# CERTIFICATE OF COMPLIANCE FCC PART 24 CERTIFICATION

Test Lab:

## **CELLTECH RESEARCH INC.**

Testing and Engineering Services 1955 Moss Court Kelowna, B.C. Canada V1Y 9L3 Phone: 250 - 860-3130 Fax: 250 - 860-3110 Toll Free: 1-877-545-6287 e-mail: info@celltechlabs.com web site: www.celltechlabs.com

#### **Applicant Information:**

SIERRA WIRELESS INC. 13811 Wireless Way Richmond, BC V6V 3A4

| FCC Classification:     | Licensed Base Station for Part 24 (PCB)     |
|-------------------------|---------------------------------------------|
| FCC Rule Part(s):       | §24(E), §2                                  |
| FCC ID:                 | N7NAC710                                    |
| Model:                  | AirCard 710                                 |
| Equipment Type:         | PCS GSM Wireless Network Card for Laptop PC |
| <br>Tx Frequency Range: | 1850.25 - 1909.875 MHz                      |
| Max. RF Output Power:   | 0.817 Watts (EIRP)                          |
| Frequency Tolerance:    | 0.1 ppm                                     |
| Emission Designator:    | 271KGXW                                     |
| Antenna Type:           | Omni-Directional Dipole                     |
| • •                     | *                                           |

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Celltech Research Inc. certifies that no party to this application has been denied FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Shawn McMillen General Manager Celltech Research Inc.



# **TABLE OF CONTENTS**

| 1.1 | GENERAL INFORMATION                                        | 1   |
|-----|------------------------------------------------------------|-----|
| 2.1 | MEASUREMENT PROCEDURES                                     | 2   |
|     | Occupied Bandwidth (2.1049, 24.238)                        | 2   |
|     | Spurious Emissions at Antenna Terminal (2.1051)            | 2   |
|     | Radiated Spurious & Harmonic Emissions (2.1053)            | 2   |
|     | Frequency Stability/Temperature Variation (2.1055, 24.135) | 3   |
| 3.1 | TEST DATA                                                  | 4   |
|     | Effective Isotropic Radiated Power Output                  | 4   |
|     | Field Strength of Spurious Radiation                       | 5-7 |
|     | Frequency Stability                                        | 8   |
| 4.1 | LIST OF TEST EQUIPMENT                                     | 9   |
| 5.1 | CONCLUSION                                                 | 10  |

| ATTACHMENT A:        | COVER LETTER(S)                 |
|----------------------|---------------------------------|
| <b>ATTACHMENT B:</b> | <b>ATTESTATION STATEMENT(S)</b> |
| <b>ATTACHMENT C:</b> | TEST REPORT                     |
| ATTACHMENT D:        | TEST PLOTS                      |
| <b>ATTACHMENT E:</b> | FCC ID LABEL & LOCATION         |
| ATTACHMENT F:        | <b>TEST SETUP PHOTOGRAPHS</b>   |
| ATTACHMENT G:        | EXTERNAL EUT PHOTOGRAPHS        |
| ATTACHMENT H:        | INTERNAL EUT PHOTOGRAPHS        |
| ATTACHMENT I:        | BLOCK DIAGRAM(S)                |
| ATTACHMENT J:        | CIRCUIT DIAGRAMS                |
| ATTACHMENT K:        | CIRCUIT DESCRIPTION             |
| ATTACHMENT L:        | PARTS LIST                      |
| ATTACHMENT M:        | TUNE UP PROCEDURE               |
| ATTACHMENT N:        | ANTENNA SPECIFICATIONS          |
| <b>ATTACHMENT O:</b> | <b>OPERATIONAL DESCRIPTION</b>  |
| <b>ATTACHMENT P:</b> | USER'S MANUAL                   |
| ATTACHMENT Q:        | SAR MEASUREMENT REPORT          |
|                      |                                 |

# **MEASUREMENT REPORT - FCC PART 24**

### <u>1.1 SCOPE</u>

Measurement and determination of electromagnetic emissions (EME) from radio frequency devices for compliance with the technical rules and regulations of the Federal Communications Commission.

