

FCC CFR47 PART 22H AND PART 24E & INDUSTRY CANADA RSS-132 AND RSS-133

FOR

850/900/1800/1900/2100 MHZ USB MODEM

MODEL NUMBER: COMPASS 885

FCC ID: N7NC885 IC: 2417C-C885

REPORT NUMBER: 08U11646-1

ISSUE DATE: APRIL 22, 2008

Prepared for

SIERRA WIRELESS INC. 13811 WIRELESS WAY RICHMOND, BC V6V 3A4, CANADA

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, USA

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	04/15/08	Initial Issue	T. Chan

TABLE OF CONTENTS

1. A7	ITESTATION OF TEST RESULTS	4
2. TE	EST METHODOLOGY	5
3. FA	ACILITIES AND ACCREDITATION	5
4. CA	ALIBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	MEASUREMENT UNCERTAINTY	5
5. EQ	QUIPMENT UNDER TEST	6
5.1.	DESCRIPTION OF EUT	6
5.2.	SOFTWARE AND FIRMWARE	6
<i>5.3</i> .	WORST-CASE CONFIGURATION AND MODE	8
5.4.	DESCRIPTION OF TEST SETUP	8
6. TE	EST AND MEASUREMENT EQUIPMENT	10
7. LI	MITS AND RESULTS	11
7.1.	RADIATED OUTPUT POWER	11
7.2.	FIELD STRENGTH OF SPURIOUS EMISSION	22
7.3.	RECEIVER SPURIOUS EMISSIONS	31
7.4.	POWER LINE CONDUCTED EMISSION	35
0 CE		20

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SIERRA WIRELESS

13811 WIRELESS WAY

RICHMOND, BC V6V 3A4, CANADA

EUT DESCRIPTION: 850/900/1800/1900/2100 MHZ USB WIRELESS MODEM

MODEL: COMPASS 885

SERIAL NUMBER: 2130

DATE TESTED: APRIL 3 - 14, 2008

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 22H and 24E No Non-Compliance Noted

(Radiated only)

IC RSS-132 ISSUE 2 and RSS-133 ISSUE 3 No Non-Compliance Noted

(Radiated only)

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By: Tested By:

THU CHAN **EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES** MENGISTU MEKURIA EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 40

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA/EIA 603C (2004), FCC CFR 47 Part 2, FCC CFR 47 Part 22H, 24E, RSS-GEN, RSS132, RSS133, SPSR503, and SPSR510.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. **MEASURING INSTRUMENT CALIBRATION**

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Radiated Emission, Above 2000 MHz	+/- 4.3 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a multi-band wireless modem operating on the GSM/GPRS/EDGE/UMTS network. In the US and Canada, only cellular and PCS bands are used for EDGE/GPRS/UMTS operation, so this test report only contains data for these two bands (850MHz and 1900MHz). The EUT was tested in all modes of operation: GMSK Modulation, 8PSK and WCDMA modulation.

5.2. SOFTWARE AND FIRMWARE

The following settings were used to configure the Wireless Communications Test Set, Agilent 8960 Series 10, E5515C.

Instrument information: (by press SYSTEM CONFIG)

Application: WCDMA Lap App C

E6703C C.03.11

Format: WCDMA

Call Control: (by press CALL SETUP)

2 of 4 Cell Parameters: PS Domain Information > Present

ATT (IMSI Attach) Flag State > Set

4 of 4 Security Info: Security Parameter - System Operations > None

Call Parms: (by press CALL SETUP)

1 of 3

Channel Type: 12.2k RMC Paging Service: RB Test Mode

HSDPA Parameters:

1 of 2 HSDPA RB Test Mode Setup FRC Type > H-Set 5 QPSK

CN Domain > PS Domain

Uplink 64k DTCH for HSDPA Loopback State > On

HS-DSCH Data Pattern > CCITT PRBS15 RLC Header on HS-DSCH > Present

Channel (UARFCN) Parms: DL Channel: 4357 / 4407 / 4458

UL Channel: 4132 / 4182 / 4233 UL Sep (Band) > 400MHz (Band 4)

Freq Bnad Ind > On

2 of 3

DL DTCH Data: ALL ONES

RLC Reestablish: Off Call Limit State: Off Call Drop Timer: Off

Page 6 of 40

13.6k DCCH SRB Config.:

3 of 3

UE Target Power: -5 dBm

UL CL Pwr Ctrl Parms: Active bits (Select "All Up bits" after linked to get maximum power)

DL Channel: 9662 / 9800 / 9938 / 4357 / 4407 / 4458 **UL** Channel: 9262 / 9400 / 9538 / 4132 / 4182 / 4233

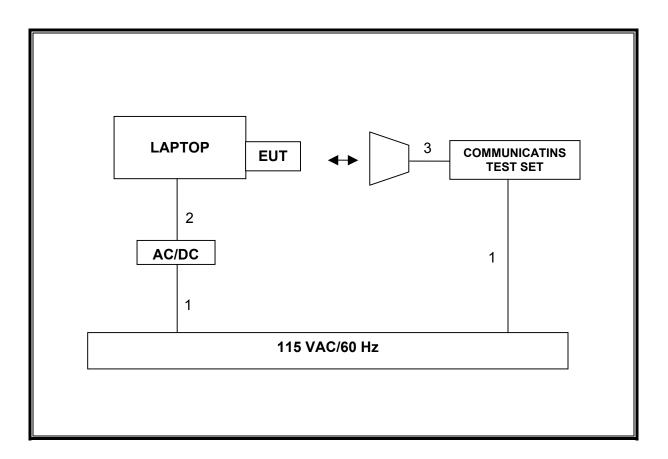
5.3. **WORST-CASE CONFIGURATION AND MODE**

Based on past experience, GPRS was the worst case among all modulations. The worst-case channel is determined as the channel with the highest output power.

