

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC REPORT AND ORDER: ET DOCKET 93-62 AND OET BULLETIN 65 SUPPLEMENT C And RSS-102 Issue 1 (Provisional) September 25, 1999

FOR

850/900/1800/1900 MHz Quadband PC Card

Model: AirCard 860

FCC ID: N7NAC860

REPORT NUMBER: 05U3648-6B

(Supplement Report)

ISSUE DATE: September 30, 2005

Prepared for

Sierra Wireless, Inc. 13811 Wireless Way Richmond, British Columbia V6V 3A4 Canada

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037 United States

LAB CODE:200065-0

Revision History

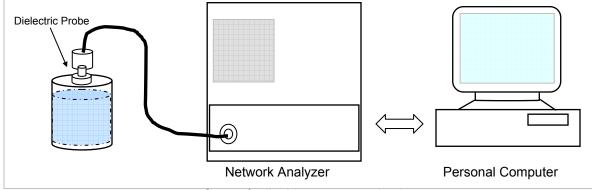
Rev.	Issued date	Revisions	Revised By
А	September 9, 2005	Initial Issue	HS
В	September 30, 2005	Re-Test W-CDMA mode	HS

Table of Contents

1	Equi	pment Under Test (EUT) Description	.4
2	FAC	ILITIES AND ACCREDITATION	.5
3	Sim	ulating Liquid Parameters Check	.6
	3.1	Simulating Liquid Parameter Check Result	. 7
4	Syst	em Performance Check	10
	4.1	System Performance Check Results	11
5	Proc	cedures Used to Establish Test Signal	12
6	SAR	Test Summary @ 850 MHz bnad	13
	6.1	Host # 2 – NEC, VERSA SX	13
7	SAR	Test Summary @ 1900 MHz bnad	14
	7.1	Host # 1 – Toshiba, Satellite	14
	7.2	Host # 2 – NEC, VERSA SX	15
	7.3	Host # 3 – Compaq, ARMADA E500	16
8	Mea	surement Uncertainty	17
9	Equi	ipment List	18
10	Atta	chment	19

2 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."



CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

3 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Bo	dy
Target Trequency (MTZ)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

3.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameters Check Result @ Head 1900 MHz

Room Ambient Temperature = 23.5°C; Relative humidity = 40%

Simulating Liquid				Parameters	Target	Measured	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)						
1900	23	15	с"	Relative Permittivity (є'):	40.0	38.3873	-4.03	± 5
			13.7648	Conductivity (σ):	1.40	1.4549	3.92	± 5
Liquid Che								
				d temperature: 23.0 d	leg C			
Septembe	er 29, 2005	5 10:26 AM						
_								
Frequency		e'		e"				
17100000		39.3		13.2335				
17200000		39.3		13.2335				
17300000		39.2		13.1932				
17400000		39.1		13.2272				
17500000		39.1		13.3015				
17600000		39.04		13.3954				
17700000		38.9		13.4737				
17800000		38.8		13.5197				
17900000		38.8		13.5632				
18000000		38.8		13.5695				
18100000		38.8		13.5586				
18200000 18300000		38.8 38.8		13.4931 13.4488				
18400000		38.8		13.4400				
18500000		38.72		13.5502				
18600000		38.6		13.6279				
18700000		38.40		13.6668				
18800000		38.3		13.6820				
18900000		38.3		13.6992				
1900000		38.3		13.7648				
19100000		38.3		13.7934				
The condu	uctivity (σ)	can be giv	en as:					
$\sigma = \omega \varepsilon_0$	e″= 2 π	fε ₀ e"						
where f :								
	= 8.854 * 1							
E()	- 0.007							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 23.5°C; Relative humidity = 40%

