

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC OET BULLETIN 65 SUPPLEMENT C IC RSS 102 ISSUE 2 : NOVERMBER 2005

FOR

USB WIRELESS MODEM

MODEL: COMPASS 885

FCC ID: N7NC885 IC: 2417C-C885

REPORT NUMBER: 08U11646-3

ISSUE DATE: APRIL 10, 2008

Prepared for

SIERRA WIRELESS, INC 13811 WIRELESS WAY RICHMOND, BC V6V 3A4 CANADA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET, FREMONT, CA 94538 USA

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issued date	Revisions	Revised By
	April 10, 2008	Initial issue	Sunny Shih

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

	ATES OF TEST. AFRIE OTH, STH, AND TOTH.
APPLICANT:	Sierra Wireless, Inc.
ADDRESS:	13811 Wireless Way
	Richmond, BC V6V 3A4 Canada
FCC ID:	N7NC885
IC NUMBER:	2417C-C885
DEVICE CATEGORY:	Portable Device
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure

USB wireless modem model Compass 885 is installed in 3 different host laptops for SAR testing.

Test Sample is a:	Production unit		
Rule Parts	Frequency Range [MHz]	T SAR Va	he Highest alues [1g_mW/g]
FCC 22H	824 - 849	Gateway: Toshiba: Compaq:	0.785 0.693 0.334
FCC 24E	1850 - 1910	Gateway: Toshiba: Compaq:	1.092 0.622 0.633

Testing has been carried out in accordance with:

47CFR §2.1093 - Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01) - Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

RSS-102 - Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528_2003 - IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin-Fr Shih

Hsin Fu Shih Engineering Supervisor Compliance Certification Services

Tested By:

Jonathan King

Jonathan King EMC Engineer Compliance Certification Services

TABLE OF CONTENTS

1	DEVICE UNDER TEST (DUT) DESCRIPTION	5
2	FACILITIES AND ACCREDITATION	6
3	SYSTEM DESCRIPTION	7
	3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	8
4	SIMULATING LIQUID PARAMETERS CHECK	9
	4.1 SIMULATING LIQUID PARAMETER CHECK RESULT	10
5	SYSTEM PERFORMANCE CHECK	15
	5.1 SYSTEM PERFORMANCE CHECK RESULTS	16
6	SAR MEASURMENT PROCEDURE	17
	6.1 DASY4 SAR MEASURMENT PROCEDURE	18
7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	19
8	SAR MEASURMENT RESULTS	24
	8.1 CELL BAND	24
	8.1.1 HOST TOSHIBA	24
	8.1.2 HOST GATEWAY	25
	8.1.3 HOST COMPAQ	
	8.2 PCS BAND	27
	8.2.1 HOST TOSHIBA	27
	8.2.2 HOST GATEWAY	
	8.2.3 HOST COMPAQ	
9	MEASURMENT UNCERTAINTY	
	9.1 MEASURMENT UNCERTAINTY FOR 300 MHZ – 3000 MHZ	
10	EQUIPMENT LIST AND CALIBRATION	31
11	ATTACHMENTS	
12	PHOTOS	

1 DEVICE UNDER TEST (DUT) DESCRIPTION

USB wireless modem is installed in 3 different host laptops for SAR testing.								
Normal operation:	Lap-held position	Lap-held position						
Duty cycle:	12.5% for GPRS & EGPRS, s	2.5% for GPRS & EGPRS, single slot						
	25% for GPRS & EGPRS, 2 s	lots						
	37.5% for GPRS & EGPRS, 3	slots						
	50% for GPRS & EGPRS, 4 s	lots						
	100% for WCDMA							
Host Device(s):	<u>Host</u>	USB Orientation	Separation Distance					
	Gateway W350I	Horizontal	16 mm					
	Toshiba Satellite	Vertical	15 mm					
	Compaq Presario R3000	Horizontal	24 mm					
Power supply:	Power supplied through the la	ptop computer (host dev	vice).					

2 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, CA 94538 USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

NVLAP LAB CODE 200065-0

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

3 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)									
(% by weight)	4	50	83	835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

4 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Bo	dy
raiget i requency (Miriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameters Check Result @ Muscle 835 MHz

Room Ambient Temperature = 23°C; Relative humidity = 35%

Measured by: Jonathan King

Simulating Liquid		quid	Parameters			Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)				modourou			2
835	22	15	e'	54.269	Relative Permittivity (ε_r):	54.2690	55.2	-1.69	± 5
			e"	20.4647	Conductivity (σ):	0.95063	0.97	-2.00	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23 de	g. (C; Liquid	temperature: 22 deg.	С			
April 06,	2008 11:	22 AM	-						
Frequence	су	e'			e"				
8000000	00.	54	.64	75	20.5044				
8050000	00.	54	.61	55	20.4808				
8100000	00.	54	.55	549	20.4844				
8150000	00.	54	.50	05	20.4859				
8200000	00.	54	.46	602	20.4768				
8250000	00.	54	.38	808	20.4487				
8300000	00.	54	.35	50	20.4125				
8350000	00.	54	.26	690	20.4647				
8400000	00.	54	.21	38	20.4178				
8450000	00.	54	.17	74	20.4188				
8500000	00.	54	.11	58	20.4076				
8550000	00.	54	.04	94	20.4091				
8600000	00.	53	.97	'35	20.3822				
8650000	00.	53	.93	804	20.3540				
8700000	00.	53	.87	'10	20.3643				
8750000	00.	53	.81	84	20.3614				
8800000	00.	53	.73	392	20.3689				
8850000	00.	53	.70)15	20.3711				
8900000	00.	53	.63	393	20.3618				
8950000	00.	53	.61	45	20.3381				
9000000	00.	53	.59	904	20.3143				
9050000	00.	53	.52	266	20.3063				
9100000	00.	53	.45	594	20.2999				
9150000	00.	53	.37	'99	20.2986				
9200000	00.	53	.31	41	20.2768				
9250000	00.	53	.25	581	20.3025				
9300000	00.	53	.20)40	20.2918				
9350000	00.	53	.15	560	20.2686				
9400000	00.	53	.09	950	20.2612				
9450000	00.	53	.02	296	20.2155				
9500000	00.	52	.97	'61	20.2457				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f	f = target j	$f * 10^6$							
EO	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 835 MHz