5.4. **DESCRIPTION OF TEST SETUP**

SUPPORT EQUIPMENT

Test Peripherals					
Device Type	Manufacturer	Model Number	Serial Number	FCC ID	
Laptop	Ganz	U2CWFL	R7300013	DoC	
AC Adapter	FUJITSU	ADP-80NB A	07208421B	DoC	
Communications Test Set	Agilent	E5515C	GB46160222	DoC	


I/O CABLES

	I/O CABLE LIST						
Cable	Port	# of	Connector	Cable	Cable	Remarks	
No.		Identical	Type	Туре	Length		
		Ports					
1	AC	2	US 115V	Un-shielded	2 m	N/A	
2	DC	1	DC	Un-shielded	2m	N/A	
3	RF In/Out	1	SMA	Un-shielded	1m	N/A	

TEST SETUP

The EUT directly plugged into the laptop during the tests. The Wireless Communication test set exercised the EUT.

RADIATED TEST SETUP DIAGRAM

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	Cal Due	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	9/27/2008	
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	4/15/2008	
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	4/15/2008	
Signal Generator 2 -40 GHz	R & S	SMP04	DE 34210	2/16/2009	
Signal Generator 1024 MHz	R & S	SMY01	DE 12311	5/28/2009	
Dipole	EMCO	3121C-DB2	22435	5/7/2008	
2.7GHz HPF	MicroTronic	HPM13194	2	CNR	
1.5GHz HPF	MicroTronic	HPM13195	1	CNR	
Communication Test Set	Agilent	E5515C	91936	6/29/2008	
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY45300064	10/27/2008	

DATE: APRIL 22, 2008 REPORT NO: 08U11646-1 IC: 2417C-C885 FCC ID: N7NC885

7. LIMITS AND RESULTS

7.1. RADIATED OUTPUT POWER

LIMIT

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7

24.232(b) & RSS133 § 6.4 Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

RSS-132 § 4.4 The maximum ERP shall be 6.3 Watts for mobile stations.

TEST PROCEDURE

RSS-132, RSS-133, & ANSI / TIA / EIA 603C Clause 2.2.17

RESULTS

No non-compliance noted.

850 MHz GPRS Mode

Channel	Frequency	ERP	ERP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	824.2	31.90	1548.82
Middle	837.0	30.80	1202.26
High	848.8	29.00	794.33

850 MHz EGPRS Mode

Channel	Frequency	ERP	ERP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	824.2	27.00	501.19
Middle	837.0	25.90	389.05
High	848.8	24.10	257.04

850 MHz WCDMA Modulation

Channel	Frequency	ERP	ERP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	826.4	25.60	363.08
Middle	836.4	28.00	630.96
High	846.6	25.10	323.59

850 MHz WCDMA + HSDPA Modulation

Channel	Frequency	ERP Peak Power	ERP Peak Power
	(MHz)	(dBm)	(mW)
Low	826.4	26.10	407.38
Middle	836.4	28.40	691.83
High	846.6	25.70	371.54

1900 MHz GPRS Mode

Channel	Frequency	EIRP	EIRP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	1850.2	30.30	1071.52
Middle	1880.00	29.10	812.83
High	1909.8	30.60	1148.15

1900 MHz EGPRS Mode

Channel	Frequency (MHz)	EIRP Peak Power (dBm)	EIRP Peak Power (mW)
Low	1850.2	27.50	562.34
Middle	1880.00	26.40	436.52
High	1909.8	27.70	588.84

1900 MHz WCDMA Modulation

Channel	Frequency	EIRP Peak Power	EIRP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	1852.4	27.50	562.34
Middle	1880.00	26.40	436.52
High	1907.6	28.20	660.69

1900 MHz WCDMA + HSDPA Modulation

1700 MILE								
Channel	Frequency	EIRP	EIRP					
		Peak Power	Peak Power					
	(MHz)	(dBm)	(mW)					
Low	1852.4	27.40	549.54					
Middle	1880.00	27.30	537.03					
High	1907.6	28.30	676.08					

1900 MHz WCDMA + HSUPA Modulation

Channel	Frequency	EIRP	EIRP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	1852.40	27.40	549.54
Middle	1880.00	27.20	524.81
High	1907.60	26.80	478.63

CELL BAND GPRS OUTPUT POWER (ERP)

High Frequency Substitution Measurement

Compliance Certification Services, Fremont 5m Chamber

Company: SIERRA WIRELESS Project #: 08U11646 Date: 4/11/2008

Test Engineer: MENGISTU MEKURIA Configuration: EUT WITH SUPORT LAPTOP Mode: TX, CELL GPRS MODE

Test Equipment:

Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002

SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
104.4	V	30.8	0.5	0.0	30 <i>.</i> 3	38.5	-8.1	
107.7	H	32.4	0.5	0.0	31.9	38.5	-6.6	
103.3	v	30.3	0.6	0.0	29.7	38.5	-8.8	
106.5	H	31.4	0.6	0.0	30.8	38.5	-7.6	
102.0	V	28.8	0.7	0.0	28.1	38.5	-10.3	
105.2	H	29.7	0.7	0.0	29.0	38.5	-9.4	
	104.4 107.7 103.3 106.5	(dBuV/m) (H/V) 104.4 V 107.7 H 103.3 V 106.5 H 102.0 V	(dBuV/m) (H/V) (dBm) 104.4 V 30.8 107.7 H 32.4 103.3 V 30.3 106.5 H 31.4 102.0 V 28.8	(dBuV/m) (H/V) (dBm) (dB) 104.4 V 30.8 0.5 107.7 H 32.4 0.5 103.3 V 30.3 0.6 106.5 H 31.4 0.6 102.0 V 28.8 0.7	(dBuV/m) (H/V) (dBm) (dB) (dBd) 104.4 V 30.8 0.5 0.0 107.7 H 32.4 0.5 0.0 103.3 V 30.3 0.6 0.0 106.5 H 31.4 0.6 0.0 102.0 V 28.8 0.7 0.0	(dBuV/m) (H/V) (dBm) (dB) (dBd) (dBm) 104.4 V 30.8 0.5 0.0 30.3 107.7 H 32.4 0.5 0.0 31.9 103.3 V 30.3 0.6 0.0 29.7 106.5 H 31.4 0.6 0.0 30.8 102.0 V 28.8 0.7 0.0 28.1	(dBuV/m) (H/V) (dBm) (dB) (dBd) (dBm) (dBm) 104.4 V 30.8 0.5 0.0 30.3 38.5 107.7 H 32.4 0.5 0.0 31.9 38.5 103.3 V 30.3 0.6 0.0 29.7 38.5 106.5 H 31.4 0.6 0.0 30.8 38.5 102.0 V 28.8 0.7 0.0 28.1 38.5	(dBuV/m) (H/V) (dBm) (dB) (dBd) (dBm) (dBm) (dB) 104.4 V 30.8 0.5 0.0 30.3 38.5 -8.1 107.7 H 32.4 0.5 0.0 31.9 38.5 -6.6 103.3 V 30.3 0.6 0.0 29.7 38.5 -8.8 106.5 H 31.4 0.6 0.0 30.8 38.5 -7.6 102.0 V 28.8 0.7 0.0 28.1 38.5 -10.3

CELL BAND EGPRS OUTPUT POWER (ERP)

High Frequency Substitution Measurement

Compliance Certification Services, Fremont 5m Chamber

Company: SIERRA WIRELESS Project #: 08U11646 Date: 4/11/2008

Test Engineer: MENGISTU MEKURIA Configuration: EUT WITH SUPORT LAPTOP Mode: TX, CELL EGPRS MODE

Test Equipment:

Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
МHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
824.20	99.2	V	25.6	0.5	0.0	25.1	38.5	-13.3	ĺ
824.20	102.8	H	27.5	0.5	0.0	27.0	38.5	-11.5	
									ĺ
836.50	98.1	V	25.1	0.6	0.0	24.5	38.5	-14.0	
836.50	101.6	Н	26.5	0.0	Q.O	25.9	38.5	-12.5	
848.80	97.1	V	23.9	0.7	0.0	23.2	38.5	-15.2	
848.80	100.3	Н	24.8	0.7	0.0	24.1	38.5	-14.4	į

CELL BAND WCDMA OUTPUT POWER (ERP)

High Frequency Substitution Measurement

Compliance Certification Services, Fremont 5m Chamber

 Company:
 SIERRA WIRELESS

 Project #:
 08U11646

 Date:
 4/11/2008

Test Engineer: MENGISTU MEKURIA
Configuration: EUT WITH SUPORT LAPTOP
Mode: TX,CELL WCDMA MODE

Test Equipment:

Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
МHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
	Į.								
826.40	97.8	V	24.2	0.5	0.0	23.7	38.5	-14.8	
826.40	101.4	H	26.1	0.5	0.0	25.6	38.5	-12.8	
836.40	100.2	V	27.2	0.6	0.0	26.6	38.5	-11.8	
836.40	103.7	H	28.6	0.6	0.0	28.0	38.5	-10.4	
846.60	98.4	V	25.2	0.7	0.0	24.5	38.5	-13.9	
846.60	101.3	H	25.8	0.7	0.0	25.1	38.5	-13.4	

CELL BAND WCDMA + HSDPA OUTPUT POWER (ERP)

 ${\bf High\ Frequency\ Substitution\ Measurement}$

Compliance Certification Services, Fremont 5m Chamber

SIERRA WIRELESS Company: Project #: 08U11646

Date: 4/11/2008 MENGISTU MEKURIA Test Engineer: Configuration: EUT WITH SUPORT LAPTOP Mode: TX, CELL HSDPA MODE

Test Equipment:

Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	110063
826.40	98.2	v	24.6	0.5	0.0	24.1	38.5	-14.3	
826.40	101.9	H	26.6	0.5	0.0	26.1	38.5	-12.4	
836.40	100.5	v	27.5	0.0	0.0	26.9	38.5	-11.6	
836.40	104.1	H	29.0	0.6	0.0	28.4	38.5	-10.0	
846.60	98.7	v	25 <i>5</i>	0.7	0.0	24.8	38.5	-13.7	
846.60	101.9	H	26.4	0.7	0.0	25.7	38 <i>.</i> 5	-12.7	