r Temp. (°C) Depth (cm) c* Relative Permittivity (e,): 53.3 51.5772 -3.23 \pm 1900 23 15 6° Relative Permittivity (e,): 53.3 51.5772 -3.23 \pm i.iquid Check Ambient temperature: 23.5 deg C; Liquid temperature: 23.0 deg C 1.58656 4.38 \pm 7710000000. 52.4833 14.4268 14.4117 1.73000000. 52.4833 14.4208 7720000000. 52.2175 14.4117 1.6403 1.6403 1.76000000. 52.2128 14.5319 76000000. 52.0205 14.7132 1.8666 14.7656 79000000. 52.0206 14.7832 14.5938 14.7990 810000000. 51.9999 14.7990 14.6958 1830000000. 51.9999 14.7954 820000000. 51.9677 14.9155 14.8027 186000000. 51.5967 14.9165 880000000. 51.5967 14.9155 14.9704 19000000. 51.5521 14.9704 900000000. 51.5521	Simulating Liquid				Parameters		Measured	Deviation (%)	Limit (%)
1900 23 15 15.0101 Conductivity (o): 1.52 1.58656 4.38 \pm Liquid Check Ambient temperature: 23.5 deg C; Liquid temperature: 23.0 deg C 5 5 5 5 5 5 5 6 4.38 \pm \pm Ambient temperature: 23.5 deg C; Liquid temperature: 23.0 deg C 5 5 5 7 <th>f (MHz)</th> <th>Temp. (°C)</th> <th>Depth (cm)</th> <th></th> <th>r di difficici S</th> <th>Target</th> <th>INICASULEU</th> <th>Deviation (70)</th> <th>Linn (70)</th>	f (MHz)	Temp. (°C)	Depth (cm)		r di difficici S	Target	INICASULEU	Deviation (70)	Linn (70)
15.0101 Conductivity (σ): 1.52 1.58656 4.38 ± .iquid Check Ambient temperature: 23.5 deg C; Liquid temperature: 23.0 deg C September 29, 2005 10:17 AM Frequency e' e'' e'' Image: Conductivity (σ): 1.52 1.58656 4.38 ± Trouble Conductivity (σ): 1.52 1.58656 4.38 ± 5 September 29, 2005 10:17 AM e'' e'' e'' F <th>1900</th> <th>23</th> <th>15</th> <th>с"</th> <th>Relative Permittivity (ε_r):</th> <th>53.3</th> <th>51.5772</th> <th>-3.23</th> <th>± 5</th>	1900	23	15	с"	Relative Permittivity (ε_r):	53.3	51.5772	-3.23	± 5
Arbient temperature: 23.5 deg C; Liquid temperature: 23.0 deg C September 29, 2005 10:17 AM Frequency e' e" 710000000. 52.4833 14.4268 72000000. 52.4175 14.4117 73000000. 52.2978 14.4390 74000000. 52.2978 14.4390 75000000. 52.21359 14.6403 77000000. 52.1359 14.6403 77000000. 52.0545 14.7132 178000000. 51.9986 14.7656 79000000. 51.9999 14.7990 810000000. 51.9993 14.7554 820000000. 51.9993 14.7554 820000000. 51.9993 14.7554 820000000. 51.9993 14.6614 84000000. 51.9993 14.6958 83000000. 51.9993 14.7554 820000000. 51.9993 14.7554 820000000. 51.9993 14.7554 820000000. 51.9993 14.7554 820000000. 51.9567 14.8862 870000000. 51.5967 14.8862 870000000. 51.5967 14.9155 1880000000. 51.5967 14.9155 1890000000. 51.5967 14.9155 180000000. 51.5967 14.9155 190000000. 51.5967 14.9156 190000000. 51.5967 14.9156 190000000. 51.5967 14.9156		10	15.0101	Conductivity (σ):	1.52	1.58656	4.38	± 5	
September 29, 2005 10:17 AM Frequency e' e" (71000000. 52.4833 14.4268 (72000000. 52.3602 14.4049 (74000000. 52.3602 14.4049 (74000000. 52.2978 14.4390 (75000000. 52.2128 14.5319 (76000000. 52.0545 14.7132 (77000000. 52.0545 14.7132 (78000000. 51.9986 14.7656 (790000000. 51.9999 14.7990 (81000000. 51.9999 14.7990 (81000000. 51.9993 14.7554 (82000000. 51.9993 14.7554 (82000000. 51.9993 14.7554 (82000000. 51.9696 14.6814 (84000000. 51.9582 14.7010 (850000000. 51.9582 14.7010 (850000000. 51.5967 14.9155 (88000000. 51.5967 14.9155 (88000000. 51.5521 14.9704 (90000000. 51.5521 14.9704 (90000000. 51.5521 14.9704 (90000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f^* 10^6$	iquid Che	ck							
Frequencye'e"7710000000.52.483314.42681720000000.52.417514.41171730000000.52.360214.40491740000000.52.297814.43901750000000.52.212814.53191760000000.52.135914.64031770000000.52.054514.71321780000000.52.002614.7832180000000.51.998614.7656180000000.51.999314.79901810000000.51.999314.75541820000000.51.999314.75541830000000.51.966614.6814184000000.51.958214.70101850000000.51.596714.91551880000000.51.596714.91551880000000.51.596714.9704190000000.51.594115.0424The conductivity (σ) can be given as: $σ = ωε_0 e'' = 2 π f ε_0 e''$ where $f = target f * 10^6$ v					d temperature: 23.0 d	eg C			
