

# **Hardware Integration Guide**

## AirPrime AR7594



XXXXXXXX 0.2 November 03, 2017

## **Important Notice**

Due to the nature of wireless communications, transmission and reception of data can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data.

## Safety and Hazards

Do not operate the Sierra Wireless modem in areas where cellular modems are not advised without proper device certifications. These areas include environments where cellular radio can interfere such as explosive atmospheres, medical equipment, or any other equipment which may be susceptible to any form of radio interference. The Sierra Wireless modem can transmit signals that could interfere with this equipment. Do not operate the Sierra Wireless modem in any aircraft, whether the aircraft is on the ground or in flight. In aircraft, the Sierra Wireless modem **MUST BE POWERED OFF**. When operating, the Sierra Wireless modem can transmit signals that could interfere with various onboard systems.

Note:

Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of a vehicle. Doing so will detract from the driver or operator's control and operation of that vehicle. In some states and provinces, operating such communications devices while in control of a vehicle is an offence.

## **Limitations of Liability**

This manual is provided "as is". Sierra Wireless makes no warranties of any kind, either expressed or implied, including any implied warranties of merchantability, fitness for a particular purpose, or noninfringement. The recipient of the manual shall endorse all risks arising from its use.

The information in this manual is subject to change without notice and does not represent a commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL, GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability arising under or in connection with the Sierra Wireless product, regardless of the number of events, occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the Sierra Wireless product.

### **Patents**

This product may contain technology developed by or for Sierra Wireless Inc.

This product includes technology licensed from QUALCOMM®.

This product is manufactured or sold by Sierra Wireless Inc. or its affiliates under one or more patents licensed from InterDigital Group and MMP Portfolio Licensing.

## Copyright

© 2016 Sierra Wireless. All rights reserved.

### **Trademarks**

Sierra Wireless®, AirPrime®, AirLink®, AirVantage®, WISMO®, ALEOS® and the Sierra Wireless and Open AT logos are registered trademarks of Sierra Wireless, Inc. or one of its subsidiaries.

Watcher® is a registered trademark of Netgear, Inc., used under license.

Windows® and Windows Vista® are registered trademarks of Microsoft Corporation.

Macintosh® and Mac OS X® are registered trademarks of Apple Inc., registered in the U.S. and other countries.

QUALCOMM® is a registered trademark of QUALCOMM Incorporated. Used under license.

Other trademarks are the property of their respective owners.

## **Contact Information**

| Sales information and technical support, including warranty and returns | Web: sierrawireless.com/company/contact-us/ Global toll-free number: 1-877-687-7795 6:00 am to 6:00 pm PST |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Corporate and product information                                       | Web: sierrawireless.com                                                                                    |

## **Document History**

| Version | Date              | Updates                                           |
|---------|-------------------|---------------------------------------------------|
| 0.1     | October 26, 2017  | Creation                                          |
| 0.2     | November 03, 2017 | Add comments for end device antenna trace design. |





# ->> Contents

| 1. | INTRO | DDUCTION                              | 9  |
|----|-------|---------------------------------------|----|
|    | 1.1.  | General Features                      | 9  |
|    | 1.2.  | Power                                 | 9  |
|    | 1.3.  | RF                                    | 10 |
|    | 1.3.  | .1. GSM RF Interface                  |    |
|    |       | 1.3.1.1. GSM TX Output Power          |    |
|    | 1.3.  | .2. WCDMA RF Interface                | 11 |
|    |       | 1.3.2.1. WCDMA TX Output Power        |    |
|    | 1.3.  | .3. LTE RF Interface                  |    |
|    |       | 1.3.3.1. LTE TX Output Power          | 12 |
|    | 13    | 1.3.3.2. LTE RX Sensitivity           |    |
|    | 1.0.  | 1.3.4.1. WWAN Antenna Recommendations | 14 |
|    | 1.4.  | GNSS                                  | 16 |
|    | 1.4.  |                                       |    |
|    | 1.4.  | .2. GNSS Antenna Interface            |    |
|    | 1.5.  | Electrical Specifications             | 17 |
|    | 1.5.  | 9                                     |    |
|    | 1.5.  |                                       |    |
| 2. | AUDIO | O SPECIFICATION                       | 21 |
|    | 2.1.  | Digital Audio                         | 21 |
| 3. | ROUT  | ING CONSTRAINTS AND RECOMMENDATIONS   | 22 |
|    | 3.1.  | RF Routing Recommendations            | 22 |
|    | 3.2.  | USB Routing Recommendations           | 24 |
|    | 3.3.  | Power and Ground Recommendations      | 24 |
|    | 3.4.  | Antenna Recommendations               | 25 |
|    | 3.5.  | Interface Circuit Recommendations     | 25 |
| 4. | FIRMV | WARE AND TOOLS                        | 26 |
|    | 4.1.  | Modem Firmware                        | 26 |
|    | 4.2.  | Tools                                 | 26 |
| 5. | APPR  | OVAL                                  | 27 |
|    | 5.1.  | Important Notice                      | 27 |
|    | 5.2.  | Safety and Hazards                    | 27 |
|    | 5.3.  | Important Compliance Information      | 27 |
|    | 5.4.  | IC Regulations                        | 28 |
|    | 5.4.  | -                                     |    |
| 6. | REFE  | RENCES                                | 28 |

7. ABBREVIATIONS .......30





# List of Figures

| Figure 1. | AppCAD Screenshot for Microstrip Design Power Mode Diagram | 22 |
|-----------|------------------------------------------------------------|----|
| Figure 2. | RF Routing Examples                                        | 23 |
| Figure 3. | Coplanar Clearance Example                                 | 23 |
| Figure 4. | Antenna Microstrip Routing Example                         | 24 |
| Figure 5  | Air Prima AP750v Sorias Interface Paterance Circuit        | 2F |





# List of Tables

| Table 1.  | AirPrime AR759x Series Embedded Modules                                        | 9  |
|-----------|--------------------------------------------------------------------------------|----|
| Table 2.  | AirPrime AR759x Series Supported Carrier Aggregation Combinations <sup>1</sup> | 9  |
| Table 3.  | Power Supply Requirements                                                      | 9  |
| Table 4.  | Power Supply Pads                                                              | 10 |
| Table 5.  | Conducted TX (Transmit) Max output Power Tolerances – GSM/EDGE Bands           | 10 |
| Table 6.  | Conducted RX (Receive) Sensitivity – GSM/EDGE Bands                            | 11 |
| Table 7.  | Conducted TX (Transmit) Max output Power Tolerances – WCDMA Bands              | 11 |
| Table 8.  | Conducted Primary RX (Receive) Sensitivity – UMTS Bands <sup>1</sup>           | 12 |
| Table 9.  | Conducted Secondary RX (Receive) Sensitivity – UMTS Bands <sup>1</sup>         | 12 |
| Table 10. | Band                                                                           | 12 |
| Table 11. | Conducted TX (Transmit) Max output Power Tolerances – LTE Bands                | 13 |
| Table 12. | Conducted RX Sensitivity 3GPP (BW: 10MHz) – LTE Bands <sup>1, 4</sup>          | 13 |
| Table 13. | Conducted RX Sensitivity SISO (BW: 10MHz) - LTE Bands <sup>1</sup>             | 14 |
| Table 14. | 14                                                                             |    |
| Table 15. | WWAN Antenna Interface Pads                                                    | 14 |
| Table 16. | AirPrime AR759x Series WWAN Antenna Recommendations                            | 14 |
| Table 17. | GNSS Specifications                                                            | 16 |
| Table 18. | GNSS Antenna Interface Pads                                                    | 17 |
| Table 19. | AirPrime AR759x Series Absolute Maximum Ratings                                | 17 |
| Table 20. | Digital IO Characteristics for VCC=1.8V Nominal                                | 18 |
| Table 21. | Digital IO Characteristics for SDIO VCC=1.8V Nominal                           | 19 |
| Table 22. | Digital IO Characteristics for SDIO VCC=2.85V Nominal                          | 19 |
| Table 23. | Digital IO Characteristics for UICC_VCC=1.8V Nominal                           | 20 |
| Table 24. | Digital IO Characteristics for UICC_VCC=2.85V Nominal                          | 20 |
| Table 25. | Digital Audio Interface Pads <sup>1</sup>                                      | 21 |
| Table 26. | Reference Specifications                                                       | 28 |
| Table 27. | Abbreviations                                                                  | 30 |