PCS BAND GPRS OUTPUT POWER (EIRP)

High Frequency Fundamental Measurement

Compliance Certification Services, Morgan Hill 5m Chamber Site

Company: SIERRA WIRELESS

08U11646 Project #: Date: 4/14/2008

Test Engineer: MENGISTU MEKURIA Configuration: EUT WITH SUPORT LAPTOP Mode: TX, PCS GPRS MODE

Test Equipment:

Receiving: Horn T73, and 12ft S/N: 197209005 (Setup this one for testing EUT) Thanh Cable Substitution: Horn T60 Substitution, 4ft SMA Cable Warehouse S/N: 177081002, Thanh cable

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.850	95.1	v	22.9	0.9	8.3	30.3	33.0	-2.7	
1.850	93.8	Н	20.6	0.9	8.3	28.0	33.0	-5.0	
Mid Ch									
1.880	93.7	V	21.6	0.9	8.3	29.1	33.0	-4.0	
1.880	92.7	Н	20.2	0.9	8.3	27.6	33.0	-5.4	
High Ch									
1.909.8	95.4	v	23.1	0.9	8.4	30.6	33.0	-2.4	
1.909.9	91.7	H	19.5	0.9	8.4	27.0	33.0	-6.0	

PCS BAND EGPRS OUTPUT POWER (EIRP)

High Frequency Fundamental Measurement

Compliance Certification Services, Morgan Hill 5m Chamber Site

Company: SIERRA WIRELESS Project #: 08U11646 Date: 4/14/2008

Test Engineer: MENGISTU MEKURIA Configuration: EUT WITH SUPORT LAPTOP TX, PCS EGPRS MODE Mode:

Test Equipment:

Receiving: Horn T73, and 12ft S/N: 197209005 (Setup this one for testing EUT) Thanh Cable Substitution: Horn T60 Substitution, 4ft SMA Cable Warehouse S/N: 177081002, Thanh cable

f	SA reading	Ant. Pol.	SG reading	$_{\mathrm{CL}}$	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.850	92.3	v	20.1	0.9	8.3	27.5	33.0	-5.5	
1.850	90.9	H	17.6	0.9	8.3	25.0	33.0	-8.0	
Mid Ch									
1.880	91.1	V	19.0	0.9	8.3	26.4	33.0	-6.6	
1.880	90.0	H	17.4	0.9	8.3	24.8	33.0	-8.2	
High Ch									
1.909.8	92.5	v	20.3	0.9	8.4	27.7	33.0	-53	
1.909.9	89.0	H	16.9	0.9	8.4	24.4	33.0	-8.7	
	^			,	^		• • • • • • • • • • • • • • • • • • • •	^	^

REPORT NO: 08U11646-1 **DATE: APRIL 22, 2008** IC: 2417C-C885 FCC ID: N7NC885

PCS BAND WCDMA OUTPUT POWER (EIRP)

High Frequency Fundamental Measurement

Compliance Certification Services, Morgan Hill 5m Chamber Site

Company: SIERRA WIRELESS Project #: 08U11646

Test Engineer: MENGISTU MEKURIA Configuration: EUT WITH SUPORT LAPTOP TX, PCS WCDMA MODE Mode:

4/14/2008

Test Equipment:

Date:

Receiving: Horn T73, and 12ft S/N: 197209005 (Setup this one for testing EUT) Thanh Cable Substitution: Horn T60 Substitution, 4ft SMA Cable Warehouse S/N: 177081002, Thanh cable

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.852	92.2	v	20.1	0.9	8.3	27.5	33.0	-5.6	
1.852	93.0	H	19.8	0.9	8.3	27.2	33.0	-5.8	
Mid Ch				<u> </u>					
1.880	91.0	v	18.9	0.9	8.3	26.4	33.0	-6.7	
1.880	91.2	H	18.6	0.9	8.3	26.0	33.0	-7.0	
				<u> </u>					
High Ch				ł					
1.908	92.4	V	20.1	0.9	8.4	27.6	33.0	-5.4	
1.908	92.9	H	20.7	0.9	8.4	28.2	33.0	-4.8	

REPORT NO: 08U11646-1 DATE: APRIL 22, 2008 IC: 2417C-C885 FCC ID: N7NC885

PCS BAND WCDMA + HSDPA OUTPUT POWER (EIRP)

High Frequency Fundamental Measurement

Compliance Certification Services, Morgan Hill 5m Chamber Site

SIERRA WIRELESS Company: Project #: 08U11646 Date: 4/14/2008

Test Engineer: MENGISTU MEKURIA Configuration: EUT WITH SUPORT LAPTOP Mode: TX, PCS HSDPA MODE

Test Equipment:

Receiving: Horn T73, and 12ft S/N: 197209005 (Setup this one for testing EUT) Thanh Cable Substitution: Horn T60 Substitution, 4ft SMA Cable Warehouse S/N: 177081002, Thanh cable