17100000052.483314.426817200000052.417514.411717300000052.360214.404917400000052.297814.4390175000000052.212814.531917600000052.135914.640317700000052.054514.713217800000052.002614.783218000000051.998614.765617900000052.002614.783218000000051.999314.755418200000051.999314.755418200000051.969614.681418400000051.958214.701018500000051.596714.886218700000051.596714.9155188000000051.552114.970419000000051.552114.970419000000051.594115.0424The conductivity (σ) can be given as: $\sigma = \omega \varepsilon_0 e^m = 2 \pi f \varepsilon_0 e^m$ where $f = target f * 10^6$ $= 100000000$	September	29, 2005	10:17 AM						
17100000052.483314.426817200000052.417514.411717300000052.360214.404917400000052.297814.4390175000000052.212814.531917600000052.135914.640317700000052.054514.713217800000052.002614.783218000000051.998614.765617900000052.002614.783218000000051.999314.755418200000051.999314.755418200000051.969614.681418400000051.958214.701018500000051.596714.886218700000051.596714.915518800000051.596714.915518800000051.552114.970419000000051.577215.010119100000051.594115.0424The conductivity (\alpha) can be given as: $\alpha = \omega \epsilon_0 e^m = 2 \pi f \epsilon_0 e^m$ where $f = target f^* 10^6$ α	_								
172000000.52.417514.4117173000000.52.360214.4049174000000.52.297814.4390175000000.52.212814.5319176000000.52.135914.6403177000000.52.054514.7132178000000.51.998614.7656179000000.52.002614.7832180000000.51.999914.7990181000000.51.999314.7554182000000.51.999314.7554182000000.51.969614.6814184000000.51.958214.7010185000000.51.596714.8862187000000.51.596714.9155188000000.51.552114.9704199000000.51.552114.970419000000.51.594115.0424The conductivity (σ) can be given as: $\sigma = \omega \varepsilon_0 e^m = 2 \pi f \varepsilon_0 e^m$ where $f = target f^* 10^6$ σ			-		-				
173000000.52.360214.4049174000000.52.297814.4390175000000.52.212814.5319176000000.52.054514.7132178000000.52.002614.7832180000000.51.999914.7990181000000.51.999314.7554182000000.51.96614.6814182000000.51.96614.8812183000000.51.96614.8814184000000.51.958214.7010185000000.51.956714.9155188000000.51.596714.9155188000000.51.596714.9155188000000.51.594115.0424The conductivity (σ) can be given as: $σ = ωε_0 e^m = 2 π f ε_0 e^m$ where $f = target f^* 10^6$ $= 14.800$									
$174000000.$ 52.2978 14.4390 $175000000.$ 52.128 14.5319 $176000000.$ 52.1359 14.6403 $177000000.$ 52.0545 14.7132 $178000000.$ 51.9986 14.7656 $179000000.$ 52.0026 14.7832 $180000000.$ 51.9999 14.7990 $181000000.$ 51.9993 14.7554 $182000000.$ 51.9993 14.7554 $182000000.$ 51.9696 14.6814 $184000000.$ 51.9582 14.7010 $185000000.$ 51.7296 14.8862 $187000000.$ 51.5967 14.9155 $188000000.$ 51.5521 14.9704 $19000000.$ 51.5521 14.9704 $190000000.$ 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$ where $f = target f * 10^6$ σ									
175000000 52.2128 14.5319 176000000 52.1359 14.6403 177000000 52.0545 14.7132 178000000 51.9986 14.7656 179000000 52.0026 14.7832 180000000 51.9999 14.7990 181000000 51.9993 14.7554 182000000 51.9993 14.7554 182000000 51.9993 14.6958 183000000 51.9696 14.6814 184000000 51.9582 14.7010 185000000 51.7296 14.8862 187000000 51.5967 14.9155 188000000 51.5967 14.9155 188000000 51.5521 14.9704 190000000 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$ where $f = target f * 10^6$ 4.6814									
176000000 52.135914.6403 177000000 52.054514.7132 178000000 51.998614.7656 179000000 52.002614.7832 180000000 51.999914.7990 181000000 51.999314.7554 182000000 51.979114.6958 183000000 51.969614.6814 184000000 51.958214.7010 185000000 51.868414.8027 186000000 51.729614.8862 187000000 51.596714.9155 188000000 51.552114.9704 190000000 51.594115.0424The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$ 4									
$177000000.$ 52.0545 14.7132 $178000000.$ 51.9986 14.7656 $179000000.$ 52.0026 14.7832 $180000000.$ 51.9999 14.7990 $181000000.$ 51.9993 14.7554 $182000000.$ 51.9996 14.6958 $183000000.$ 51.9696 14.6814 $184000000.$ 51.9582 14.7010 $185000000.$ 51.7296 14.8862 $187000000.$ 51.5967 14.9155 $188000000.$ 51.5521 14.9704 $190000000.$ 51.5772 15.0101 $191000000.$ 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$ 4.02									
