 7.5 9.0	EIRP (dBm) -41.3 -45.6 -39.3 -44.9 -49.0 -49.0 -46.1 -47.2 -45.3	Limit (dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9 -36.0 -33.1 -34.2 -32.3		Notes
f GHz Low Ch. (1 3.705 5.557 Mid Ch. (1 3.760 5.640 5.640 5.640 Hi Ch. (19 2.815	(2 ft) SA reading (dBuV/m) (852.4 MHz) 53.8 44.1 55.7 43.9 880 MHz) 46.0 43.7 47.6 43.4 07.6 MHz) 52.7	Ant. Pol. (H/V) V H H H H	SG reading (dBm) -45.0 -49.3 -43.0 -48.5 -52.7 -49.8 -50.9 -49.0 -49.0	CL (dB) 59 74 59 74 60 74 60 74 60 74	Gain (dBi) 9.7 11.0 9.7 11.0 9.7 11.2 9.7 11.2 9.7	Gain (dBd) 75 89 75 89 75 89 75 90 75 90 75 90	EIRP (dBm) -41.3 -45.6 -39.3 -44.9 -49.0 -46.1 -47.2 -45.3	Limit (dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Margin (dB) -283 -32.6 -263 -31.9 -36.0 -33.1 -34.2 -32.3]	Notes
f GHz Low Ch. (1 3.705 5.557 5.557 5.557 5.557 Mid Ch. (1 3.760 5.640 3.760 5.640 4.15 5.640 4.15 5.640 4.15 5.640 4.15 5.640 4.15 5.640 4.15 5.640 4.15 5.640 5.740 5.755 5.755 5.755 5.755 5.7555 5.7555 5.75555 5.75555 5.75555555 5.755555555	(2 ft) SA reading (dBuV/m) (dBuV/m) (8524 MHz) 538 44.1 55.7 43.9 880 MHz) 46.0 43.7 47.6 43.4 07.6 MHz) 52.7 44.2	Ant. Pol. (H/V) V V H H H V V V H H H H V V V	SG reading (dBm) -45.0 -49.3 -43.0 -48.5 -52.7 -49.8 -50.9 -49.0 -45.8 -49.3	CL (dB) 59 74 59 74 59 74 60 74 60 74 60 74	Gain (dBi) 9.7 11.0 9.7 11.0 9.7 11.2 9.7 11.2 9.7 11.2	Gain (dBd) 7.5 8.9 7.5 8.9 7.5 9.0 7.5 9.0 7.5 9.0 7.6 0.1	EIRP (dBm) -41.3 -45.6 -39.3 -44.9 -46.1 -47.2 -45.3 -45.5	Limit (dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9 -36.0 -33.1 -34.2 -32.3 -29.1 -29.1 -29.1]	Notes
f GHz Low Ch. (1 3.705 5.557 5.557 Mid Ch. (1 3.760 5.640 3.760 5.640 3.760 5.640 4.15 5.723 3.8815	(2 ft) SA reading (dBuV/m) 852.4 MHz) 53.8 44.1 55.7 43.9 880 MHz) 46.0 43.7 47.6 43.4 07.6 MHz) 52.7 44.2 52.8	Ant. Pol. (H/V) V V H H H H H V V V H H H	SG reading (dBm) -45.0 -49.3 -43.0 -48.5 -52.7 -49.8 -50.9 -49.0 -45.8 -45.8 -45.6	CL (dB) 59 74 59 74 60 74 60 74 60 75 60	Gain (dBi) 9.7 11.0 9.7 11.0 9.7 11.2 9.7 11.2 9.7 11.2 9.7 11.3 9.7	Gain (dBd) 7.5 8.9 7.5 8.9 7.5 8.9 7.5 9.0 7.5 9.0 7.5 9.0 7.6 9.1 7.6	EIRP (dBm) -41.3 -45.6 -39.3 -44.9 -46.1 -47.2 -45.3 -42.1 -45.5 -41.9	Limit (dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9 -36.0 -33.1 -34.2 -32.3 -29.1 -32.5 -28.9		Notes
f GHz Low Ch. (1 3.705 5.557 5.557 Mid Ch. (1 3.760 5.640 3.760 5.640 3.760 5.640 3.760 5.640 3.815 5.723 3.815	(2 ft) SA reading (dBuV/m) 852.4 MHz) 53.8 44.1 55.7 43.9 880 MHz) 46.0 43.7 47.6 43.4 07.6 MHz) 52.7 44.2 52.8 42.8	Ant. Pol. (H/V) V V H H H H V V V H H H	SG reading (dBm) -45.0 -49.3 -43.0 -48.5 -52.7 -49.8 -50.9 -49.0 -49.0 -45.8 -49.3 -45.6 -49.7	CL (dB) 59 74 59 74 60 74 60 74 60 74 60 75 60 75	Gain (dBi) 9.7 11.0 9.7 11.0 9.7 11.2 9.7 11.2 9.7 11.2 9.7 11.3 9.7 11.3	G ain (dBd) 7.5 8.9 7.5 8.9 7.5 9.0 7.5 9.0 7.6 9.1 7.6	EIRP (dBm) -413 -456 -393 -449 -456 -393 -449 -456 -421 -453 -421 -455 -419 -459	Limit (dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9 -36.0 -33.1 -34.2 -32.3 -29.1 -32.5 -28.9 -32.9		Notes
f GHz Low Ch. (1) 3.705 5.557 3.705 5.557 Mid Ch. (1) 3.760 5.640 3.760 5.640 3.815 5.723 3.815 5.723	(2 ft) SA reading (dBuV/m) (8524 MHz) 538 44.1 55.7 43.9 880 MHz) 46.0 43.7 47.6 43.4 07.6 MHz) 52.7 44.2 52.8 42.8	Ant. Pol. (H/V) V V H H H H V V V H H H	SG reading (dBm) -45.0 -49.3 -49.3 -48.5 -52.7 -49.8 -50.9 -49.0 -49.0 -45.8 -49.3 -45.6 -49.7	CL (dB) 59 74 59 74 59 74 60 74 60 74 60 74 60 75 60 75	Gain (dBi) 9.7 11.0 9.7 11.0 9.7 11.2 9.7 11.2 9.7 11.3 9.7 11.3	Gain (dBd) 7.5 8.9 7.5 8.9 7.5 8.9 7.5 9.0 7.5 9.0 7.5 9.0 7.6 9.1	EIRP (dBm) -41.3 -45.6 -39.3 -44.9 -49.0 -46.1 -47.2 -45.3 -45.5 -41.9 -45.5 -41.9 -45.9	Limit (dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Margin (dB) -28.3 -32.6 -26.3 -31.9 -36.0 -33.1 -34.2 -32.3 -29.1 -32.5 -28.9 -32.9		Notes