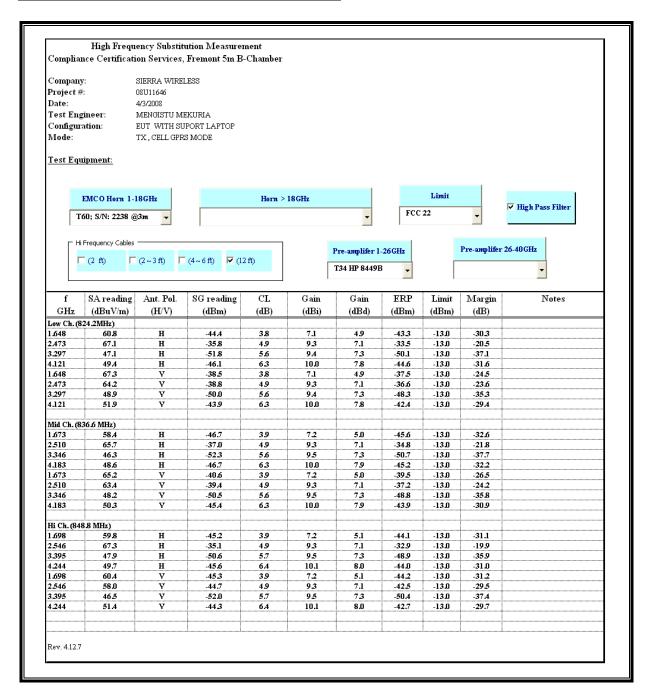
f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.852	92.2	v	20.0	0.9	8.3	27.4	33.0	-5.6	
1.852	92.9	H	19.7	0.9	8.3	27.1	33.0	-59	
	<u> </u>			ļ					
Mid Ch				£	1	<u> </u>			
1.880	92.0	V	19.8	0.9	8.3	27.3	33.0	-5.7	
1.880	91.2	Н	9.81	0.9	8.3	26.1	33.0	-6.9	
High Ch									
1.908	92.3	v	20.0	0.9	8.4	27 <i>5</i>	33.0	-5.5	
1.908	93.0	H	20.8	0.9	8.4	28.3	33.0	-4.7	

7.2. FIELD STRENGTH OF SPURIOUS EMISSION

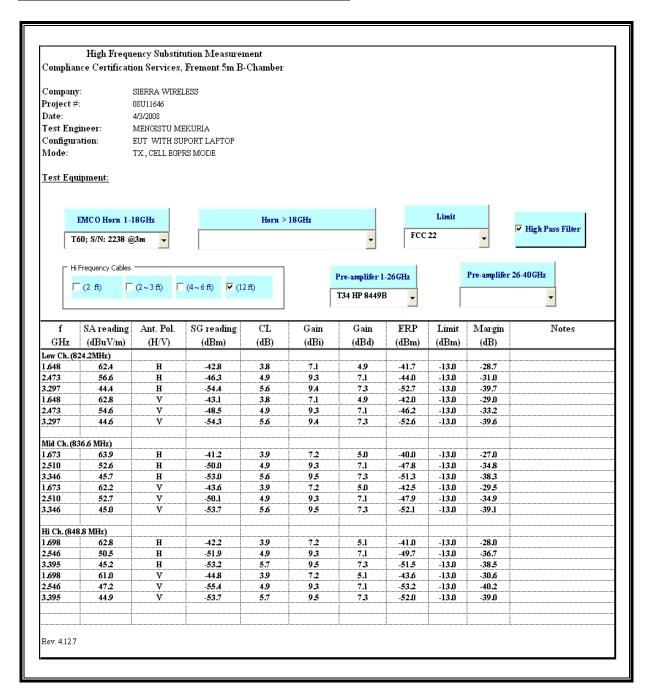
LIMIT

 $\S22.917$ (e) and $\S24.238$ (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