$178000000.$ 51.9986 14.7656 $179000000.$ 52.0026 14.7832 $180000000.$ 51.9999 14.7990 $181000000.$ 51.9993 14.7554 $182000000.$ 51.9791 14.6958 $183000000.$ 51.9696 14.6814 $184000000.$ 51.9582 14.7010 $185000000.$ 51.8684 14.8027 $186000000.$ 51.7296 14.8862 $187000000.$ 51.5967 14.9155 $188000000.$ 51.5521 14.9704 $190000000.$ 51.5772 15.0101 $191000000.$ 51.5941 15.0424 The conductivity (\sigma) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$									
$179000000.$ 52.0026 14.7832 $180000000.$ 51.9999 14.7990 $181000000.$ 51.9993 14.7554 $182000000.$ 51.9791 14.6958 $183000000.$ 51.9696 14.6814 $184000000.$ 51.9582 14.7010 $185000000.$ 51.8684 14.8027 $186000000.$ 51.7296 14.8862 $187000000.$ 51.5967 14.9155 $188000000.$ 51.5521 14.9704 $190000000.$ 51.5772 15.0101 $1910000000.$ 51.5941 15.0424 The conductivity (\sigma) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$									
180000000. 51.9999 14.7990 181000000. 51.9993 14.7554 182000000. 51.9791 14.6958 183000000. 51.9696 14.6814 184000000. 51.9582 14.7010 185000000. 51.8684 14.8027 186000000. 51.7296 14.8862 187000000. 51.5967 14.9155 188000000. 51.5967 14.9269 189000000. 51.5521 14.9704 190000000. 51.5772 15.0101 191000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$									
181000000. 51.9993 14.7554 182000000. 51.9791 14.6958 183000000. 51.9696 14.6814 184000000. 51.9582 14.7010 185000000. 51.8684 14.8027 186000000. 51.7296 14.8862 187000000. 51.5967 14.9155 188000000. 51.5967 14.9704 190000000. 51.5521 14.9704 190000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f^* 10^6$ ω									
182000000. 51.9791 14.6958 183000000. 51.9696 14.6814 184000000. 51.9582 14.7010 185000000. 51.8684 14.8027 186000000. 51.7296 14.8862 1870000000. 51.5967 14.9155 1880000000. 51.5967 14.9269 1890000000. 51.5521 14.9704 190000000. 51.5772 15.0101 1910000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$ ω^6									
183000000. 51.9696 14.6814 184000000. 51.9582 14.7010 185000000. 51.8684 14.8027 186000000. 51.7296 14.8862 187000000. 51.5967 14.9155 1880000000. 51.5434 14.9269 1890000000. 51.5521 14.9704 1900000000. 51.5772 15.0101 1910000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$ 4									
1840000000. 51.9582 14.7010 1850000000. 51.8684 14.8027 1860000000. 51.7296 14.8862 1870000000. 51.5967 14.9155 1880000000. 51.5434 14.9269 1890000000. 51.5521 14.9704 1900000000. 51.5772 15.0101 1910000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$ where $f = target f * 10^6$ $f = target f * 10^6$									
1850000000. 51.8684 14.8027 1860000000. 51.7296 14.8862 1870000000. 51.5967 14.9155 1880000000. 51.5434 14.9269 1890000000. 51.5521 14.9704 1900000000. 51.5772 15.0101 1910000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$ where $f = target f * 10^6$ $f = target f * 10^6$									
186000000. 51.7296 14.8862 187000000. 51.5967 14.9155 1880000000. 51.5434 14.9269 1890000000. 51.5521 14.9704 1900000000. 51.5772 15.0101 1910000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$									
1870000000. 51.5967 14.9155 1880000000. 51.5434 14.9269 1890000000. 51.5521 14.9704 1900000000. 51.5772 15.0101 1910000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$									
1880000000. 51.5434 14.9269 1890000000. 51.5521 14.9704 1900000000. 51.5772 15.0101 1910000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$									
189000000. 51.5521 14.9704 190000000. 51.5772 15.0101 1910000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$ where $f = target f * 10^6$									
190000000. 51.5772 15.0101 1910000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$									
191000000. 51.5941 15.0424 The conductivity (σ) can be given as: $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$ where $f = target f * 10^6$									
The conductivity (σ) can be given as: $\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$ where $f = target f * 10^6$									
$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$ where $f = target f * 10^6$	191000000	0.	51.59	941	15.0424				
$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$ where $f = target f * 10^6$	The conduc	ctivity (σ)	can be giv	en as:					
where $\mathbf{f} = target f * 10^6$,	•						
	$\sigma = \omega \varepsilon_0 e$	e = 2 TT 1	ε ₀ e"						
$\boldsymbol{\varepsilon_0} = 8.854 * 10^{-12}$	E 0 =	8.854 * 1	10 ⁻¹²						