Rev 0.1 January 16, 2017 8 41110461



## 1. Introduction

#### 1.1. General Features

The AirPrime AR7594 embedded modules are designed for the automotive industry. They support LTE, WCDMA air interface standards and shares hardware and firmware interfaces with the AirPrime AR755x and AR758x. They also have Global Navigation Satellite System (GNSS) capabilities including GPS and GLONASS.

The AirPrime AR7594 embedded modules are based on the Qualcomm MDM9640 wireless chipset and support the following bands.

Table 1. AirPrime AR759x Series Embedded Modules

| Product | Description                                              | Band Support                                                                          | Target<br>Region <sup>1</sup> |
|---------|----------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------|
| AR7594  | LTE-CA / WCDMA / GSM /<br>GPRS / EDGE embedded<br>module | LTE: B1, B3, B7, B8, B20, (B28A), B32<br>WCDMA: B1, B3, B8<br>GSM/GPRS/EDGE: 900/1800 | EMEA (Europe,<br>Middle East) |

Table 2. AirPrime AR759x Series Supported Carrier Aggregation Combinations<sup>1</sup>

| Mode                                | AR7594                                                                                     |
|-------------------------------------|--------------------------------------------------------------------------------------------|
| Intra-band CA (2CC), Non contiguous | 3A+3A, 7A+7A                                                                               |
| Intra-band CA (2CC), Contiguous     | 1C, 3C, 7C                                                                                 |
| Inter-band CA ( 2CC )               | 1A+3A, 1A+7A, 1A+8A, 1A+20A, 3A+7A, 3A+8A, 3A+20A, 3A+28A, 7A+20A, 7A+28A, 7A+32A, 20A+32A |

Refer to 3GPP

#### 1.2. Power

The AirPrime AR7594 are powered via a single regulated DC power supply, 3.7V nominal.

Table 3. Power Supply Requirements

| Power Supply                      |           | Min | Тур  | Max  | Units |
|-----------------------------------|-----------|-----|------|------|-------|
| Main DC Power Input Range (VBATT) |           | 3.4 | 3.7  | 4.2  | V     |
| Power Supply                      | 0 to 1kHz | -   | -    | 200  | mVpp  |
| Ripple                            | >1kHz     | -   | -    | 50   | mVpp  |
| Peak Current                      | AR759X    | -   | 2000 | 3000 | mA    |

41110461 Rev 0.1 January 16, 2017 9

<sup>&</sup>lt;sup>2</sup> Optional Band

Table 4. Power Supply Pads

| Pad | Name  | Direction | Function           | If Unused    |
|-----|-------|-----------|--------------------|--------------|
| EA2 | VBATT | Input     | Power Supply Input | Must Be Used |
| EB2 | VBATT | Input     | Power Supply Input | Must Be Used |
| EC2 | VBATT | Input     | Power Supply Input | Must Be Used |

#### 1.3. RF

This section presents the WWAN RF interface of the AirPrime AR7594. The specifications for the LTE, GSM and WCDMA interfaces are defined.

#### 1.3.1. GSM RF Interface

This section presents the GSM RF Specification for the AirPrime AR7594.

#### 1.3.1.1. GSM TX Output Power

The GSM Maximum Transmitter Output Power of the AirPrime AR759x are specified in the following table.

Note: All values presented in the table below are preliminary.

Table 5. Conducted TX (Transmit) Max output Power Tolerances - GSM/EDGE Bands

| Band        | Standard 1 (dBm) <sup>1</sup> | Standard 2 (dBm) <sup>2</sup> | TX Power @<br>+25°C (dBm) | TX Power @<br>Class A (dBm) <sup>3</sup> | Notes                                                   |
|-------------|-------------------------------|-------------------------------|---------------------------|------------------------------------------|---------------------------------------------------------|
| GSM 850     | 33± 2dB                       | 33± 2.5dB                     | 33± 2dB                   | 33± 2.5dB                                | GMSK mode,<br>connectorized(Class 4;<br>2 W, 33 dBm)    |
| GSM<br>1900 | 30± 2dB                       | 30± 2.5dB                     | 30± 2dB                   | 30± 2.5dB                                | GMSK mode                                               |
| GSM 850     | 27± 3dB                       | 27± 4dB                       | 27± 3dB                   | 27± 4dB                                  | 8PSK mode,<br>connectorized(Class<br>E2; 0.5 W, 27 dBm) |
| GSM<br>1900 | 26± 3dB                       | 26± 4dB                       | 26± 3dB                   | 26± 4dB                                  | 8PSK mode                                               |

- 1 Per 3GPP TS 51.010-1 Requirement for Normal condition.
- 2 Per 3GPP TS 51.010-1 Requirement for Extreme conditions
- 3 Test at Class A extreme condition

## 1.3.1.2. GSM RX Sensitivity

The GSM Receiver Sensitivities of the AirPrime AR759x Series are specified in the following table.

**EGSM 900** 

DCS 1800

-105

-99

-103

-105

-99

Class A Room Class A Limit (dBm)1 (Extreme) **GSM/EDGE Bands** Typical Limit Typical (dBm) (dBm) (dBm)2 2% BER CS CS -102 -109.5 -109 -103

-104

-98

-102

-104

-98

-108

-104

-109

-107.5

-102.5

-107

-103

-108.5

-106.5

-102

Table 6. Conducted RX (Receive) Sensitivity - GSM/EDGE Bands

GMSK CS1

**GMSK CS1** 

**EDGE MCS5** 

CS

**EDGE MCS5** 

10% BLER

10% BLER

2% BER CS

10% BLER

10% BLER

#### 1.3.2. WCDMA RF Interface

This section presents the WCDMA RF Specification for the AirPrime AR759x Series.

#### 1.3.2.1. WCDMA TX Output Power

The WCDMA Maximum Transmitter Output Power of the AirPrime AR759x Series is specified in the following table.

Note: All values presented in the table below are preliminary.

