MAXIMUM PERMISSIBLE EXPOSURE (AirCard 860)

LIMITS

\S 1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in $\S 1.1307(\mathrm{~b})$, except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LImits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3-3.0	614	1.63	${ }^{*}(100)$	6
3.0-30	18427	4.897	${ }^{*}\left(900 \mathrm{ff}{ }^{2}\right)$	6
30-300	61.4	0.163	1.0	6
300-1500	f/300	6
1500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	8247	2.197	${ }^{*}\left(180 r^{2}\right)$	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A / m)	Power density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging time (minutes)
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000		\ldots	1.0	30

$\mathrm{f}=$ frequency in MHz

${ }^{*}=$ Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for oocupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

CALCULATIONS

Given

$$
\mathrm{E}=\sqrt{ }(30 * P * G) / d
$$

and
$S=E^{\wedge} 2 / 3770$
where
$\mathrm{E}=$ Field Strength in Volts/meter
$\mathrm{P}=$ Power in Watts
$\mathrm{G}=$ Numeric antenna gain
$\mathrm{d}=$ Distance in meters
S = Power Density in milliwatts/square centimeter
Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:
$\mathrm{d}=\sqrt{ }((30 * \mathrm{P} * \mathrm{G}) /(3770 * S))$
Changing to units of Power to mW and Distance to cm , using:
$P(m W)=P(W) / 1000$ and
$d(\mathrm{~cm})=100 * d(\mathrm{~m})$
yields
$\mathrm{d}=100 * \sqrt{ }((30 *(\mathrm{P} / 1000) * \mathrm{G}) /(3770 * \mathrm{~S}))$
$\mathrm{d}=0.282 * \sqrt{ }(\mathrm{P} * \mathrm{G} / \mathrm{S})$
where
$\mathrm{d}=$ distance in cm
$\mathrm{P}=$ Power in mW
$\mathrm{G}=$ Numeric antenna gain
$\mathrm{S}=$ Power Density in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$
Substituting the logarithmic form of power and gain using:
$\mathrm{P}(\mathrm{mW})=10^{\wedge}(\mathrm{P}(\mathrm{dBm}) / 10)$ and
$\mathrm{G}($ numeric $)=10^{\wedge}(\mathrm{G}(\mathrm{dBi}) / 10)$
yields
$\mathrm{d}=0.282 * 10^{\wedge}((\mathrm{P}+\mathrm{G}) / 20) / \sqrt{ } \mathrm{S}$
where
$\mathrm{d}=$ MPE distance in cm
$\mathrm{P}=$ Power in dBm
$\mathrm{G}=$ Antenna Gain in dBi
$\mathrm{S}=$ Power Density Limit in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$
Rearranging terms to calculate the power density at a specific distance yields

$$
\mathrm{S}=0.0795 * 10^{\wedge}((\mathrm{P}+\mathrm{G}) / 10) /\left(\mathrm{d}^{\wedge} 2\right)
$$

LIMITS

From $\S 1.1310$ Table $1(B)$, the maximum value of $S=1.0 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$

RESULTS

No non-compliance noted:

Mode	MPE Distance $(\mathbf{c m})$	Output Power $(\mathbf{d B m})$	Duty Cycle $(\%)$	Antenna Gain $(\mathbf{d B i})$	Power Density $\left(\mathbf{m W} / \mathbf{c m}^{\wedge} \mathbf{2}\right)$
800 MHz Celllar	20.0	32.00	0.25	8.00	0.50

Mode	MPE Distance $(\mathbf{c m})$	Output Power $(\mathbf{d B m})$	Antenna Gain $(\mathbf{d B i})$	Power Density $(\mathbf{m W} / \mathbf{c m}$ ^2)
1900 MHz PCS	20.0	29.00	4.00	0.24

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm , even if calculations indicate that the MPE distance would be less.