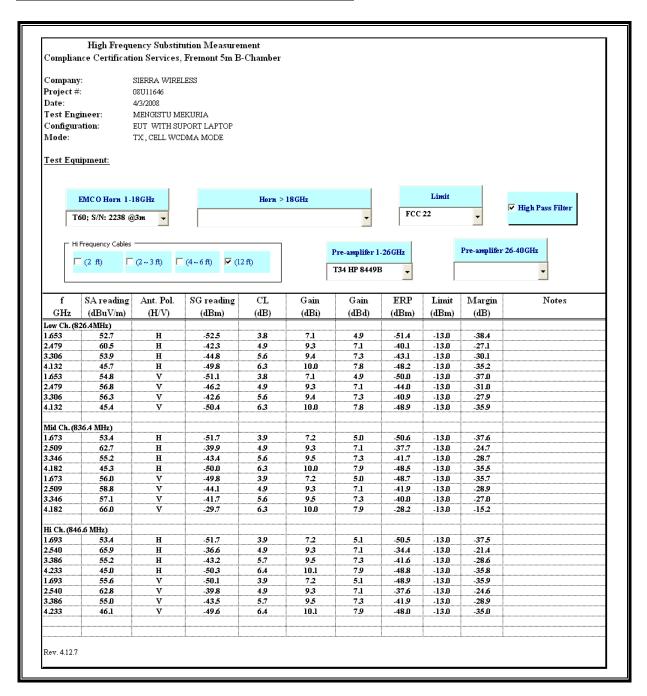
TEST PROCEDURE

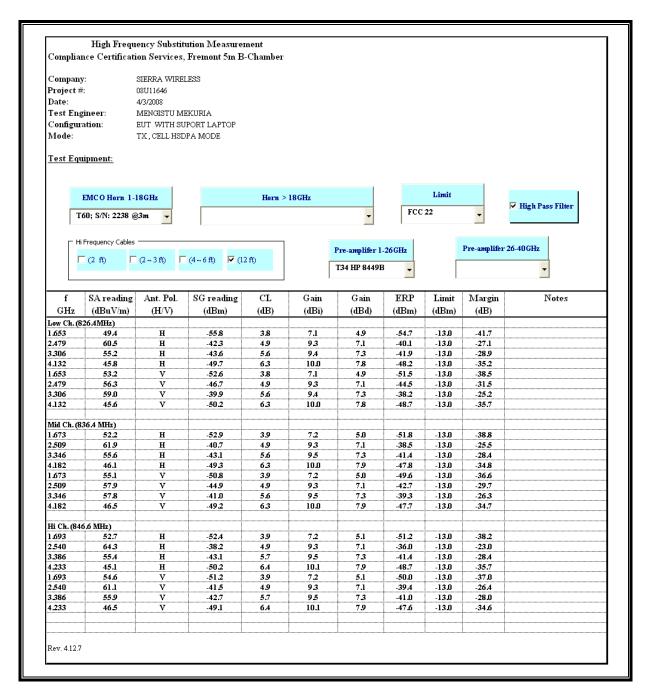

RSS-132, RSS-133, & ANSI / TIA / EIA 603C Clause 2.2.12

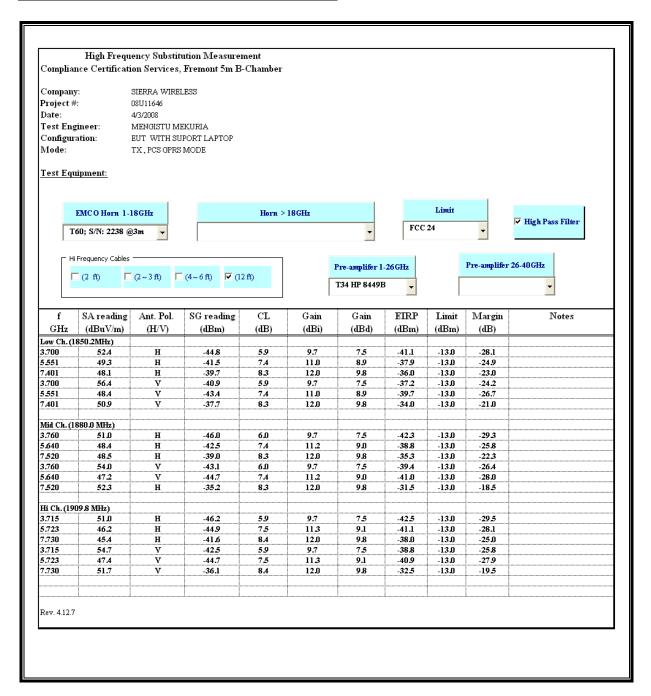
RESULTS

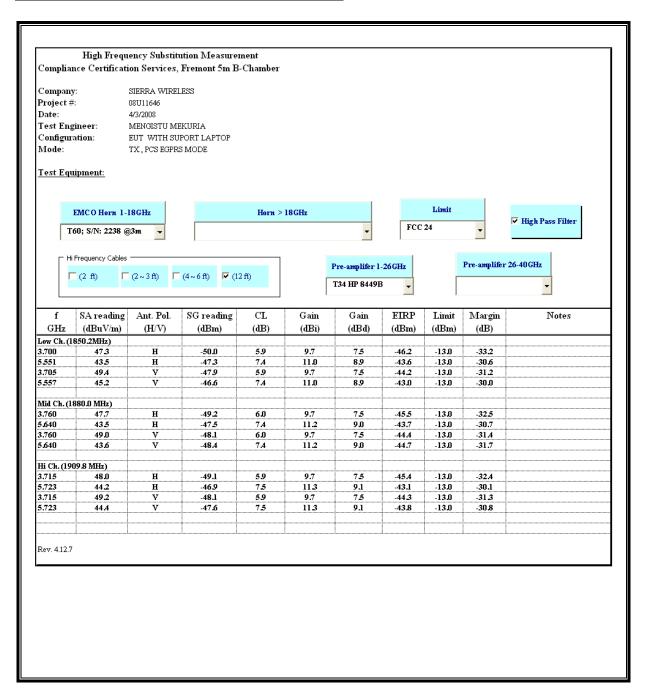

No non-compliance noted.