#### §2.1033(a) General Information

**APPLICANT:** 

SIERRA WIRELESS INC. 13811 Wireless Way Richmond, BC V6V 3A4

| FCC ID               | N7NAC710                                |
|----------------------|-----------------------------------------|
| Model No.            | AirCard 710                             |
| ЕИТ Туре             | PCS GSM Wireless Network Card           |
| FCC Classification   | Licensed Base Station for Part 24 (PCB) |
| FCC Rule Part(s)     | §24(E), §2                              |
| Max. RF Output Power | 0.817 Watts (EIRP)                      |
| Tx Freq. Range       | 1850.25 - 1909.875 MHz                  |
| Emission Designator  | 271KGXW                                 |
| Modulation           | PCS GSM                                 |
| Antenna Type         | Omni-Directional Dipole                 |
| Power Supply         | From host PC                            |

## 2.1 MEASUREMENT PROCEDURES

### 2.2 OCCUPIED BANDWIDTH - §2.1049

The antenna output terminal of the EUT was connected to the input of a  $50\Omega$  spectrum analyzer through a matched 30dB attenuator. The radio transmitter was operating at maximum output power with and without internal data modulation. 100% of the in-band modulation was below the specified mask per §24.238.

#### 2.3 OCCUPIED BANDWIDTH EMISSION LIMITS - §24.238

- 1. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least  $43 + 10 \log(P) dB$ .
- 2. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 3. When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- 4. The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

## 2.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051

The level of the carrier and the various conducted spurious and harmonic frequencies was measured by means of a calibrated spectrum analyzer. The spectrum was scanned from 10MHz to 20GHz. The antenna output terminal of the EUT was connected to the input of a 50 $\Omega$  spectrum analyzer through a matched 30dB attenuator and coaxial cable. The transmitter was operating at maximum power with internal data modulation.

## 2.5 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

Radiated and harmonic emissions above 1 GHz were measured at our 3-meter outdoor site. The EUT was placed on the turntable with the transmitter transmitting into a non-radiating load. A receiving antenna located 3 meters from the turntable received any signal radiated from the transmitter and its operating accessories. The receiving antenna was varied from 1 to 4 meters and the polarization was varied to determine the worst-case emission level.

## 2.6 FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055, §24.135

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the DUT in "call mode". This is accomplished with the use of an R&S CMU 200 Universal Radio Communication Tester.

1. Measure the carrier frequency at room temperature.

2. Subject the DUT to a 1.5 hour soak at -30 C.

3. With the DUT, powered via 5.0 Volts, connected to the R&S CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the DUT, to prevent significant self-warming.

4. Repeat the above measurements at 10 C increments from -30 C to +50 C. Allow at least 45 minutes at each temperature, un-powered, before making measurements. At all temperature levels hold the temperature to  $\pm 0.5$  C during the measurement procedure.

5. Re-measure carrier frequency at room temperature with nominal 5.0 Volts. Vary supply voltage from minimum 3.1 Volts to 3.5 Volts, in 0.2 Volt increments re-measuring the carrier frequency at each voltage. Then vary the supply voltage from 4.5V to the maximum 5.5V, in 0.2V increments re-measuring the carrier frequency at each voltage

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment...," Section 2.1055(d)(2) applies. This requires that the manufacturer specify the voltage limits for frequency stability testing. This transceiver is specified to operate with an input voltage of between 3.15 VDC and 3.45 VDC, with a nominal voltage of 3.3 VDC and between 4.5 VDC and 5.5 VDC, with a nominal voltage of 5.0 VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of + 5 % and -5 % for the nominal voltage of 3.3 VDC and a tolerance of +10% and -10% for 5 VDC. For the purposes of measuring frequency stability these voltage limits are to be used.

## <u>3.1 TEST DATA</u>

### 3.2 EFFECTIVE ISOTROPIC RADIATED POWER OUTPUT - §24.232(B)

#### 1900MHz PCS GSM MODE

| Frequency<br>Tuned | EUT<br>Conducted<br>Power | Max. Field<br>Strength<br>of EUT<br>(Horiz. Pol.) | Horn Gain | Horn<br>Forward<br>Conducted<br>Power | EIRP of EUT<br>Horn Gain<br>+<br>Horn Forward<br>Conducted Power |       |
|--------------------|---------------------------|---------------------------------------------------|-----------|---------------------------------------|------------------------------------------------------------------|-------|
| (MHz)              | (dBm)                     | (dBm)                                             | (dBi)     | (dBm)                                 | (dBm)                                                            | Watts |
| 1850.25            | 27.82                     | - 11.16                                           | 6.67      | 21.39                                 | 28.06                                                            | 0.640 |
| 1880.00            | 27.95                     | - 11.56                                           | 6.68      | 22.40                                 | 29.12                                                            | 0.817 |
| 1909.875           | 28.06                     | - 13.76                                           | 6.69      | 20.02                                 | 26.71                                                            | 0.469 |