Page 27 of 39

RECEIVER SPURIOUS EMISSIONS

LIMIT

Spurious Emission Limits for Receivers:

Spurious Frequency (MHz)	Field Strength (microvolts/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960	500

TEST PROCEDURE

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (local oscillator frequency, intermediate frequency or carrier frequency),

or 30 MHz, whichever is the higher, to at least 3 times the highest tunable and local oscillator frequencies.

RESULTS

Page 28 of 39

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 29 of 39

HORIZONTAL DA	ТА					
Fr	Read eq Level	Factor	Level	Limit Line	Over Limit	Remark
M	Hz dBuV	dB	dBuV/m	dBuV/m	dB	
1 99.8 2 310.3 3 * 310.3 4 332.6 5 381.1 6 832.1 7 * 832.1 8 877.7 9 906.8 10 950.5	40 58.53 30 53.15 30 65.82 40 60.14 40 54.07 90 51.30 90 55.33 80 49.47 80 49.87 30 46.90	-20.75 -15.60 -15.60 -14.99 -13.74 -6.21 -6.21 -5.43 -4.88 -3.98	37.78 37.55 50.22 45.15 40.33 45.09 49.12 44.04 44.99 42.92	43.50 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00	-5.72 -8.45 4.22 -0.85 -5.67 -0.91 3.12 -1.96 -1.01 -3.08	Peak QP Peak Peak QP Peak Peak Peak Peak

Page 30 of 39

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 31 of 39

VERTICAL DATA						
Fre	Read Level	Factor	Level	Limit Line	Over Limit	Remark
MH	dBuV	dB	dBuV/m	dBuV/m	dB	
1 31.94 2 43.58 3 61.04 4 310.33 5 601.33 6 652.74 7 * 832.19 8 832.19 9 877.78 10 * 904.94 11 904.94 12 953.44	<pre>48.30 55.75 60.84 57.80 47.92 48.38 53.51 49.80 49.33 51.72 47.40 48.37</pre>	-10.01 -18.14 -23.14 -15.60 -9.76 -9.21 -6.21 -5.43 -5.01 -5.01 -3.85	38.29 37.61 37.70 42.20 38.16 39.17 47.30 43.59 43.90 43.90 46.71 42.39 44.52	40.00 40.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00	-1.71 -2.39 -2.30 -3.80 -7.84 -6.83 1.30 -2.41 -2.10 0.71 -3.61 -1.48	Peak Peak Peak Peak Peak Peak Peak Peak