Table 7. Conducted TX (Transmit) Max output Power Tolerances – WCDMA Bands

| Band <sup>1</sup> | Limit (dBm) <sup>2</sup> | Room (dBm)       | Class A (Extreme) (dBm) <sup>3</sup> |
|-------------------|--------------------------|------------------|--------------------------------------|
| B1                | 24 +1.7/-3.7dB           | 23.5 +2.2/-2.7dB | 23 +2.7/-2.2dB                       |
| B2                | 24 +1.7/-3.7dB           | 23.5 +2.2/-2.7dB | 23 +2.7/-2.2dB                       |
| B3                | 24 +1.7/-3.7dB           | 23.5 +2.2/-2.7dB | 23 +2.7/-2.2dB                       |
| B4                | 24 +1.7/-3.7dB           | 23.5 +2.2/-2.7dB | 23 +2.7/-2.2dB                       |
| B5                | 24 +1.7/-3.7dB           | 23.5 +2.2/-2.7dB | 23.5 +2.2/-2.7dB                     |
| B6                | 24 +1.7/-3.7dB           | 23.5 +2.2/-2.7dB | 23.5 +2.2/-2.7dB                     |
| B8                | 24 +1.7/-3.7dB           | 23.5 +2.2/-2.7dB | 23.5 +2.2/-2.7dB                     |

<sup>1</sup> Connectorized (Class 3)

### 1.3.2.2. WCDMA RX Sensitivity

The WCDMA Receiver Sensitivities of the AirPrime AR759x Series are specified in the following table.

<sup>1</sup> Per 3GPP specification

<sup>2</sup> Test at Class A extreme condition

<sup>2</sup> Per 3GPP TS 34.121-1 Specification

<sup>3</sup> Test at Class A extreme condition

Table 8. Conducted Primary RX (Receive) Sensitivity – UMTS Bands<sup>1</sup>

| Band | Limit (dBm)² | Room<br>Typical (dBm) | Class A<br>(Extreme) Typical<br>(dBm) <sup>3</sup> | Class A<br>Limit (dBm) |
|------|--------------|-----------------------|----------------------------------------------------|------------------------|
| B1   | -106.7       | -110                  | -109                                               | -107.5                 |
| B2   | -104.7       | -110.5                | -110                                               | -105.5                 |
| В3   | -103.7       | -111                  | -110                                               | -104.5                 |
| B4   | -106.7       | -111                  | -110                                               | -107.5                 |
| B5   | -104.7       | -111                  | -110                                               | -105.5                 |
| B6   | -106.7       | -111                  | -110                                               | -107.5                 |
| B8   | -103.7       | -111                  | -110                                               | -104.5                 |

- 1 1: CS 0.1% BER 12.2 kbps
- 2 Per 3GPP specification
- 3 Test at Class A extreme condition

Table 9. Conducted Secondary RX (Receive) Sensitivity – UMTS Bands<sup>1</sup>

| Table 10. Band | Room<br>Typical (dBm) | Class A (Extreme)<br>Typical (dBm) <sup>2</sup> | Class A<br>Limit ( dBm) |
|----------------|-----------------------|-------------------------------------------------|-------------------------|
| B1             | -110.5                | -109.5                                          | -107.5                  |
| B2             | -110.5                | -110                                            | -105.5                  |
| В3             | -111                  | -110                                            | -104.5                  |
| B4             | -111                  | -110                                            | -107.5                  |
| B5             | -111.5                | -110.5                                          | -105.5                  |
| B6             | -111.5                | -110.5                                          | -107.5                  |
| B8             | -111.5                | -110.5                                          | -104.5                  |

<sup>1</sup> CS 0.1% BER 12.2 kbps

#### 1.3.3. LTE RF Interface

This section presents the LTE RF Specification for the AirPrime AR759x Series.

#### 1.3.3.1. LTE TX Output Power

The LTE Maximum Transmitter Output Power of the AirPrime AR759x Series are specified in the following table.

Note: The test configuration for all of the entries in the table below is per 3GPP specification, Connectorized (Class 3).

Note: All values in the table below are preliminary.

<sup>2</sup> Test at Class A extreme condition

Table 11. Conducted TX (Transmit) Max output Power Tolerances - LTE Bands

| Band | Standard (dBm)<br>(Note 2) | Class A (dBm) (Note 3) | Notes    |
|------|----------------------------|------------------------|----------|
| B1   | 23 ±2.7dB                  | 23 ±2.2dB              | Note 1   |
| B3   | 23 ±2.7dB                  | 23 ±2.2dB              | Note 1,4 |
| B7   | 23 ±2.7dB                  | 23 ±2.2dB              | Note 1,4 |
| B8   | 23 ±2.7dB                  | 23 ±2.2dB              | Note 1,4 |
| B20  | 23 ±2.7dB                  | 23 ±2.2dB              | Note 1,4 |
| B28  | 23 +2.7/-3.2 dB            | 23 ±2.2dB              | Note 1   |

Note 1: The test configurations for all of the entries in the table above are per 3GPP specification, Connectorized (Class 3).

Note 2: Per 3GPP TS 36.521-1 6.2.2 UE Maximum Output Power ( No MPR);and for B13,Per VzW's Supplementary\_RF\_Conformance. 2.1 Maximum Output Power – No MPR Or A-MPR

Note 3: Class A is defined in 3.3 Environmental

Note 4: For transmission bandwidths (Figure 5.4.2-1 in 3GPP TS 36.521-1) confined within FUL\_low and FUL\_low + 4 MHz or FUL\_high – 4 MHz and FUL\_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB.

#### 1.3.3.2. LTE RX Sensitivity

The LTE Receiver Sensitivities of the AirPrime AR759x Series are specified in the following table.

Note: For the table below:

Dual receiver (SIMO) per 3GPP TS 36.521-1 Rx Sensitivity Specification.

Sensitivity values scale with bandwidth:

x MHz Sensitivity = 10 MHz Sensitivity - 10\*log(10 MHz/x MHz)

10 MHz BW,and 50 RB DownLink and Up Link RB configuration is as 3GPP TS 36.521-1 Table 7.3.5-2

All values are preliminary pending transceiver matching and testing.

Table 12. Conducted RX Sensitivity 3GPP (BW: 10MHz) – LTE Bands<sup>1, 4</sup>

| Band | Standard<br>(dBm) <sup>2</sup> | Room Typical (dBm) | Class A (Extreme)<br>Typical (dBm) <sup>5</sup> | Class A Limit (dBm) <sup>5</sup> |
|------|--------------------------------|--------------------|-------------------------------------------------|----------------------------------|
| B1   | -96.3                          | -100               | -99                                             | -97                              |
| B3   | -93.3                          | 100.5              | -99.5                                           | -94.5                            |
| B7   | -94.3                          | -100.5             | -99.5                                           | -95.5                            |
| B8   | -93.3                          | -101               | -100                                            | -94.5                            |
| B20  | -93.3                          | -101.5             | -100.5                                          | -94.5                            |
| B28  | -94.8                          | -101.5             | -100.5                                          | -95.5                            |

- 1: Dual receiver (SIMO) per 3GPP TS 36.521-1 Rx Sensitivity Specification for Non-CA Configuration
- 2: Per 3GPP Specification.
- 3: Sensitivity values scale with bandwidth:  $x_MHz_Sensitivity = 10 MHz_Sensitivity 10*log(10 MHz/x_MHz)$
- 4: 10 MHz BW,and 50 RB DownLink and Up Link RB configuration is as 3GPP TS 36.521-1 Table 7.3.5-2.
- 5: Class A is defined in 3.3 Environmental

Note: For the table below:

Sensitivity values scale with bandwidth:

 $\times$  MHz Sensitivity = 10 MHz Sensitivity - 10\*log(10 MHz/ $\times$  MHz) 10 MHz BW, and 50 RB DownLink and Up Link as 3GPP TS 36.521-1 Table 7.3.5-2. All values are preliminary pending transceiver matching and testing.