Room Ambient Temperature = 22°C; Relative humidity = 30%

Measured by: Jonathan King

Simulating f (MHz) Temp. (°	Liquid C) Depth (cm)		Parameters	Measured	Target	Deviation (%)	Limit (%)
925 21	15	e' 53.24	Relative Permittivity (ε_r):	53.2400	55.2	-3.55	± 5
000 21	15	e" 20.6861	Conductivity (σ):	0.96091	0.97	-0.94	± 5
Liquid Check							
Ambient tempera	ature: 22 dec	a. C; Liquid	temperature: 21 deg	С			
April 9, 2008 08:	22 PM	5 / 1					
Frequency	e'		e"				
800000000.	53.	.5133	20.6649				
805000000.	53.	.5082	20.6691				
810000000.	53.	.4663	20.6298				
815000000.	53.	.4411	20.6353				
820000000.	53.	.4068	20.6438				
825000000.	53.	.3209	20.6595				
830000000.	53.	.2525	20.6581				
835000000.	53.	.2400	20.6861				
840000000.	53.	.2002	20.6362				
845000000.	53.	.1036	20.6074				
850000000.	53.	.0345	20.5909				
855000000.	52.	.9976	20.5412				
860000000.	52.	.9569	20.4506				
865000000.	52.	.8908	20.4213				
870000000.	52.	.0401	20.4201				
88000000	JZ.	.1993 7005	20.3072				
8850000000	52.	7205	20.3332				
800000000	52	6710	20.3350				
8950000000	52	6620	20.3233				
900000000	52	6069	20.0000				
905000000	52	5549	20.3233				
910000000	52	4725	20.3207				
915000000	52	4096	20.3518				
920000000.	52	.3517	20.3400				
925000000.	52	.3009	20.3563				
930000000.	52.	.2335	20.3537				
935000000.	52.	.1725	20.3388				
940000000.	52.	.0952	20.3307				
945000000.	52.	.0465	20.2914				
950000000.	51.	.9747	20.2918				
The conductivity	(σ) can be g	given as:					
$\sigma = \omega \varepsilon_{\theta} e'' = 2 \pi$	tfε₀e"						
where $f = targe$	$tf * 10^{6}$						
E _0 = 8.854	$! * 10^{-12}$						

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 35%

Measured by: Jonathan King

S	imulating Li	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)				modelloa		201101011 (70)	2
1900	22	15	e'	51.1284	Relative Permittivity (ε_r):	51.1284	53.3	-4.07	± 5
1000	22	10	e"	14.2611	Conductivity (o):	1.50739	1.52	-0.83	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23 de	g. (C; Liquid	temperature: 22 deg.	С			
April 06,	2008 12:	57 PM	-						
Frequence	су	e'			e"				
1710000	000.	51	.81	23	13.5149				
1720000	000.	51	.75	563	13.5624				
1730000	000.	51	.73	328	13.6164				
1740000	000.	51	.69	936	13.6436				
1750000	000.	51	.64	58	13.6887				
1760000	000.	51	.62	210	13.7154				
1770000	000.	51	.59	915	13.7601				
1780000	000.	51	.55	532	13.7873				
1790000	000.	51	.52	278	13.8147				
1800000	000.	51	.47	'63	13.8640				
1810000	000.	51	.46	634	13.8847				
1820000	000.	51	.40)79	13.9201				
1830000	000.	51	.37	'82	13.9836				
1840000	000.	51	.33	335	14.0352				
1850000	000.	51	.29	943	14.0824				
1860000	000.	51	.27	'48	14.1130				
1870000	000.	51	.24	33	14.1399				
1880000	000.	51	.22	210	14.1874				
1890000	000.	51	.16	678	14.2337				
1900000	000.	51	.12	284	14.2611				
1910000	000.	51	.08	801	14.3004				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e''=2πj	fε₀e"							
where f	^r = target j	$f * 10^6$							
EØ	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 22°C; Relative humidity = 36%