Page 32 of 39

SPURIOUS EMISSIONS ABOVE 1000 MHz

Compli	High ance Ce	Frequency ertification	7 Measuren Services, Fi	ent emont :	5m Ch	amber									
Compai	nv:		SIERRA WIR	FLESS											
roject	#:		08U11897												
Date:			6/23/2008												
fest En	igineer:		MENGSITU N	IEKURIA	A										
Configu	uation:		EUT AND SU	PPORT E	QUIPM	ENT									
lode:			NORMAL												
lest Eq	nuipmen	it:													
н	lorn 1-	18GHz	Pre-a	nplifer	1-260	GHz	Pre-am	plifer	26-40GH	z	н	orn > 18	GHz		Limit
T73; S	S/N: 671	7 @3m	• T144 I	Aiteq 30	08A00)31 🗸				-				-	FCC 15.209
Hi Free	quency Ca	bles ——					10	faata	abla					Peak	Measurements
	2 foot	cable	3	foot d	able		12	root d	able		HPF	Re	eject Filter	RBV	V=VBW=1MHz
							A-5m (Chamb	er _					Averag	<u>ge Measurements</u>
									•					RBW=1	MHz; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
$\mathbf{G}\mathbf{H}\mathbf{z}$	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
.187	3.0	51.4	43.4	26.2	3.2	-39.2	0.0	0.0	41.7	33.6	74	54	-32.3	-20.4	H
307	3.0	53.8	33.7	26.5	3.4	-39.1	0.0	0.0	44.7	24.6	74	54	-29.3	-29.4	H
470 500	3.0	64.1	40.1 42.0	27.0	3.0	-38.8	0.0 0.0	0.0	54.3 56.0	31.9	74	54 54	-19.7	-22.1	H
543	3.0	62.5	37.2	27.2	3.7	-38.7	0.0	0.0	54.7	29.3	74	54	-19.3	-24.7	H
.833	3.0	55.4	34.8	27.9	4.1	-38.3	0.0	0.0	49.2	28.6	74	54	- 24.8	-25.4	Н
.010	3.0	50.4	31.2	28.4	4.3	-38.0	0.0	0.0	45.0	25.9	74	54	-29.0	-28.1	H
.187	3.0	55.1	48.2	26.2	3.2	-39.2	0.0	0.0	45.4	38.5	74	54	-28.6	-15.5	Υ
470	3.0	54.0 68.0	32.1 45.9	20.5 27.0	3.6	-39.1	0.0	0.0	45./ 59.8	37.7	74	54 54	-40.3	-16.3	v
.500	3.0	66.6	44.3	27.1	3.7	-38.8	0.0	0.0	58.5	36.2	74	54	-15.5	-17.8	Ŷ
543	3.0	64.3	36.9	27.2	3.7	-38.7	0.0	0.0	56.5	29.0	74	54	-17.5	-25.0	V
.833	3.0	58.1	34.8	27.9	4.1	-38.3	0.0	0.0	51.9	28.5	74	54	-22.1	-25.5	<u>v</u>
010 010	3.0	52.1 54 7	32.7	28.4	4.3	-38.0 -37.4	0.0	0.0	46.8	27.4	74	54 54	-27.2	-26.6	v
					~~~	-97.64									•
	ļ			ļ	ļ			ļ					L		
ev. 4.12.	7														
	f	Measurem	ent Frequenc	У		Amp	Preamp	Gain				Avg Lim	Average Fie	eld Strength	Limit
	Dist	Distance to	Antenna			D Corr	Distance	Corre	ct to 3 mete	rs		Pk Lim	Peak Field	Strength Lir	nit
	Read	Analyzer R	eading			Avg	Average	Field 3	Strength @	3 m		Avg Mar	Margin vs	Average Lir	nit
	AF	Antenna Fa	actor			Peak	Calculate	ed Pea	k Field Stre	ngth		Pk Mar	Margin vs. I	Peak Limit	
	CL	Cable Los:	3			HPF	High Pas	s Filter							

Page 33 of 39

# 7.2. POWER LINE CONDUCTED EMISSION

### <u>LIMIT</u>

RSS-Gen 7.2.2

Except when the requirements applicable to a given device state otherwise, for any licenceexempt radio communication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 2. The tighter limit applies at the frequency range boundaries.

Table 2 – AC Power Lines Conducted Emission Limits

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

### **RESULTS**

No non-compliance noted:

Page 34 of 39

### **<u>6 WORST EMISSIONS</u>**

	CONDUCTED EMISSIONS DATA (115 VAC 60Hz)													
Freq.		Reading		Closs	Limit	EN_B	Marg	Remark						
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2					
0.17	53.06		43.78	0.00	65.01	55.01	-11.95	-11.23	L1					
0.23	47.38		37.92	0.00	62.31	52.31	-14.93	-14.39	L1					
3.80	44.56		30.02	0.00	56.00	46.00	-11.44	-15.98	L1					
0.17	54.46		43.09	0.00	65.01	55.01	-10.55	-11.92	L2					
0.23	47.94		37.22	0.00	62.49	52.49	-14.55	-15.27	L2					
4.09	46.09		30.95	0.00	56.00	46.00	-9.91	-15.05	L2					
6 Worst I	 Data 													

Page 35 of 39

LINE 1 RESULTS



Page 36 of 39

LINE 2 RESULTS



Page 37 of 39