Table 13. Conducted RX Sensitivity SISO (BW: 10MHz) – LTE Bands<sup>1</sup>

Table 14.

| Band | Room Typical (dBm) |           | Class A<br>(Extreme)Typical (dBm) <sup>1</sup> |           | Class A Limit (dBm) <sup>1</sup> |           |
|------|--------------------|-----------|------------------------------------------------|-----------|----------------------------------|-----------|
|      | Primary            | Secondary | Primary                                        | Secondary | Primary                          | Secondary |
| B1   | -97                | -97.5     | -96                                            | -96.5     | -92.5                            | -92.5     |
| В3   | <b>-97.</b> 5      | -98       | -96.5                                          | -97       | -92.5                            | -92.5     |
| B7   | -97                | -98.5     | -96                                            | -97.5     | -92.5                            | -92.5     |
| B8   | -98                | -99       | -97                                            | -98       | -92.5                            | -92.5     |
| B20  | -98.5              | -99       | -97.5                                          | -98       | -91.5                            | -91.5     |
| B28  | -97.5              | -99       | -96.5                                          | -98       | -91.5                            | -91.5     |

<sup>1:</sup> Class A is defined in 3.3 Environmental

#### 1.3.4. WWAN Antenna Interface

The WWAN Antenna Interfaces of the AirPrime AR759x Series are defined in the table below.

Table 15. WWAN Antenna Interface Pads

| Pad  | Name          | Direction      | Function                    |
|------|---------------|----------------|-----------------------------|
| BA11 | GND           |                | Primary Antenna Ground      |
| BA12 | PRIMARY_ANT   | Input / Output | Primary Antenna Interface   |
| BA13 | GND           |                | Primary Antenna Ground      |
| BB11 | GND           |                | Primary Antenna Ground      |
| BB12 | GND           |                | Primary Antenna Ground      |
| BA7  | GND           |                | Diversity Antenna Ground    |
| BA8  | DIVERSITY_ANT | Input          | Diversity Antenna Interface |
| BA9  | GND           |                | Diversity Antenna Ground    |
| BB7  | GND           |                | Diversity Antenna Ground    |
| BB8  | GND           |                | Diversity Antenna Ground    |

#### 1.3.4.1. WWAN Antenna Recommendations

The table below defines the key characteristics to consider for antenna selection.

Table 16. AirPrime AR759x Series WWAN Antenna Recommendations

| Parameter      | Requirements                                                         | Comments |
|----------------|----------------------------------------------------------------------|----------|
| Antenna system | External multi-band 2x2 MIMO antenna system (Ant1/Ant2) <sup>a</sup> |          |

| Parameter                                        | Requirements                                                                                                | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating bands of<br>Ant1 and Ant2 <sup>b</sup> | 698–960 MHz<br>1451–1512 MHz<br>1710–1995 MHz<br>2110–2170 MHz<br>2500–2700 MHz                             | Operating bands depend on module's supported bands/modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VSWR of Ant1 and<br>Ant2                         | 1:1 (ideal)<br>< 2.5:1 (recommended)                                                                        | On all bands including band edges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total radiated<br>efficiency of Ant1 or<br>Ant2  | > 50% on all bands                                                                                          | <ul> <li>Measured at the RF connector.</li> <li>Includes mismatch losses, losses in the matching circuit, and antenna losses, excluding cable loss.</li> <li>Sierra Wireless recommends using antenna efficiency as the primary parameter for evaluating the antenna system.</li> <li>Peak gain is not a good indication of antenna performance when integrated with a host device (the antenna does not provide omni-directional gain patterns).</li> <li>Peak gain can be affected by antenna size, location, design type, etc. — the antenna gain patterns remain fixed unless one or more of these parameters change.</li> </ul> |
| Maximum antenna gain                             | Must not exceed antenna gains due to RF exposure and ERP/ EIRP limits, as listed in the module's FCC grant. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Isolation between<br>Ant1 and Ant2 (S21)         | > 10 dB                                                                                                     | <ul> <li>If antennas can be moved, test all positions for both antennas.</li> <li>Unless otherwise specified, this isolation requirement need to be maintained for optimum operation.</li> <li>Make sure all other wireless devices (Bluetooth or WLAN antennas, etc.) are turned OFF to avoid interference.</li> </ul>                                                                                                                                                                                                                                                                                                              |
| Maximum Voltage applied to antenna               | 36 Volts                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Power handling                                   | > 2 W RF power on low bands<br>> 1 W on high bands                                                          | <ul> <li>Measure power endurance over 4 hours (estimated talk time) using a 2 W CW signal — set the CW test signal frequency to the middle of the PCS TX band (1880 MHz for PCS).</li> <li>Visually inspect device to ensure there is no damage to the antenna structure and matching components.</li> <li>VSWR / TIS / TRP measurements taken before and after this test must show similar results.</li> </ul>                                                                                                                                                                                                                      |

 $<sup>^{\</sup>star}$  These worst-case VSWR figures for the transmitter bands may not guarantee RSE levels to be within regulatory limits. The device alone meets all regulatory emissions limits when tested into a cabled (conducted) 50 $\Omega$  system. With antenna designs with up to 2.5:1 VSWR or worse, the radiated emissions could exceed limits. The antenna system may need to be tuned in order to meet the RSE limits as the complex match between the module and antenna can cause unwanted levels of emissions. Tuning may include antenna pattern changes, phase/delay adjustment, passive component matching. Examples of the application test limits would be included in FCC Part 22, Part 24 and Part 27, test case 4.2.16 for GSM (ETSI EN 301 511), and test case 4.2.2 for WCDMA (ETSI EN 301 908-1), where applicable.

a Ant1—Primary, Ant2—Diversity (Diversity/MIMO/)

b Stated band ranges satisfy requirements for both Ant1 and Ant2.

#### 1.4. **GNSS**

The AirPrime AR759x Series include optional Global Navigation Satellite System (GNSS) capabilities via the Qualcomm gpsOne Gen8C Engine, capable of operation in assisted and stand-alone modes using GPS, GLONASS, Beidou, Galileo, and QZSS SVs.

Note:

Galileo support pending system / satellite deployment.

#### 1.4.1. GNSS Receiver

The table below summarizes the GNSS capabilities of the AirPrime AR759x Series.

Table 17. GNSS Specifications

| Parameter/                     | Feature                     | Value                                                                                           |  |
|--------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|--|
|                                | GPS                         | L1                                                                                              |  |
|                                | GLONASS (FDMA)              | L10F                                                                                            |  |
| Mode                           | Beidou                      | B1L                                                                                             |  |
|                                | Galileo                     | E1                                                                                              |  |
|                                | QZSS                        | L1-C/A                                                                                          |  |
| Satellite                      | Tracking                    | 40                                                                                              |  |
| channels                       | Acquisition                 | 118                                                                                             |  |
| Standalone                     | Hot start:                  | 1 second for standalone GNSS and AGNSS                                                          |  |
| Time To<br>First Fix<br>(TTFF) | Warm start                  | 3 seconds (with AGNSS)                                                                          |  |
| 1,2,4,6                        | Cold start                  | 30 seconds for standalone GNSS, and 5 seconds for AGNSS                                         |  |
| Sensitivity                    | Tracking 4,5,6              | -161 dBm                                                                                        |  |
| (GPS,<br>GLONASS,              | Cold start Acquisition      | -145 dBm                                                                                        |  |
| BeiDou)                        | Hot start Acquisition       | -158 dBm                                                                                        |  |
| Horizontal Po                  | osition accuracy 1,3,4,5,6, | 2/5 7                                                                                           |  |
| Altitude accu                  | racy 1,3,4,5,6,             | 4/87                                                                                            |  |
| Velocity accu                  | racy <sup>1,3,4,5,6</sup>   | 0.1                                                                                             |  |
| Tracking upo                   | late rates                  | 1 Hz to 10 Hz                                                                                   |  |
| SBAS support <sup>3</sup>      |                             | WAAS, EGNOS, MSAS, SDCM, GAGAN, QZSS                                                            |  |
|                                | NMEA 0183 Version           | V3.0                                                                                            |  |
| Message<br>Protocol            | Supported Sentences         | GSV, GNS, GSA, GGA, GRS, RMC, VTG,<br>GPGGA, GPGSV, GNGSA, GPGRS,<br>GPRMC, GPVTG, GNGNS, GPGLL |  |

Note: All GNSS characterization data are measured in conducted RF path with GNSS simulator.