Measured by: Ekta Budhbhatti

S	Simulating Lie	quid			Deremeters	Maggurad	Target	Doviation $(9/)$	$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{n} \right)$
f (MHz)	Temp. (°C)	Depth (cm)			Parameters	Ineasureu		Deviation (%)	LIIIII (70)
1000	21	15	e'	50.9056	Relative Permittivity (ε_r):	50.9056	53.3	-4.49	± 5
1900	21	15	e"	14.2236	Conductivity (σ):	1.50343	1.52	-1.09	± 5
Liquid Cl	neck								
Ambient	temperat	ure: 22 de	g. (C; Liquid	temperature: 21 deg.	. C			
April 09,	2008 12:	13 PM	•						
Frequence	су	e'			e"				
1710000	000.	51	.55	556	13.6626				
1720000	000.	51	.52	250	13.7091				
1730000	000.	51	.50)48	13.7795				
1740000	000.	51	.45	582	13.7959				
1750000	000.	51	.41	160	13.8376				
1760000	000.	51	.38	345	13.8281				
1770000	000.	51	.35	500	13.8568				
1780000	000.	51	.31	192	13.8791				
1790000	000.	51	.26	626	13.8979				
1800000	000.	51	.21	198	13.9483				
1810000	000.	51	.17	728	13.9740				
1820000	000.	51	.11	133	14.0248				
1830000	000.	51	.07	70	14.0881				
1840000	000.	51	.00)85	14.1189				
1850000	000.	50	.98	341	14.1411				
1860000	000.	50	.98	361	14.1303				
1870000	000.	50	.97	757	14.1690				
1880000	000.	50	.98	858	14.1968				
1890000	000.	50	.93	328	14.1984				
1900000	000.	50	.90)56	14.2236				
1910000	000.	50	.86	643	14.2509				
The cond	ductivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f	f = target j	$f * 10^{6}$							
E	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 22°C; Relative humidity = 36%

Measured by: Ekta Budhbhatti

S	Simulating Li	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			Falameters	Measureu		Deviation (76)	Linin (70)
1900	21	15	e'	51.3708	Relative Permittivity (ε_r):	51.3708	53.3	-3.62	± 5
1300	21	15	e"	14.2636	Conductivity (o):	1.50765	1.52	-0.81	± 5
Liquid Cl	neck								
Ambient	temperat	ure: 22 de	g. (C; Liquid	temperature: 21 deg.	. C			
April 10,	2008 09:	25 AM	-						
Frequence	су	e'			e"				
1710000	000.	52	04	168	13.6891				
1720000	000.	51	.99	910	13.7135				
1730000	000.	51	.97	715	13.7628				
1740000	000.	51	.91	180	13.8072				
1750000	000.	51	.87	724	13.8276				
1760000	000.	51	.83	394	13.8523				
1770000	000.	51	.81	100	13.8921				
1780000	000.	51	.76	671	13.9217				
1790000	000.	51	.72	213	13.9540				
1800000	000.	51	.68	342	13.9900				
1810000	000.	51	.64	173	14.0154				
1820000	000.	51	.60	036	14.0431				
1830000	000.	51	.54	168	14.0824				
1840000	000.	51	.50	031	14.1180				
1850000	000.	51	.46	689	14.1458				
1860000	000.	51	.44	164	14.1603				
1870000	000.	51	.44	115	14.1809				
1880000	000.	51	.41	107	14.2063				
1890000	000.	51	.41	106	14.2404				
1900000	000.	51	.37	708	14.2636				
1910000	000.	51	.35	572	14.3062				
The cond	ductivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e''=2πj	fɛ₀e"							
where f	f = target	$f * 10^{6}$							
E (= 8.854 *	* 10 ⁻¹²							

5 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3554 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm). For 5 GHz band - Special 8x8x8 fine cube was chosen for cube integration(dx=dy=4.3mm; dz=3mm)
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.0mm
- The dipole input power (forward power) was $250 \text{ mW} \pm 3\%$.
- The results are normalized to 1 W input power.

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

5.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D835V2 SN:4d002

Date: April 6, 2008

Ambient Temperature = 23°C; Relative humidity = 30%

Measured by: Jonathan King

Body Simulating Liquid		SAR(m)W/a		Normalized	Target	Deviation	Limit	
f (MHz)	Temp. (°C)	Depth (cm)	SAR (mw/g)		to 1 W	Taryer	(%)	(%)
835 22	22	15	1g	2.59	10.36	9.71	6.69	± 10
	15	10g	1.7	6.8	6.38	6.58	± 10	

Date: April 9, 2008

Ambient Temperature = 22°C; Relative humidity = 30%

Measured by: Jonathan King

Body Simulating Liquid		SAR (mW/a)		Normalized	Target	Deviation	Limit	
f (MHz)	Temp. (°C)	Depth (cm)	SAR (IIIW/g)		to 1 W	Taiyet	(%)	(%)
835	21	15	1g	2.37	9.48	9.71	-2.37	± 10
	21		10g	1.56	6.24	6.38	-2.19	± 10

System Validation Dipole: D1900V2 SN:5d043

Date: April 9, 2008

Ambient Temperature = 22°C; Relative humidity =36 %

Measured by: Ekta Budhbhatti

Body Simulating Liquid		SAR $(m)M/(a)$		Normalized	Target	Deviation	Limit	
f (MHz)	Temp. (°C)	Depth (cm)	SAR (mw/g)		to 1 W	Taiyet	(%)	(%)
1900 21	21	15	1g	10.10	40.4	39.8	1.51	± 10
	15	10g	5.22	20.88	20.8	0.38	± 10	

Date: April 10, 2008

Ambient Temperature = 22°C; Relative humidity =36 %

Measured by: Ekta Budhbhatti

Measured by: Jonathan King

Body Simulating Liquid		SVE	P(m)M/a)	Normalized	Target	Deviation	Limit	
f (MHz)	Temp. (°C)	Depth (cm)	SAR (mw/g)		to 1 W	raiyet	(%)	(%)
1900 21	21	15	1g	10.20	40.8	39.8	2.51	± 10
	15	10g	5.27	21.08	20.8	1.35	± 10	

Date: April 6, 2008

Ambient Temperature = 23°C; Relative humidity = 35%

Body Simulating Liquid Normalized Deviation Limit SAR (mW/g) Target to 1 W (%) (%) f (MHz) Temp. (°C) Depth (cm) 9.96 39.84 39.8 0.10 1g ± 10 1900 22 15 5.18 20.72 20.8 -0.38 10g ± 10