Simulating Liquid Parameter Check Result @ Muscle 835 MHz

Room Ambient Temperature = 23.5 °C; Relative humidity = 40%

S f (MHz)	imulating Liqu Temp. (°C)	iid Depth (cm)		Parameters	Target	Measured	Deviation (%)	Limit (%)
			e'	Relative Permittivity (e"):	55.2	54.9077	-0.53	± 5
835	23	15	21.2657	Conductivity (σ):	0.97	0.9878	1.84	± 5
September	mperature 30, 2005	10:31 AM		d temperature: 23.0 d	leg C			
Frequency		e'	774	e"				
75000000 755000000		55.76 55.68		21.7107 21.6358				
76000000		55.6 ²		21.6040				
765000000		55.60		21.5540				
770000000		55.58		21.5044				
775000000		55.48		21.4518				
78000000		55.4		21.4099				
785000000		55.37		21.3608				
79000000		55.29		21.3366				
79500000 80000000		55.28 55.23		21.3313 21.3098				
805000000		55.20		21.3090				
810000000		55.17		21.2867				
815000000		55.12	213	21.2831				
82000000).	55.10	057	21.2647				
825000000		55.0		21.2721				
830000000		54.96		21.2754				
835000000		54.90		21.2657				
84000000 845000000		54.92 54.83		21.2401 21.2023				
850000000		54.7		21.1802				
855000000		54.73		21.1459				
860000000		54.6		21.0750				
865000000		54.59	948	21.0248				
87000000		54.54		20.9957				
875000000		54.50		20.9501				
880000000		54.47		20.9102				
885000000 890000000		54.4 54.4		20.8795 20.8633				
895000000		54.43 54.44		20.8033				
900000000		54.39		20.8318				
The condu								
$\sigma = \omega \varepsilon_0 \epsilon$	e"= 2 π f	έ ε ₀ e″						
where f =								
ε ₀ =	: 8.854 * 1	0 ⁻¹²						