Note 1: Open sky, all SV RF signal level = -130dBm, Number of SVs > 6

Note 2: TTFF values show results in worst conditions (as an external host user): timing measurement start when GPS control request is sent on AT command interface and stop when NMEA frames (1Hz

update) display 2D fix information.

| Note 3: | Scenarios used for accuracy measurements simulate car travel including direction, altitude and speed variations.                                                                 |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 4: | Best performances are obtained by using external Pre-SAW and LNA for conducted test setup, it is used to simulate the active antenna as customer's application.                  |
| Note 5: | 1Hz Navigation used for all tracking/navigation tests.                                                                                                                           |
| Note 6: | GNSS constellations used: GPS + GLONASS + Galileo + Beidou                                                                                                                       |
| Note 7: | Accuracy data are provided Circular Error Probable, CEP-50 / CEP-95. Means that 50%/95% of the positions returned calculated have an error lower or equal to the accuracy value. |

#### 1.4.2. GNSS Antenna Interface

The GNSS Antenna Interface is defined in the table below.

Table 18. GNSS Antenna Interface Pads

| Pad | Name     | Direction | Function               |
|-----|----------|-----------|------------------------|
| BA4 | GND      |           | GNSS Antenna Ground    |
| BA5 | GNSS_ANT | Input     | GNSS Antenna Interface |
| BA6 | GND      |           | GNSS Antenna Ground    |
| BB4 | GND      |           | GNSS Antenna Ground    |
| BB5 | GND      |           | GNSS Antenna Ground    |

#### 1.4.2.1. GNSS Antenna Recommendations

To be added in a future revision.

## 1.5. Electrical Specifications

This section provides details of the key electrical specifications of the AirPrime AR759x Series.

## 1.5.1. Absolute Maximum Ratings

This section defines the Absolute Maximum Ratings of the AirPrime AR759x Series.

**Warning:** If operating outside of the defined specifications, even momentarily, damage may occur to the device.

Table 19. AirPrime AR759x Series Absolute Maximum Ratings

| Parameter |                                            | Min  | Max         | Units |
|-----------|--------------------------------------------|------|-------------|-------|
| VBATT     | Power Supply Input                         | -    | 4.5         | V     |
| VIN       | Voltage on any digital input or output pin | -    | VCC_1V8+0.5 | V     |
| IIN       | Latch-up current                           | -100 | 100         | mA    |

| Parameter        |                                                    | Min | Max   | Units |  |
|------------------|----------------------------------------------------|-----|-------|-------|--|
| ESD Ratings      |                                                    |     |       |       |  |
| ESD <sup>1</sup> | Primary, Secondary and GNSS antenna pads – Contact | -   | ± 8   | kV    |  |
| 200              | All other signal pads – Contact                    | -   | ± 1.5 | kV    |  |

<sup>1</sup> The ESD Simulator configured with 150pF,  $330\Omega$ .

**Caution:** The AirPrime AR759x Series are sensitive to Electrostatic Discharge. ESD countermeasures and handling methods must be used when handling the AirPrime AR759x Series.

## 1.5.2. Digital IO Characteristics

The Digital IO characteristics are defined in the table below. These apply to GPIOs, UART, LED, SPI, I2C, PCM/I2S, GNSS\_LNA, WAKE\_N, 2G\_SYNC, AT\_PORT\_SW, SERVICE and RESET.

Table 20. Digital IO Characteristics for VCC=1.8V Nominal

| Parame             | ter                          | Comments                                          | Min            | Тур | Max           | Units |
|--------------------|------------------------------|---------------------------------------------------|----------------|-----|---------------|-------|
| V <sub>IH</sub>    | High level input voltage     | CMOS/Schmitt                                      | 0.65* VCC_1V8  |     | VCC_1V8+0.3   | V     |
| VIL                | Low level input voltage      | CMOS/Schmitt                                      | -0.3           | _   | 0.35* VCC_1V8 | V     |
| Vон                | High level output voltage    | CMOS, at pin rated drive strength                 | VCC_1V8 - 0.45 | _   | VCC_1V8       | V     |
| VoL                | Low-level output voltage     | CMOS, at pin rated drive strength                 | 0              | _   | 0.45          | V     |
| Vон-РМ             | High level output voltage    | CMOS, at pin rated drive strength                 | 1.50           | _   | VCC_1V8       | V     |
| Vol-PM             | Low-level output voltage     | CMOS, at pin rated drive strength                 | -              | _   | 0.30          | V     |
| Іон                | High level output current    | VOH = VCC_1V8 - 0.45                              | _              | _   | 6             | mA    |
| loL                | Low Level output current     | VOL = 0.45 V                                      | -6             | _   | _             | mA    |
| I <sub>OH-PM</sub> | High level output current    | GPIO_PMxx only                                    | _              | _   | 0.90          | mA    |
| I <sub>IHPD</sub>  | Input high leakage current   | Logic High with pull-<br>down                     | 27.5           |     | 97.5          | μΑ    |
| I <sub>ILPU</sub>  | Input low<br>leakage current | Logic Low with pull-up                            | -97.5          |     | -27.5         | μΑ    |
| IL                 | Input leakage current        | VIO = max,<br>VIN = 0 V to VIO<br>LED signal only | -0.3           | _   | +0.35         | μΑ    |
| Cin                | Input capacitance            |                                                   | _              | _   | 5             | pF    |

Caution:

Digital IOs shall not be pulled-up to an external voltage as this may cause VCC\_1V8 to not go low when the AirPrime AR759x Series are powered down. Also, this would partially bias the AirPrime AR759x Series which could potentially damage the device or result in GPIOs being set to undetermined levels.

The SDIO characteristics are defined in the table below.