6 SAR MEASURMENT PROCEDURE

A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

For 5 GHz band - The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.0 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 10 mm x 10 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

c) Around this point, a volume of X=Y= 30 and Z=21 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

For 5 GHz band - Around this point, a volume of X=Y=24 and Z=20 mm is assessed by measuring 7 x 7 x 9 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

- (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
- (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
- (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
- (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

6.1 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

For 5 GHz band – Same as above except the Zoom Scan measures 7 x 7 x 9 points.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

7 PROCEDURE USED TO ESTABLISH TEST SIGNAL

GSM/EGSM Procedure

The following settings were used to configure the Radio Communication Tester, CMU200. The offset of 0.3 dB was used for Cell band cable loss and 0.7 dB was used to PCS band.

GPRS/EGPRS

Function:	Menu select > GSM Mo	Menu select > GSM Mobile Station > GSM 850/900/1800/1900						
Press Connection con Press RESET > choose	trol to choose the differe all to reset all settings	ent menus						
Connection	Press Signal Off to turn Network Support > GSM Main Service > Packet I Service selection > Tes	n off the signal and change settings /I+GPRS or GSM+EGPRS Data t Mode A – Auto Slot Config. off						
MS Signal	Press Slot Config bottom on the right twice to select and change the num time slots and power setting > Slot configuration > Uplink/Gamma > 33 dBm for GPRS 850/900 > 27 dBm for EGPRS 850/900 > 30 dBm for GPRS1800/1900 > 26 dBm for EGPRS1800/1900							
BS Signal	Enter the same channel number for TCH channel (test channel) and BCCH channel							
	Frequency Offset > Mode > BCCH Level > BCCH Channel >	+ 0 Hz BCCH and TCH -85 dBm (May need to adjust if link is not stable) choose desire test channel [Enter the same channel number for TCH channel (test channel) and BCCH						
	Channel Type > P0> Slot Config > TCH > Hopping > Main Timeslot >	Off 4 dB Unchanged (if already set under MS Signal) choose desired test channel Off 3 (Default)						
Network	Coding Scheme > Bit Stream >	CS4 (GPRS) and MCS9 (EGPRS) 2E9-1PSR Bit Pattern						
AF/RF	Enter appropriate offset	s for Ext. Att. Output and Ext. Att. Input						
Connection	Press Signal On to turr	on the signal and change settings						

GSM850								
Channel	Frequency		GPRS					
	(MHz)	1 slot	2 slots	3 slots	4 slots			
		Power	Power	Power	Power			
		(dBm)	(dBm)	(dBm)	(dBm)			
128	824.2	31.7	31.6	28.6	25.6			
190	836.6	31.6	31.5	28.5	25.6			
251	848.8	31.6	31.5	28.5	25.6			

Channel	Frequency	EGPRS					
	(MHz)	1 slot 2 slots		3 slots	4 slots		
		Power	Power	Power	Power		
		(dBm)	(dBm)	(dBm)	(dBm)		
128	824.2	27.0	26.9	26.9	26.8		
190	836.6	26.9	26.8	26.9	26.8		
251	848.8	26.9	26.8	26.8	26.8		

GSM1900

Channel	Frequency	GPRS					
	(MHz)	1 slot 2 slots Power Power		3 slots Power	4 slots Power		
		(dBm)	(dBm)	(dBm)	(dBm)		
512	1850.2	28.7	28.6	28.6	28.4		
661	1880.0	28.7	28.6	28.6	28.4		
810	1909.8	28.9	28.8	28.7	28.6		

Channel	Frequency	EGPRS					
	(MHz)	1 slot 2 slots		3 slots	4 slots		
		Power	Power	Power	Power		
		(dBm)	(dBm)	(dBm)	(dBm)		
512	1850.2	25.6	25.6	25.5	25.4		
661	1880.0	25.6	25.6	25.6	25.5		
810	1909.8	25.9	25.9	25.7	25.6		

WCDMA + HSDPA Procedure

The following settings were used to configure the Radio Communication Tester, CMU200.

- Connection
- Dedicated Chan (CS): RMC
- Band Select:
 - Band VI for US Cell Band
 - Band II for US PCS Band
 - Band I for 2100MHz band
- Network
- Requested UE Data
 - Authentication: Off
 - Security: Off
 - IMEI: ON
 - RLC Reestablish: Off
- BS Signal
- Node B Setting
 - RF Channel Downlink
 - o Band VI: 4357 / 4407 / 4458
 - Band II: 9662 / 9800 / 9938
 - o Band I: 10562 / 10700 / 10838
- Circuit Switched
 - RMC Setting
 - Reference Channel Type: 12.2Kbps
 - Test Mode: Loop Mode 1 RLC TM
 - Channel Data Source DTCH: All One
 - Signaling RAB Setting
 - SRB Cell DCH: 13.6 Kbps
- HSDPA HS-DSCH

•

- **Fixed Reference Channel**
 - H-Set Selection: H-Set 1 QPSK
- UE Signal
- Analyzer Setting
 - RF Channel Uplink:
 - o Band VI: 4132 / 4182 / 4233
 - o Band II: 9262 / 9400 / 9538
 - Band I; 9612 / 9750 / 9888
 - UE power Control
 - Max Allowed UE Power: 25

WCDMA + HSDUPA Procedure

The following settings were used to configure the Radio Communication Tester, CMU200.