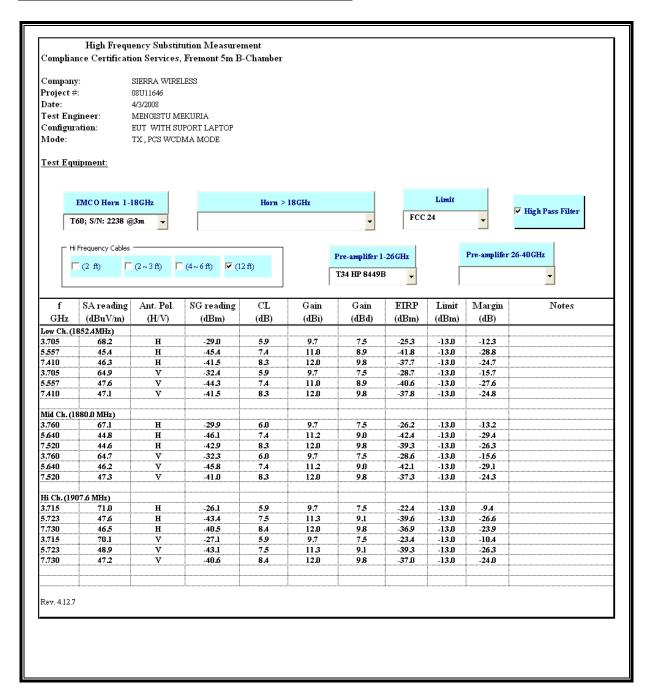
<u>Note:</u> No emissions were found within 30-1000MHz & after the third harmonic of 20dB below the system noise.

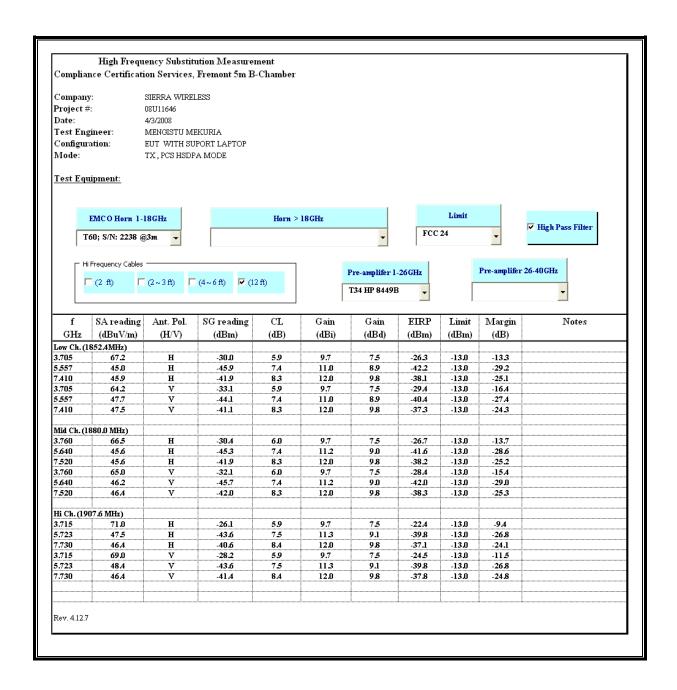

CELL BAND GPRS SPURIOUS & HARMONIC (ERP)


CELL BAND EGPRS SPURIOUS & HARMONIC (ERP)


CELL BAND WCDMA SPURIOUS & HARMONIC (ERP)


CELL BAND WCDMA+HSDPA SPURIOUS & HARMONIC (ERP)


PCS BAND GPRS SPURIOUS & HARMONIC (EIRP)


PCS BAND EGPRS SPURIOUS & HARMONIC (EIRP)

PCS BAND WCDMA SPURIOUS & HARMONIC (EIRP)

PCS BAND WCDMA+HSDPA SPURIOUS & HARMONIC (EIRP)

REPORT NO: 08U11646-1 DATE: APRIL 22, 2008 IC: 2417C-C885 FCC ID: N7NC885

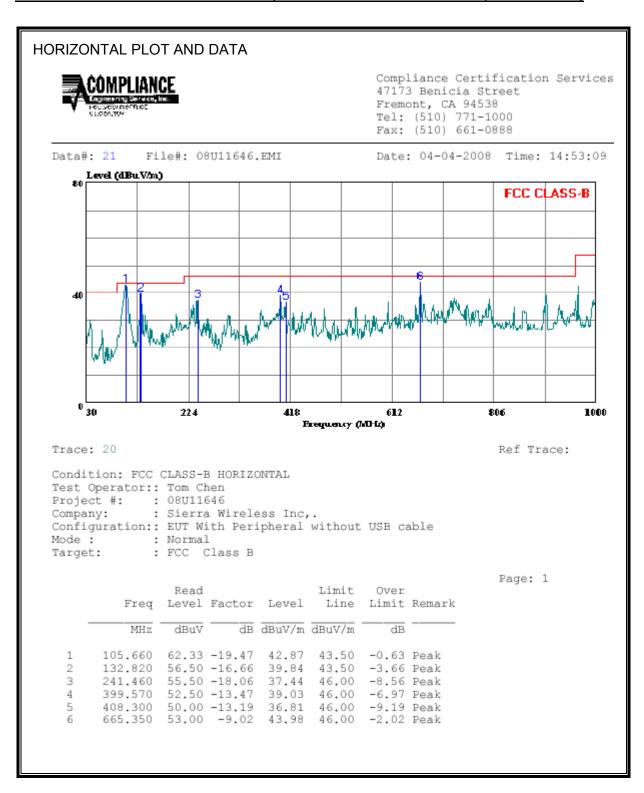
7.3. RECEIVER SPURIOUS EMISSIONS

LIMIT

Spurious Emission Limits for Receivers:

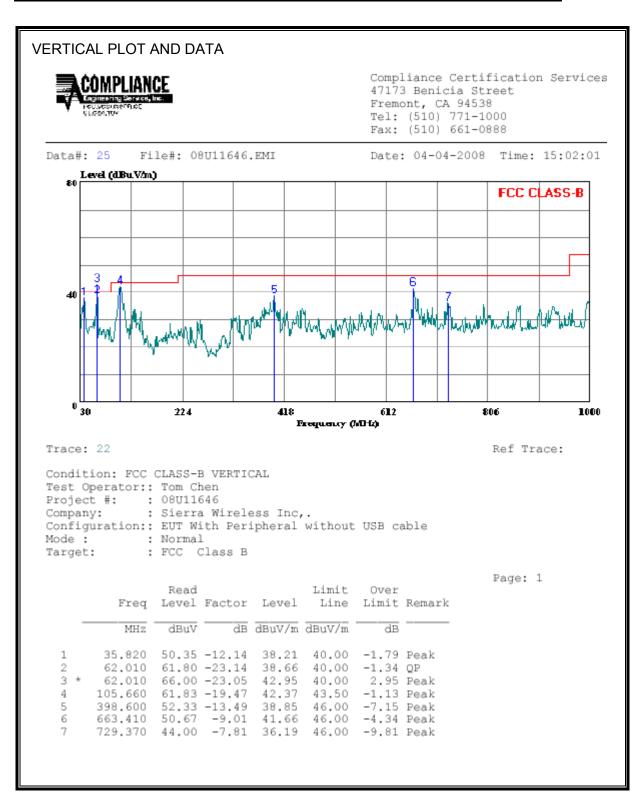
Spurious Frequency (MHz)	Field Strength (microvolts/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960	500

TEST PROCEDURE


The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (local oscillator frequency, intermediate frequency or carrier frequency),

or 30 MHz, whichever is the higher, to at least 3 times the highest tunable and local oscillator frequencies.

RESULTS


No non-compliance noted:

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 32 of 40

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

RECEIVER SPURIOUS EMISSIONS FOR ABOVE 1GHz

Note: No emissions were found above 1GHz within 20dB of the limit.

REPORT NO: 08U11646-1 DATE: APRIL 22, 2008 IC: 2417C-C885 FCC ID: N7NC885

7.4. POWER LINE CONDUCTED EMISSION

LIMIT

RSS-Gen 7.2.2

Except when the requirements applicable to a given device state otherwise, for any licenceexempt radio communication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 2. The tighter limit applies at the frequency range boundaries.

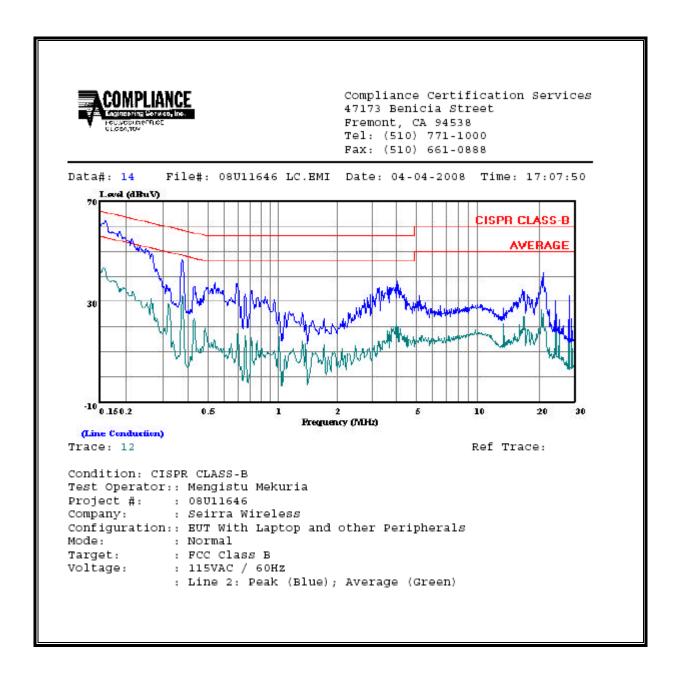
Table 2 – AC Power Lines Conducted Emission Limits

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

Decreases with the logarithm of the frequency.

RESULTS

No non-compliance noted:


6 WORST EMISSIONS

CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq.	Reading		Closs	Limit	EN_B	Margin		Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1/L2
0.16	63.05		44.06	0.00	65.52	55.52	-2.47	-11.46	L1
0.19	58.78		39.06	0.00	64.26	54.26	-5.48	-15.20	L1
21.49	53.72		26.44	0.00	60.00	50.00	-6.28	-23.56	L1
0.16	62.37		43.43	0.00	65.52	55.52	-3.15	-12.09	L2
0.19	57.73		35.96	0.00	64.26	54.26	-6.53	-18.30	L2
0.21	55.12		33.95	0.00	63.05	53.05	-7.93	-19.10	L2
6 Worst l	Data 								

LINE 1 RESULTS

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888 Data#: 21 File#: 08U11646 LC.EMI Date: 04-04-2008 Time: 17:16:25 Love (dBuV) CISPR CLASS-B 30 ·10 0.150.2 Frequency (MHz) (Line Conduction) Trace: 19 Ref Trace: Condition: CISPR CLASS-B Test Operator:: Mengistu Mekuria Project #: : 08U11646 Company: : Seirra Wireless Configuration:: BUT With Laptop and other Peripherals Mode: : Normal : FCC Class B Target: Voltage: : 115VAC / 60Hz : Line 1: Peak (Blue); Average (Green)

LINE 2 RESULTS