Table 21. Digital IO Characteristics for SDIO VCC=1.8V Nominal

| Parameter         |                                  | Comments                      | Min  | Тур | Max  | Units |
|-------------------|----------------------------------|-------------------------------|------|-----|------|-------|
| VIH               | High level input voltage         | CMOS/Schmitt                  | 1.27 | _   | 2.0  | V     |
| VIL               | Low level input voltage          | CMOS/Schmitt                  | -0.3 | _   | 0.58 | V     |
| V <sub>SHYS</sub> | Schmitt<br>hysteresis<br>voltage |                               | 100  | _   | -    | mV    |
| Іін               | Input high leakage current       | No pull-down                  | _    |     | 5    | μΑ    |
| I <sub>IL</sub>   | Input low leakage current        | No pull-up                    | -5   | -   | -    | μΑ    |
| V <sub>OH</sub>   | High-level output voltage        | CMOS, at rated drive strength | 1.4  | - ( | -/   | V     |
| VoL               | Low level output voltage         | CMOS, at rated drive strength | -    | ->  | 0.45 | V     |
| lozh              | Tri-state leakage current        | Logic high out, no pull-down  | -    | _   | 5    | μΑ    |
| lozL              | Tri-state leakage current        | Logic High with pull-up       | -5   | _   | _    | μΑ    |

Table 22. Digital IO Characteristics for SDIO VCC=2.85V Nominal

| Parameter        |                                  | Comments                         | Min  | Тур | Max  | Units |
|------------------|----------------------------------|----------------------------------|------|-----|------|-------|
| V <sub>IH</sub>  | High level input voltage         | CMOS/Schmitt                     | 1.78 | _   | 3.15 | V     |
| VIL              | Low level input voltage          | CMOS/Schmitt                     | -0.3 | _   | 0.71 | V     |
| Vshys            | Schmitt<br>hysteresis<br>voltage |                                  | 100  | _   | -    | mV    |
| Іін              | Input high leakage current       | No pull-down                     | _    | _   | 10   | μΑ    |
| I <sub>IL</sub>  | Input low leakage current        | No pull-up                       | -10  | _   | _    | μΑ    |
| Vон              | High-level output voltage        | CMOS, at rated drive strength    | 2.14 | _   | 2.85 | V     |
| VoL              | Low level output voltage         | CMOS, at rated drive strength    | _    | _   | 0.36 | V     |
| I <sub>OZH</sub> | Tri-state leakage current        | Logic high out, no pull-<br>down | _    | _   | 10   | μΑ    |
| lozL             | Tri-state leakage current        | Logic High with pull-up          | -10  | _   | _    | μΑ    |

The UICC characteristics are defined in the table below.

Table 23. Digital IO Characteristics for UICC\_VCC=1.8V Nominal

| Parame            | eter                             | Comments                         | Min           | Тур | Max              | Units |
|-------------------|----------------------------------|----------------------------------|---------------|-----|------------------|-------|
| VIH               | High level input voltage         | CMOS/Schmitt                     | 0.7* UICC_VCC | _   | UICC_VCC + 0.3   | V     |
| V <sub>IL</sub>   | Low level input voltage          | CMOS/Schmitt                     | -0.3          | _   | 0.2*<br>UICC_VCC | V     |
| V <sub>SHYS</sub> | Schmitt<br>hysteresis<br>voltage |                                  | 100           | _   | -                | mV    |
| Іін               | Input high<br>leakage current    | No pull-down                     | -20           | _   | 20               | μΑ    |
| IIL               | Input low leakage current        | No pull-up                       | _             | _   | 1000             | μA    |
| Vон               | High-level output voltage        | CMOS, at rated drive strength    | 0.8* UICC_VCC | -   | UICC_VCC         | V     |
| VoL               | Low level output current         | CMOS, at rated drive strength    | 0             | -   | 0.45             | V     |
| I <sub>OZH</sub>  | Tri-state leakage current        | Logic high out, no pull-<br>down |               | -(  | 5                | μΑ    |
| I <sub>OZL</sub>  | Tri-state leakage current        | Logic High with pull-up          | -5            | -   | _                | μА    |

Table 24. Digital IO Characteristics for UICC\_VCC=2.85V Nominal

| Parameter         |                                  | Comments                         | Min           | Тур | Max              | Units |
|-------------------|----------------------------------|----------------------------------|---------------|-----|------------------|-------|
| VIH               | High level input voltage         | CMOS/Schmitt                     | 0.7* UICC_VCC | _   | UICC_VCC + 0.3   | V     |
| VIL               | Low level input voltage          | CMOS/Schmitt                     | -0.3          | _   | 0.2*<br>UICC_VCC | V     |
| V <sub>SHYS</sub> | Schmitt<br>hysteresis<br>voltage |                                  | 100           | -   | _                | mV    |
| I <sub>IH</sub>   | Input high leakage current       | No pull-down                     | -20           | _   | 20               | μΑ    |
| IIL               | Input low leakage current        | No pull-up                       | _             | _   | 1000             | μΑ    |
| Vон               | High-level output voltage        | CMOS, at rated drive strength    | 0.8* UICC_VCC | _   | UICC_VCC         | V     |
| VoL               | Low level output current         | CMOS, at rated drive strength    | 0             | _   | 0.4              | V     |
| Гохн              | Tri-state leakage current        | Logic high out, no pull-<br>down | _             | _   | 10               | μΑ    |
| lozL              | Tri-state leakage current        | Logic High with pull-up          | -10           | _   | _                | μΑ    |



# 2. Audio Specification

## **Digital Audio**

The AirPrime AR759x Series provides two 4-wire digital audio interfaces. Each interface can be configured as either a PCM or an I2S interface.

Table 25. Digital Audio Interface Pads<sup>1</sup>

| Pad               | Mode              | Name     | Direction <sup>2</sup> | Function                     | If Unused  |
|-------------------|-------------------|----------|------------------------|------------------------------|------------|
| DA3               | PCM               | PCM_CLK  | Output                 | PCM Clock                    | Lagya Opan |
| DAS               | I <sup>2</sup> S  | I2S_SCLK | Output                 | I <sup>2</sup> S Bit Clock   | Leave Open |
| DB3               | PCM               | PCM_FS   | Output                 | PCM Frame Sync               | Legye Open |
| DD3               | I <sup>2</sup> S  | I2S_WS   | Output                 | I <sup>2</sup> S Word Select | Leave Open |
| DC2               | PCM               | PCM_DOUT | Output                 | PCM Data Out                 | Legye Open |
| DCZ               | I <sup>2</sup> S  | I2S_DOUT | Output                 | I <sup>2</sup> S Data Out    | Leave Open |
| DD2               | PCM               | PCM_DIN  | Innut                  | PCM Data In                  | Legye Open |
| DDZ               | I <sup>2</sup> S  | I2S_DIN  | Input                  | I <sup>2</sup> S Data In     | Leave Open |
| DD3               | PCM2              | PCM_CLK  | Output                 | PCM Clock                    | Legye Open |
| טטט               | I <sup>2</sup> S2 | I2S_SCLK | Output                 | I <sup>2</sup> S Bit Clock   | Leave Open |
| DD4               | PCM2              | PCM_FS   | Output                 | PCM Frame Sync               | Loovo Opon |
| DD4               | I <sup>2</sup> S2 | I2S_WS   | Output                 | I <sup>2</sup> S Word Select | Leave Open |
| DE2               | PCM2              | PCM_DOUT | Output                 | PCM Data Out                 | Legye Open |
| I <sup>2</sup> S2 |                   | I2S_DOUT | Output                 | I <sup>2</sup> S Data Out    | Leave Open |
| DC4               | PCM2              | PCM_DIN  | Input                  | PCM Data In                  | 1 0        |
| DC4               | I <sup>2</sup> S2 | I2S_DIN  | Input                  | I <sup>2</sup> S Data In     | Leave Open |

<sup>&</sup>lt;sup>1</sup> PCM2/I2S2 is multiplexed with SPI2/UART3 and is not available if either SPI2/UART3 is configured

41110461 Rev 0.1 January 16, 2017 21

<sup>&</sup>lt;sup>2</sup> Direction when defined in Master mode.



## 3. Routing Constraints and Recommendations

Layout and routing of the AirPrime AR759x Series in the application is critical to maintaining the performance of the radio. The following sections provide guidance to the developer when designing their application to include an AirPrime AR759x Series and achieve optimal system performance.

#### **RF Routing Recommendations** 3.1.

To route the RF antenna signals, the following recommendations must be observed for PCB layout:

The RF signals must be routed using traces with a 50  $\Omega$  characteristic impedance.