- Connection
- Dedicated Chan (CS): RMC
- Band Select:
 - Band VI for US Cell Band
 - Band II for US PCS Band
 - Band I for 2100MHz band
- Network
- Requested UE Data
 - Authentication: Off
 - Security: Off
 - IMEI: ON
 - RLC Reestablish: Off
- BS Signal
- Node B Setting
 - RF Channel Downlink
 - o Band VI: 4357 / 4407 / 4458
 - Band II: 9662 / 9800 / 9938
 - o Band I: 10562 / 10700 / 10838
- Circuit Switched
 - RMC Setting
 - Reference Channel Type: 12.2Kbps
 - Test Mode: Loop Mode 1 RLC TM
 - Channel Data Source DTCH: All One
 - Signaling RAB Setting
 - SRB Cell DCH: 13.6 Kbps
- HSDPA HS-DSCH

•

- **Fixed Reference Channel**
 - H-Set Selection: H-Set 1 QPSK
- UE Signal
- Analyzer Setting
 - RF Channel Uplink:
 - o Band VI: 4132 / 4182 / 4233
 - o Band II: 9262 / 9400 / 9538
 - Band I; 9612 / 9750 / 9888
 - UE power Control
 - Max Allowed UE Power: 25

WCDMA Rel 99

		Cell Band		PCS Band			
Channel	Low	Middle	High	Low	Middle	High	
Peak(dBm)	26.1	26.5	26.2	26.4	26.5	26.5	
Avg.(dBm)	22.2	22.5	22.2	22.8	22.7	22.7	

WCDMA + HSDPA

			Cell Band		PCS Band			
Sub Test	Channel	Low	Middle	High	Low	Middle	High	
1	Peak(dBm)	25.6	26.2	25.6	25.9	26.0	26.0	
	Avg.(dBm)	22.0	22.4	22.1	22.2	22.3	22.5	
2	Peak(dBm)	25.4	26.0	25.3	25.7	25.9	25.7	
2	Avg.(dBm)	22.2	22.4	22.3	22.4	22.3	22.3	
2	Peak(dBm)	25.6	25.9	25.4	25.8	26.0	25.9	
3	Avg.(dBm)	21.9	22.3	21.9	22.0	22.3	22.2	
4	Peak(dBm)	25.7	25.9	25.3	25.9	26.1	26.0	
	Avg.(dBm)	21.9	22.2	21.3	22.2	22.2	22.2	

WCDMA + HSUPA

			Cell Band			PCS Band	
Sub Test	Channel	Low	Middle	High	Low	Middle	High
1	Peak(dBm)	25.5	26.1	25.7	25.7	26.1	26.0
I	Avg.(dBm)	21.9	22.3	22.1	21.6	22.1	21.8
2	Peak(dBm)	25.8	26.1	25.5	25.9	26.2	26.1
2	Avg.(dBm)	21.7	22.3	21.79	22.3	22.4	22.2
2	Peak(dBm)	25.6	26.0	25.4	25.9	26.1	26.0
3	Avg.(dBm)	21.9	22.2	21.8	22.0	22.2	22.0
4	Peak(dBm)	25.5	25.8	25.4	25.9	26.0	26.0
4	Avg.(dBm)	21.98	22.1	21.3	22.2	22.3	22.4
5	Peak(dBm)	25.4	25.8	25.4	26.0	26.1	26.2
5	Avg.(dBm)	21.4	21.8	21.6	22.2	22.2	22.4

8 SAR MEASURMENT RESULTS

8.1 CELL BAND

8.1.1 Host Toshiba

Note: The worst case chosen for testing was based on the mode with the highest output power and highest duty cycle.

			Separation distan	ce = 10 mm			
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)		
	GPRS 2 Slots						
	128	824.20	0.649	-0.015	0.651		
	190	836.60	0.666	0.000	0.666		
	∠ວ⊺ WCDM Δ 12 20	040.00	0.591	0.000	0.091		
	4182	836.40	0.434	0.000	0.434		
Notes: 1) Th pro me 2) Ple	e exact method of e ocess by the DASY easurement process ease see attachmer	extrapolation is 4 system can b 5. hts for the detai	Measured SAR x 10 ⁴ (e scaled up by the Pov	(-drift/10). The SAF wer drift to determine a and plots showing	R reported at the end of the m ne the SAR at the beginning o the maximum SAR location	leasurement of the of the EUT.	

8.1.2 HOST GATEWAY

				\$	
L					
		Separation distant	ce = 16 mm		
			D D'4	Extra polate d ¹⁾ CAD	
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Driπ (dB)	1g (mW/g)	
Channel GPRS 2 Slots	f (MHz)	Measured SAR 1g (mW/g)	(dB)	1g (mW/g)	
Channel GPRS 2 Slots 128	f (MHz)	Measured SAR 1g (mW/g) 0.746	-0.222	1g (mW/g)	
Channel GPRS 2 Slots 128 190 251	f (MHz) 824.20 836.60	Measured SAR 1g (mW/g) 0.746 0.668	-0.222 0.000	1g (mW/g) 0.785 0.668 0.626	
Channel GPRS 2 Slots 128 190 251 WCDM 4 12 2	f (MHz) 8 824.20 836.60 848.80 k PMC	Measured SAR 1g (mW/g) 0.746 0.668 0.606	Power Driπ (dB) -0.222 0.000 -0.209	0.785 0.668 0.636	
Channel GPRS 2 Slots 128 190 251 WCDMA 12.2	f (MHz) 8 824.20 836.60 848.80 k RMC	Measured SAR 1g (mW/g) 0.746 0.668 0.606	Power Driπ (dB) -0.222 0.000 -0.209	0.785 0.668 0.636	

2) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.1.3 HOST COMPAQ

Separation distance = 24 mm Separation distance = 24 mm <u>Í (MHz) Measured SAR Power Drift Extrapolated¹) SAR</u> <u>128 824.20 0.329 0.000 0.329</u> <u>130 836.60 0.334 0.000 0.334</u> <u>128 836.40 0.290 0.000 0.290</u> <u>WCDMA12.2k RMC</u> <u>4182 836.40 0.207 0.000 0.207</u> **: 1 10 The exact method of extrapolation is Measured SAR x 10%-diff/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power dift to determine the SAR at the beginning of the							
Separation distance = 24 mm Separation distance = 24 mm							
Separation distance = 24 mm Channel f (MHz) Measured SAR Power Drift Extrapolated ¹) SAR GPRS 2 Slots 128 824.20 0.329 0.000 0.329 190 336.60 0.334 0.000 0.329 0.000 0.329 190 336.60 0.207 0.000 0.207 0.207 VCDMA12.2k RMC 4182 836.40 0.207 0.000 0.207 ***							
Separation distance = 24 mm Note Separation distance = 24 mm 128 S24.20 129 S24.20 10 The exact method of extrapolation is Measured SAR x 10%-(drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
Separation distance = 24 mm Channel f (MHz) Measured SAR Power Drift Extrapolated ¹ SAR GPRS 2 Slots 128 824.20 0.329 0.000 0.329 128 824.20 0.329 0.000 0.324 251 848.80 0.290 0.000 0.329 WCDMA 12.2k RMC 4182 836.40 0.207 0.000 0.207 10.000 0.207 s: 1 The exact method of extrapolation is Measured SAR x 10%(-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
Separation distance = 24 mm Ínitial Separation distextra distance distance = 24 mm							
Separation distance = 24 mm Channel f (MHz) Measured SAR 1g (mW/g) Power Drift (dB) Extrapolated ¹⁾ SAR 1g (mW/g) GPRS 2 Slots 128 824.20 0.329 0.000 0.329 190 836.60 0.334 0.000 0.329 190 836.60 0.290 0.000 0.290 WCDMA12.2k RMC 0.207 0.000 0.207 1 The exact method of extrapolation is Measured SAR x 10°(-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the			↑				
Separation distance = 24 mm Channel f (MHz) Measured SAR 1g (mW/g) Power Drift (dB) Extrapolated ¹⁾ SAR 1g (mW/g) GPRS 2 Slots 0.329 0.000 0.329 190 836.60 0.334 0.000 0.334 251 848.80 0.290 0.000 0.290 WCDMA12.2k RMC 4182 836.40 0.207 0.000 0.207 1 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the			↓				
Separation distance = 24 mm Channel f (MHz) Measured SAR 1g (mW/g) Power Drift (dB) Extrapolated ¹⁾ SAR 1g (mW/g) GPRS 2 Slots 128 824.20 0.329 0.000 0.329 190 836.60 0.334 0.000 0.334 0.290 WCDMA12.2k RMC 4182 836.40 0.207 0.000 0.207 1) The exact method of extrapolation is Measured SAR x 10 ^A (-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the			•				
Separation distance = 24 mm Channel f (MHz) Measured SAR Power Drift Extrapolated ¹⁾ SAR 1g (mW/g) GPRS 2 Slots 128 824.20 0.329 0.000 0.329 190 836.60 0.334 0.000 0.334 251 848.80 0.290 0.000 0.290 WCDMA12.2k RMC							
Separation distance = 24 mmChannelf (MHz)Measured SAR 1g (mW/g)Power Drift (dB)Extrapolated1SAR 1g (mW/g)GPRS 2 Slots128824.200.3290.0000.329190836.600.3340.0000.334251848.800.2900.0000.290WCDMA12.2k RMC182836.400.2070.0004182836.400.2070.0000.207Is:1) The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
Separation distance = 24 mm Channel f (MHz) Measured SAR Power Drift Extrapolated ¹⁾ SAR 1g (mW/g) GPRS 2 Slots 13 (mW/g) 0.000 0.329 128 824.20 0.329 0.000 0.329 190 836.60 0.334 0.000 0.334 251 848.80 0.290 0.000 0.290 WCDMA12.2k RMC 1482 836.40 0.207 0.000 0.207 1) The exact method of extrapolation is Measured SAR x 10°(-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
Separation distance = 24 mm Channel f (MHz) Measured SAR / 1g (mW/g) Power Drift Extrapolated ¹⁾ SAR / 1g (mW/g) GPRS 2 Slots 0.329 0.000 0.329 190 836.60 0.334 0.000 0.334 251 848.80 0.290 0.000 0.290 WCDMA12.2k RMC 1482 836.40 0.207 0.000 0.207 ss: 1) The exact method of extrapolation is Measured SAR x 10°(-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
Separation distance = 24 mm Channel f (MHz) Measured SAR 1g (mW/g) Power Drift (dB) Extrapolated ¹) SAR 1g (mW/g) GPRS 2 Slots 128 824.20 0.329 0.000 0.329 190 836.60 0.334 0.000 0.334 251 848.80 0.290 0.000 0.290 WCDMA12.2k RMC 1 4182 836.40 0.207 0.000 0.207 1) The exact method of extrapolation is Measured SAR x 10 ⁴ (-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
Separation distance = 24 mm $\hline Channel$ f (MHz)Measured SAR 1g (mW/g)Power Drift (dB)Extrapolated ¹⁾ SAR 1g (mW/g) $GPRS 2 Slots$ 128824.200.3290.0000.329190836.600.3340.0000.334251848.800.2900.0000.290WCDMA12.2k RMC14182836.400.2071)The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measured process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