4 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV4-SN: 3552 and EX3DV3-SN: 3531 were
 used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and f 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm).
- Distance between probe sensors and phantom surface was set to 2.5 (below 3 G) mm.
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values

IEEE Standard 1528 Recommended Reference Value

Frequency (MHz)	1 g SAR	10 g SAR	Local SAR at surface (Above feed point)	Local SAR at surface (y=2cm offset from feed point)
1900	39.7	20.5	72.1	6.6

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	850	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

4.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D1900V2 SN:5d043

Date: September 29, 2005

Ambient Temperature = 23.5°C; Relative humidity = 40%

Measured by: Sunny Shih

Head Simulating Liquid		Mrasured		Target	Deviation (%)	Limit (%)	
f(MHz)	Temp.(°C)	Depth (cm)	1 g	Normalized to 1 W	Taryet		LIIIII (70)
			9.55	38.2	39.7	-3.78	± 10
1900	23	15	10g	Normalized to 1 W	Target	Deviation (%)	Limit (%)
			4.94	19.76	20.5	-3.61	± 10

System Validation Dipole: D835V2 SN:4d002

Date: September 30, 2005

Ambient Temperature = 23.5°C; Relative humidity = 40%

Muscle Simulating Liquid			Mrasured	Target_1g	Deviation[%]	Limit [%]		
f(MHz)	Temp.[°C]	Depth [cm]	1 g	Normalized to 1 W	Target_1g	Deviation[%]		
				2.43	9.72	9.71	0.10	± 10
835	23	15	10g	Normalized to 1 W	Target_10g	Deviation[%]	Limit [%]	
			1.60	6.4	6.38	0.31	± 10	

5 PROCEDURES USED TO ESTABLISH TEST SIGNAL

The following settings were used to configure the Wireless Communications Test Set, Agilent 8960 Series 10, E5515C.

Instrument information

Application:	WCDMA Mobile Test				
	E1963A	A.04.10			
Format:	WCDMA/FDD				
Last Calibration:	25 Aug 2005				
Serial Number:	GB43344837				
Call Parms					
Channel Type:	64k RMS				
Paging Service:	RB Test Mode	9			
DL Channel:	9662 / 9800 /	9938 / 4357 / 4407 / 4458			
UL Channel:	9262 / 9400 /	9538 / 4132 / 4182 / 4233			
DL DTCH Data:	CCITT PRBS	15			
RLC Reestablish:	off				
SRB Config.:	13.6k DCCH				
UL CL Pwr Ctrl Parms:	All up bits				

Conducted powers were measured prior to SAR measurement:

W-CDMA850

The cable assembly insertion loss of 10.3 dB (including 9.8 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Conducted Dower

WCDMA mode:

		Conducted Power	
Ch	f (MHz)	Avg Power	
4132	826.40	22.95	
4182	836.40	23.10	
4233	846.60	22.95	

W-CDMA1900

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 0.7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

WCDMA mode:

Ch	f (MHz)	Conducted Power Avg Power
9262	1852.40	22.90
9400	1880.00	22.80
9538	1907.60	22.80

6 SAR TEST SUMMARY @ 850 MHZ BNAD

6.1 HOST # 2 – NEC, VERSA SX

_						
	10 mm 🗘					
				4		
						1 × 1
		- Carl			÷	
CDMA Cellular	band			0		
	band		Measured	Power Drift	Extrapolated	
CDMA Cellular mode		f (MHz)	1g (mW/g)	(dB)	1g (mW/g)	Limit (mW
	band 4132 4182	f (MHz) 826.4 836.4				Limit (mW. 1.6 1.6

2) The earphone wire connected to the EUT to simulate hand-free operation in a body worn configuration.

3) Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

7 SAR TEST SUMMARY @ 1900 MHZ BNAD

7.1 HOST # 1 – TOSHIBA, SATELLITE

		-	^			
		10 mm				
		14 - A				
CDMA BCS ba	nd					
CDMA PCS bai	nd		Measured	Power Drift	Extrapolated	
<i>(CDMA PCS bai</i> mode		f (MHz)	1g (mW/g)	(dB)	Extrapolated 1g (mW/g)	Limit (mW/g
mode	9262	1852.40	1g (mW/g) 0.408	(dB) -0.054	1g (mW/g) <mark>0.413</mark>	1.6
			1g (mW/g)	(dB)	1g (mW/g)	

 The exact method of extrapolation is *measured SAR x 10[^]* (-*drift/10*). The SAR reported at the end of the measurement process by the DASY4 measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process.