Basically, the characteristic impedance depends on the dielectric constant (ɛr) of the material used, trace width (W), trace thickness (T), and height (H) between the trace and the reference ground plane.

In order to respect this constraint, Sierra Wireless recommends that a MicroStrip structure be used and trace width be computed with a simulation tool (such as AppCAD, shown in the figure below and available free of charge at http://www.avagotech.com).

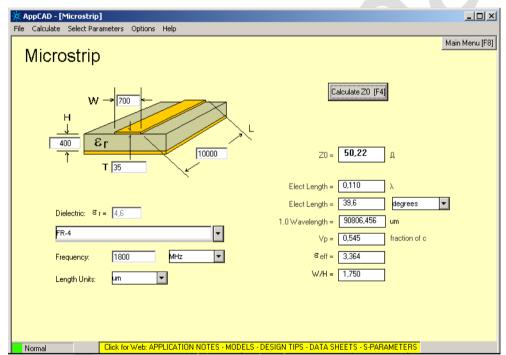



Figure 1. AppCAD Screenshot for Microstrip Design Power Mode Diagram

The trace width should be wide enough to maintain reasonable insertion loss and manufacturing reliability. Cutting out inner layers of ground under the trace will increase the effective substrate height; therefore, increasing the width of the RF trace.

Caution: It is critical that no other signals (digital, analog, or supply) cross under the RF path. The figure below shows a generic example of good and poor routing techniques.

41110461 Rev 0.1 January 16, 2017 22

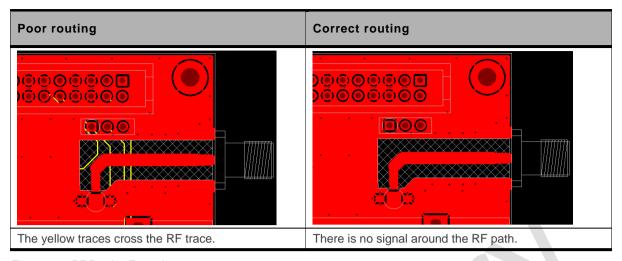



Figure 2. RF Routing Examples

- Fill the area around the RF traces with ground and ground vias to connect inner ground layers for isolation.
- Cut out ground fill under RF signal pads to reduce stray capacitance losses.
- Avoid routing RF traces with sharp corners. A smooth radius is recommended.
   E.g. Use of 45° angles instead of 90°.
- The ground reference plane should be a solid continuous plane under the trace.
- The coplanar clearance (G, below) from the trace to the ground should be at least the trace width (W) and at least twice the height (H). This reduces the parasitic capacitance, which potentially alters the trace impedance and increases the losses.
   E.g. If W = 100 microns then G = 200 microns in an ideal setup. G = 150 microns would also be acceptable is space is limited.

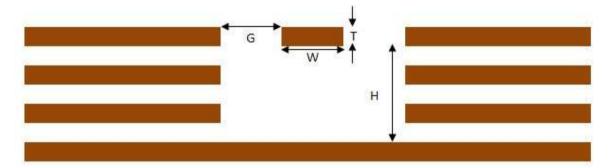



Figure 3. Coplanar Clearance Example

Note: The figure above shows several internal ground layers cut out, which may not be necessary for every application.

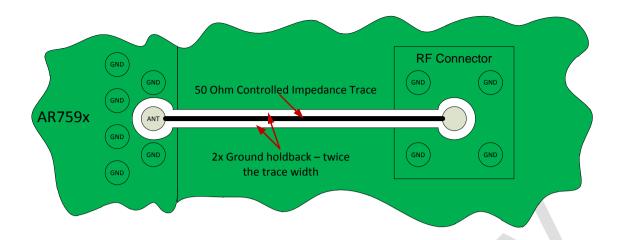



Figure 4. Antenna Microstrip Routing Example

## 3.2. USB Routing Recommendations

HighSpeed USB signals (USB\_D\_P / USB\_D\_M) are a differential pair and must be routed with the following considerations/constraints:

- 90 Ohm differential +/- 10% trace impedance,
- Differential trace length pair matching < 2mm (15 ps),</li>
- Solid reference planes,
- Trace lengths < 120 mm,
- And 2x the trace width separation to all adjacent signals.

SuperSpeed USB adds two differential pairs (SSRX+ / SSRX- and SSTX+ / SSTX-). These pairs should be routed with the following considerations/constraints:

- 90 Ohm differential +/- 15% trace impedance,
- Differential trace length pair matching < 0.7mm (5 ps),</li>
- Trace lengths < 112 mm,</li>
- And GND isolation from other adjacent traces with minimum of 2x the SSRX/SSTX trace wdith.

#### 3.3. Power and Ground Recommendations

Power and ground routing is critical to achieving optimal performance of the AirPrime AR759x Series when integrated into an application.

#### Recommendations:

- Do not use a separate GND for the Antennas.
- Connections to GND from the AirPrime AR759x Series should be flooded plane using thermal reliefs to ensure reliable solder joints.
- VBATT is recommended to be routed as a wide trace(s) directly from the power supply to the LGA pad.

#### 3.4. Antenna Recommendations

Connecting the antenna ground reference to the vehicle chassis is not recommended since that has been known to cause noise from the engine to couple into the audio of the device. It is ultimately up to the integrator to evaluate this performance.

#### 3.5. Interface Circuit Recommendations

The recommended interface implementation is to use a dual-supply bus transceiver with configurable voltage translation. This allows a host processor operating at a different voltage to communicate with the AirPrime AR759x Series using the appropriate voltage levels.

The figure below is a reference circuit for a digital input / output signal to / from the AirPrime AR759x Series.

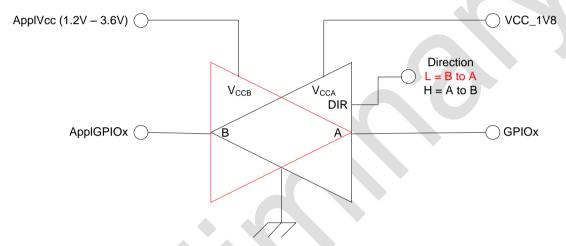



Figure 5. AirPrime AR759x Series Interface Reference Circuit

The dual-supply bus transceiver with configurable voltage translation used in the reference circuit above is the Texas Instruments SN74AVC1T45.

If a Digital IO signal is used bidirectional in the application then a bidirectional level translator, such as Texas Instruments TCA9406 is needed.



## 4. Firmware and Tools

The AirPrime AR7594 are designed based on Qualcomm's MDM9240 chipset, which contains a Modem Processor for running modem firmware components and an Application Processor for running embedded Linux applications. Various tools are provided by Qualcomm and developed by Sierra Wireless for developing and commercializing the AirPrime AR7592.

#### 4.1. Modem Firmware

The MDM9240 Modem Process contains the following categories of firmware, with possible modifications/extensions by Sierra Wireless as indicated:

- LTE/ WCDMA/ TD-SCDMA air interface protocols
- GNSS engine
- IMS protocol stack
- AT Command Processor: New AT commands will be added by Sierra Wireless. See document [8] for the complete list of AT Commands for the AirPrime AR759x Series.
- Data services
- Drivers/ BSP: Some modifications will be made to ensure the firmware can communicate with the AirPrime AR759x Series hardware properly.
- UICC functions
- Memory Management: Built-in redundancy and continuous monitoring against memory corruption
- Antenna Protection
- Voice support

#### 4.2. Tools

The following tools will be needed for the AirPrime AR7594 development, testing and commercialization.