Separation distance = 24 mm $\hline Channel$ f (MHz)Measured SAR 1g (mW/g)Power Drift (dB)Extrapolated ¹⁾ SAR 1g (mW/g) $GPRS 2 Slots$ 128824.200.3290.0000.329190836.600.3340.0000.334251848.800.2900.0000.290WCDMA12.2k RMC14182836.400.2070.00035:1The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measured process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
Separation distance = 24 mm $\hline Channel$ f (MHz)Measured SAR 1g (mW/g)Power Drift (dB)Extrapolated ¹) SAR 1g (mW/g) $GPRS 2 Slots$ 128824.200.3290.0000.329190836.600.3340.0000.334251848.800.2900.0000.290WCDMA12.2k RMC1482836.400.2070.0000.207es:1) The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
Separation distance = 24 mmChannelf (MHz)Measured SAR 1g (mW/g)Power Drift (dB)Extrapolated ¹⁾ SAR 1g (mW/g)GPRS 2 Slots128824.200.3290.0000.329190836.600.3340.0000.334251848.800.2900.0000.290WCDMA12.2k RMC1182836.400.2070.0000.2071)The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measured process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
Channelf (MHz)Measured SAR 1g (mW/g)Power Drift (dB)Extrapolated1) SAR 1g (mW/g)GPRS 2 Slots128824.200.3290.0000.329190836.600.3340.0000.334251848.800.2900.0000.290WCDMA12.2k RMC4182836.400.2070.0000.207estimation of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the							
GPRS 2 Slots 0.000 0.329 128 824.20 0.329 0.000 0.329 190 836.60 0.334 0.000 0.334 251 848.80 0.290 0.000 0.290 WCDMA12.2k RMC 1 1182 836.40 0.207 0.000 0.207 es: 1) The exact method of extrapolation is Measured SAR x 10 ^A (-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning of the scaled up by the Power drift to determine the SAR at the beginning drift to determine the scaled up by the Power drift to determine the SAR at the beginning drift to determine the SAR at the beginning drift to determine the				Separation distan	ce = 24 mm		
128 824.20 0.329 0.000 0.329 190 836.60 0.334 0.000 0.334 251 848.80 0.290 0.000 0.290 WCDMA12.2k RMC 4182 836.40 0.207 0.000 0.207 4182 836.40 0.207 0.000 0.207 0.000 0.207		Channel	f (MHz)	Separation distan Measured SAR 1g (mW/g)	ce = 24 mm Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
190 836.60 0.334 0.000 0.334 251 848.80 0.290 0.000 0.290 WCDMA12.2k RMC 4182 836.40 0.207 0.000 0.207 4182 836.40 0.207 0.000 0.207		Channel GPRS 2 Slots	f (MHz)	Separation distan Measured SAR 1g (mW/g)	ce = 24 mm Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
WCDMA12.2k RMC 4182 836.40 0.207 0.000 0.207 es: 1) The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the		Channel GPRS 2 Slots 128	f (MHz) s 824.20	Separation distan Measured SAR 1g (mW/g) 0.329	ce = 24 mm Power Drift (dB) 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.329	
4182 836.40 0.207 0.000 0.207 1) The exact method of extrapolation is Measured SAR x 10 ^A (-drift/10). The SAR reported at the end of the measure process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the training of training of the training of training of the training of		Channel GPRS 2 Slots 128 190 251	f (MHz) s 836.60 848.90	Separation distan Measured SAR 1g (mW/g) 0.329 0.334	ce = 24 mm Power Drift (dB) 0.000 0.000 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.329 0.334 0.200	
 as: The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measur process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the 		Channel GPRS 2 Slots 128 190 251 WCDMA 12 2	f (MHz) s 824.20 836.60 848.80 k RMC	Separation distan Measured SAR 1g (mW/g) 0.329 0.334 0.290	ce = 24 mm Power Drift (dB) 0.000 0.000 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.329 0.334 0.290	
 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measur process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the 		Channel GPRS 2 Slots 128 190 251 WCDMA12.2 4182	f (MHz) s 824.20 836.60 848.80 k RMC 836.40	Separation distan Measured SAR 1g (mW/g) 0.329 0.334 0.290 0.207	ce = 24 mm Power Drift (dB) 0.000 0.000 0.000 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.329 0.334 0.290 0.207	
process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the	16.	Channel GPRS 2 Slots 128 190 251 WCDMA12.2 4182	f (MHz) s 836.60 848.80 k RMC 836.40	Separation distan Measured SAR 1g (mW/g) 0.329 0.334 0.290 0.207	ce = 24 mm Power Drift (dB) 0.000 0.000 0.000 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.329 0.334 0.290 0.207	
maggurement process	. 'S: 1) ∏r	Channel GPRS 2 Slots 128 190 251 WCDMA12.2 4182 he exact method of	f (MHz) s 824.20 836.60 848.80 k RMC 836.40 extrapolation is	Separation distan Measured SAR 1g (mW/g) 0.329 0.334 0.290 0.207 Measured SAR x 10^4	ce = 24 mm Power Drift (dB) 0.000 0.000 0.000 (-drift/10). The SAI	Extrapolated ¹⁾ SAR 1g (mW/g) 0.329 0.334 0.290 0.207 R reported at the end of the m	easure

2) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.2 PCS BAND

8.2.1 HOST TOSHIBA

	1			
	•			
		Separation distan	ce = 10 mm	
Channel	f (MHz)	Separation distan Measured SAR 1g (mW/g)	ce = 10 mm Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel GPRS 2 Slots	f (MHz)	Separation distant Measured SAR 1g (mW/g)	ce = 10 mm Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel GPRS 2 Slots 512	f (MHz) 1850.20	Separation distant Measured SAR 1g (mW/g) 0.619	ce = 10 mm Power Drift (dB) -0.023 0.087	Extrapolated ¹⁾ SAR 1g (mW/g) 0.622
Channel GPRS 2 Slots 512 661 810	f (MHz) 1850.20 1880.00	Separation distant Measured SAR 1g (mW/g) 0.619 0.679	ce = 10 mm Power Drift (dB) -0.023 -0.087 0.017	Extrapolated ¹⁾ SAR 1g (mW/g) 0.622 0.693 0.651
Channel GPRS 2 Slots 512 661 810 WCDM 412 2	f (MHz) 1850.20 1880.00 1909.80	Separation distant Measured SAR 1g (mW/g) 0.619 0.679 0.648	ce = 10 mm Power Drift (dB) -0.023 -0.087 -0.017	Extrapolated ¹⁾ SAR 1g (mW/g) 0.622 0.693 0.651
Channel GPRS 2 Slots 512 661 810 WCDMA12.2 9400	f (MHz) 1850.20 1880.00 1909.80 k RMC 1880.00	Separation distant Measured SAR 1g (mW/g) 0.619 0.648 0.308	ce = 10 mm Power Drift (dB) -0.023 -0.087 -0.017 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.622 0.693 0.651 0.308

2) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.2.2 HOST GATEWAY

			\$			
			Separation distan	ce = 16 mm		
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	GPRS 2 Slots					
	512	1850.20	0.905	0.000	0.905	
	661	1880.00	0.969	0.000	0.969	
	810	1909.80	1.090	-0.006	1.092	
	WCDMA12.2	(RMC				
	9400	1880.00	0.695	0.000	0.695	
Notes: 1) Th pro- me 2) Ple	e exact method of e ocess by the DASY easurement process ease see attachmer	extrapolation is 4 system can b s. hts for the deta	Measured SAR x 10^ be scaled up by the Pov iled measurement data	(-drift/10). The SAI wer drift to determin a and plots showing	R reported at the end of the m ne the SAR at the beginning o the maximum SAR location (easurement of the of the EUT.

8.2.3 HOST COMPAQ

			ţ			
			Separation distan	ce = 24 mm		
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	GPRS 2 Slots					
	512	1850.20	0.500	0.000	0.500	
	661	1880.00	0.546	0.000	0.546	
		1909.80	0.632	-0.005	0.633	
	9400		0.410	-0 104	0 420	
Notes: 1) Th pro me 2) Ple	e exact method of o pocess by the DASY easurement process	extrapolation is 4 system can b 5.	Measured SAR x 10 ^A	(-drift/10). The SAI wer drift to determine	R reported at the end of the mathematical frequencies of the second seco	l leasurement of the

9 **MEASURMENT UNCERTAINTY**

9.1 **MEASURMENT UNCERTAINTY FOR 300 MHz - 3000 MHz**

	Tol (+%) Probe Div Ci			0: (1)	0: (40)	Std. Unc.(±%)	
Uncertainty component	10I. (±%)	Dist.	DIV.	CI (1g)	CI (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table							
1. Tol tolerance in influence quaitity							
2. N - Nomal							
3. R - Rectangular							
4. Div Divisor used to obtain standard uncertainty							

5. Ci - is te sensitivity coefficient

Cal. Due date Name of Equipment Manufacturer Type/Model **Serial Number** MM DD Year Robot - Six Axes Stäubli RX90BL N/A N/A Robot Remote Control Stäubli CS7MB 3403-91535 N/A DASY4 Measurement Server SPEAG SEUMS001BA 1041 N/A 261 Probe Alignment Unit SPEAG LB (V2) N/A SAM Phantom (SAM1) QD000P40CA 1185 SPEAG N/A SAM Phantom (SAM2) SPEAG QD000P40CA 1050 N/A Oval Flat Phantom (ELI 4.0) SPEAG QD OVA001 B 1003 N/A Electronic Probe kit HP 85070C N/A N/A S-Parameter Network Analyzer 2008 Agilent 8753ES-6 MY40001647 11 14 4 24 2008 E-Field Probe SPEAG EX3DV4 3554 Thermometer ERTCO 639-1S 1718 8 30 2008 SPEAG 500 11 16 2008 Data Acquisition Electronics DAE3 V1 22 System Validation Dipole SPEAG D835V2 4d002 6 2009 29 System Validation Dipole SPEAG 2010 D1900V2 5d043 1 2009 Signal Generator 2 16 R&S SMP 04 DE34210 Power Meter ΗP 438B 3125U11347 10 18 2008 Amplifier Mini-Circuits ZHL-42W D072701-5 N/A 2008 Radio Communication Tester R & S CMU 200 106291 4 16 CCS Simulating Liquid M835 N/A Within 24 hrs of first test CCS Simulating Liquid M1900 N/A Within 24 hrs of first test

10 EQUIPMENT LIST AND CALIBRATION

11 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	6
2-1	SAR Test Plots – Cell Band	13
2-2	SAR Test Plots – PCS Band	13
3	Certificate of E-Field Probe - EX3DV4SN3554	10
4	Certificate of System Validation Dipole - D835V2 SN:4d002	9
5	Certificate of System Validation Dipole - D1900V2 SN:5d043	9

12 PHOTOS

Compass 885

END OF REPORT