2) The earphone wire connected to the EUT to simulate hand-free operation in a body worn configuration.

3) Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

7.2 HOST # 2 – NEC, VERSA SX

		1				
	10 mm \$					
WCDMA PCS band	1					
mode		f (MHz)	Measured 1g (mW/g)	Power Drift (dB)	Extrapolated 1g (mW/g)	Limit (mW/g)
WCDMA	9262 9400 9538	1852.40 1880.00 1907.60	0.188	-0.162	0.195	1.6
process by the beginning of 2) The SAR me & high chann 3) The earphon	ethod of extrapolati the DASY4 measure the measurement p easured at the midd nel is optional. the wire connected to attachment for the c	ement system ca process. le channel for th p the EUT to sin	an be scaled up by nis configuration is nulate hand-free o	/ the measured dri at least 3 dB lowe peration in a body	ft to determine the er than SAR limit, t worn configuration	SAR at the hus testing at low

7.3 HOST # 3 – COMPAQ, ARMADA E500

	0	0				110
				12		
		¢				
CDMA PCS band	d		Measured	Power Drift	Extrapolated	
/CDMA PCS band	d	f (MHz)	Measured 1g (mW/g)	Power Drift (dB)	Extrapolated 1g (mW/g)	Limit (mW/g
VCDMA PCS band	d		Measured	Power Drift	Extrapolated	

3) The earphone wire connected to the EUT to simulate hand-free operation in a body worn configuration.

4) Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8 MEASUREMENT UNCERTAINTY

Lincortainty component		Probe	Div.	$Ci(4\pi)$	Ci (10m)	Std. U	nc.(±%)
Uncertainty component	Tol. (±%)	Dist.	DIV.	Ci (1g)	Ci (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table 1. Tol tolerance in influence quaitity 2. N - Nomal 3. R. Restangular							

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

9 EQUIPMENT LIST

Name of Equipment	Manufacturer	Type/Model	Serial Number	Cal. Due date
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535	N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041	N/A
Probe Alignment Unit	SPEAG	LB (V2)	261	N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	US39173569	9/19/05
Electronic Probe kit	Hewlett Packard	85070C	N/A	N/A
E-Field Probe	SPEAG	EX3DV4	3531	7/21/06
Thermometer	ERTCO	639-1	8402	10/13/2005
Thermometer	ERTCO	639-1	8404	10/21/2005
Thermometer	ERTCO	637-1	8661	10/21/2005
SAM Phantom (SAM1)	SPEAG	TP-1185	QD000P40CA	N/A
SAM Phantom (SAM2)	SPEAG	TP-1015	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE3 V1	500	2/7/06
System Validation Dipole	SPEAG	D2450V2	748	5/14/06
System Validation Dipole	SPEAG	D5GHzV2	1003	10/5/05
Signal General	R&H	SMP 04	DE34210	6/2/06
Power Meter	Giga-tronics	8651A	8651404	9/16/05
Power Sensor	Giga-tronics	80701A	1834588	9/16/05
Amplifier	Mini-Circuits	ZVE-8G	0360	N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A
Wireless Communication Test Set	Agilent	E5515C	GB44051333	5/5/06
Simulating Liquid	CCS	H835 MHz	N/A	within 24 hrs of first test
Simulating Liquid	CCS	M835 MHz	N/A	within 24 hrs of first test
Simulating Liquid	CCS	H1900 MHz	N/A	within 24 hrs of first test
Simulating Liquid	CCS	M1900 MHz	N/A	within 24 hrs of first test

10 ATTACHMENT

No.	Contents	No. of page (s)
1	System Performance Check Plot	4
2-1	SAR Test Plot – 850 MHz band	8
2-2	SAR Test Plot – 1900 MHz band	4
3	Certificate of E-filed Probe EX3DV3 SN 3531	10
4	Certificate of System Validation Dipole D835V2 SN 4d002	6
5	Certificate of System Validation Dipole D1900V2 SN 5d043	6

END OF REPORT