- Firmware Update Tool
- Linux driver and Application Downloader
- Provisioning Tool
- Logging Tool
- Qualcomm's QXDM (license with Qualcomm required)
- Qualcomm's QPST (license with Qualcomm required)

41110461 Rev 0.1 January 16, 2017 26

# >> 5. Approval

## 5.1. Important Notice

Because of the nature of wireless communications, transmission and reception of data can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost.

Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless and its affiliates accept no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data.

## 5.2. Safety and Hazards

Do not operate the AirPrime AR7594:

- In areas where blasting is in progress
- Where explosive atmospheres may be present including refueling points, fuel depots, and chemical plants
- Near medical equipment, life support equipment, or any equipment which may be susceptible
  to any form of radio interference. In such areas, the AirPrime AR7594 device MUST BE
  POWERED OFF. Otherwise, the AirPrime AR7594 device can transmit signals that could
  interfere with this equipment
- In an aircraft, the AirPrime AR7594 device **MUST BE POWERED OFF.** Otherwise, the AirPrime AR7594 device can transmit signals that could interfere with various onboard systems and may be dangerous to the operation of the aircraft or disrupt the cellular network. Use of cellular phone in aircraft is illegal in some jurisdictions. Failure to observe this instruction may lead to suspension or denial of cellular telephone services to the offender, or legal action or both.
- Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is open. The AirPrime AR7592 device may be used normally at this time.

## 5.3. Important Compliance Information

The AirPrime AR7594 is granted with a modular approval for mobile applications. Integrators may use the AR7594 device in their final products without additional FCC certification if they meet the following conditions. Otherwise, additional FCC approvals must be obtained.

- 1. The end product must use the RF trace design approved with the AirPrime AR7594 module. The Gerber file of the trace design can be obtained from Sierra Wireless upon request.
- 2. At least 20cm separation distance between the antenna and the user's body must be maintained at all times.
- 3. To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, the maximum antenna gain including cable loss in a mobile-only exposure condition must not exceed the gain values presented in the table below:

5.0 dBi in LTE Band 7

41110461 Rev 0.2 January 16, 2017 27

- 4. The AR7594 modem may transmit simultaneously with other collocated radio transmitters within a host device, provided the following conditions are met:
  - Each collocated radio transmitter has been certfied by FCC for mobile application.
  - At least 20 cm separation distance between the antennas of the collocated transmitters and the user's body must be maintained at all times.
  - The output power and antenna gain must not exceed the limits and configu-rations stipulated in the following table.

| Device                   | Technology | Band | Frequency (MHz) | EIPR Limits (dbm) | Maximum<br>antenna gain |
|--------------------------|------------|------|-----------------|-------------------|-------------------------|
| AR7594                   | LTE        | 7    | 2500 – 2570     |                   | 5                       |
| Collocated transmitters* | WLAN       |      | 2400-2500       | 25                |                         |
|                          |            |      | 5150-580        | 27                |                         |
|                          | WiMAX      |      | 2300-2400       | 25                |                         |
|                          |            |      | 2500-2700       | 25                |                         |
|                          |            |      | 3300-3800       | 25                |                         |
|                          | ВТ         |      | 2400-2500       | 15                |                         |

<sup>\*.</sup> Valid collocated Transmitter combinations: WLAN+BT; WiMAX+BT. (WLAN+WiMAX+BT is not permitted.)

**5.** A label must be affixed to the outside of the end product into which the AirPrime AR7594 device is incorporated, with a statement similar to the following:

#### This device contains FCC ID: N7NAR7594

6. A user manual with the end product must clearly indicate the operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.

The end product with an embedded AirPrime AR7594 device may also need to pass the FCC Part 15 unintentional emission testing requirements and be properly authorized.

Note:

If this module is intended for use in a portable device, you are responsible for separate approval to satisfy the SAR requirements of FCC Part 2.1093 and IC RSS-102.

## 6. References

The table below lists the reference specifications for this product.

Table 26. Reference Specifications

| Ref | Title                                                                                     | Rev              | Issuer                 |
|-----|-------------------------------------------------------------------------------------------|------------------|------------------------|
| [1] | 3GPP TS 51.010-1                                                                          | Version<br>7.3.1 | 3GPP                   |
| [2] | 3GPP TS 34.121-1                                                                          | V8               | 3GPP                   |
| [3] | 3GPP TS 36.521-1                                                                          | V9               | 3GPP                   |
| [4] | Universal Serial Bus Specification                                                        | V2.0             | USB Implementers Forum |
| [5] | Universal Serial Bus CDC Subclass Specification for Wireless Mobile Communication Devices | V1.0             | USB Implementers Forum |

| Ref  | Title                                                               | Rev  | Issuer                 |
|------|---------------------------------------------------------------------|------|------------------------|
| [6]  | Universal Serial Bus Class Definitions for Communication Devices    | V1.1 | USB Implementers Forum |
| [7]  | AirPrime - AR7 Series - Customer Process Guidelines                 | -    | Sierra Wireless        |
| [8]  | AirPrime - AR75xx - AT Command Interface<br>Specification - 4112841 | V1.5 | Sierra Wireless        |
| [9]  | AirPrime AR7xxx Firmware Download Guide                             | -    | Sierra Wireless        |
| [10] | AirPrime AR759x Thermal Management Application<br>Note - 2174114    | V1.0 | Sierra Wireless        |
| [11] | AirPrime AR759x Current Consumption Application<br>Note - 2174115   | V1.0 | Sierra Wireless        |
| [12] | AirPrime - AR Series - Hardware Compatibility APN - 4116174         | V0.8 | Sierra Wireless        |
| [13] | AirPrime - AR7552 - Hardware Integration Guide – 4117336            | V1.0 | Sierra Wireless        |



# 7. Abbreviations

The table below lists several abbreviations used in this document.

Table 27. Abbreviations

| Abbreviation | Description                                             |
|--------------|---------------------------------------------------------|
| ADC          | Analog-to-Digital Converter                             |
| CDMA         | Code Division Multiple Access                           |
| DRX          | Discontinuous Receive                                   |
| EDGE         | Enhanced Data rates for GSM Evolution                   |
| FDD          | Frequency Division Duplex                               |
| GERAN        | GSM EDGE Radio Access Network                           |
| GNSS         | Global Navigation Satellite System                      |
| GSM          | Global System for Mobile Communications                 |
| HSPA         | High Speed Packet Access                                |
| I2S          | Inter-IC Sound                                          |
| LTE          | Long Term Evolution                                     |
| PCle         | Peripheral Component Interconnect Express               |
| PCM          | Pulse Coded Modulation                                  |
| PMIC         | Power Management Integrated Circuit                     |
| SCI          | Slot Cycle Index                                        |
| SDIO         | Secure Digital Input Output                             |
| SPI          | Serial Peripheral Interface                             |
| TDD          | Time Division Duplex                                    |
| TD-SCDMA     | Time Division Synchronous Code Division Multiple Access |
| UART         | Universal Asynchronous Receiver / Transmitter           |
| UICC         | Universal Integrated Circuit Card                       |
| UIM          | User Identity Module                                    |
| UMTS         | Universal Mobile Telecommunications System              |
| USB          | Universal Serial Bus                                    |
| WCDMA        | Wideband Code Division Multiple Access                  |
| WWAN         | Wireless Wide Area Network                              |

Rev 0.2 41110461 January 16, 2017 30