Notes:

EIRP Measurements by Substitution Method:

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested, and for both EUT antenna polarizations and modes. A standard gain horn antenna was substituted in place of the EUT. The antenna was fed through a directional coupler and the power at the coupler port was monitored. A signal generator and power amplifier controlled the antenna, and the input level of the antenna was adjusted to the same field strength level as the EUT. The feed point for the antenna was then connected to a calibrated power meter and the power adjusted to read the same as the coupler port previously recorded, this is to account for any mismatch in impedance, which may occur at the horn antenna. The conducted power at the antenna feed point was recorded. The forward power for the antenna was then determined and the EIRP level was determined by adding the forward power and the antenna gain in dB.

#### 3.3 Field Strength of Spurious Radiation – §2.1053

#### PCS GSM Mode

| Low Channel:               | 512                                    |
|----------------------------|----------------------------------------|
| Operating Frequency (MHz): | 1850.25                                |
| Measured EIRP:             | 28.06 dBm                              |
| Measured Conducted Power:  | 27.8 dBm                               |
| Mode:                      | GSM                                    |
| Distance:                  | 3 Meters                               |
| Limit:                     | $43 + 10 \log (W) = 38.13 \text{ dBc}$ |
|                            |                                        |

| Frequency<br>(MHz) | Field<br>Strength<br>of<br>Spurious<br>Radiation<br>(dBm) | Horn Forward<br>Cond. Pwr.<br>(dBm) | <b>Standard</b><br>Gain Horn<br>Antenna Gain<br>(dBi) | POL<br>(H/V) | EIRP<br>(dBm) | dBc   |
|--------------------|-----------------------------------------------------------|-------------------------------------|-------------------------------------------------------|--------------|---------------|-------|
| 3700.50            | -106.9                                                    | -73.01                              | 9.4                                                   | Н            | -63.61        | 88.41 |
| 5550.75            | -113.9                                                    | -80.80                              | 10.4                                                  | Н            | -70.40        | 95.20 |
| 7401.00            | -115.4                                                    | -74.55                              | 10.6                                                  | Н            | -63.95        | 88.75 |
| 9251.25            | -112.3                                                    | -75.94                              | 11.4                                                  | Н            | -64.54        | 89.34 |
| 11101.50           | -110.4                                                    | -71.58                              | 12.4                                                  | Н            | -59.18        | 83.98 |
| 12951.75           | -108.1                                                    | -70.60                              | 12.2                                                  | Н            | -58.40        | 83.20 |
| 14802.00           | -109.5                                                    | -71.61                              | 13.7                                                  | Н            | -57.91        | 82.71 |
| 16652.25           | -107.6                                                    | -69.14                              | 14.7                                                  | Н            | -54.44        | 79.24 |
| 18502.50           | -106.8                                                    | -79.48                              | 7.5                                                   | Н            | -71.98        | 96.78 |

Radiated Measurements by Substitution Method:

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A standard gain horn antenna was substituted in place of the EUT. The antenna was fed through a directional coupler and the power at the coupler port was monitored. A signal generator and power amplifier controlled the antenna, and the input level of the antenna was adjusted to the same field strength level as the EUT. The feed point for the antenna was then connected to a calibrated power meter and the power adjusted to read the same as the coupler port previously recorded, this is to account for any mismatch in impedance, which may occur at the horn antenna. The conducted power at the antenna feed point was recorded. The forward power for the antenna was then determined and the EIRP level was determined by adding the forward power and the antenna gain in dB.

#### Field Strength of Spurious Radiation – §2.1053

PCS GSM Mode

| 661                       |
|---------------------------|
| 1880.00                   |
| 29.12 dBm                 |
| 28.0 dBm                  |
| GSM                       |
| 3 Meters                  |
| $43 + 10 \log(W) = 38.13$ |
|                           |

| Frequency<br>(MHz) | Field<br>Strength<br>of<br>Spurious<br>Radiation<br>(dBm) | Horn Forward<br>Cond. Pwr.<br>(dBm) | <b>Standard</b><br>Gain Horn<br>Antenna Gain<br>(dBi) | POL<br>(H/V) | EIRP<br>(dBm) | dBc   |
|--------------------|-----------------------------------------------------------|-------------------------------------|-------------------------------------------------------|--------------|---------------|-------|
| 3760.00            | -95.37                                                    | -61.48                              | 9.4                                                   | Н            | -52.08        | 76.88 |
| 5640.00            | -107.1                                                    | -74.00                              | 10.4                                                  | Н            | -63.60        | 88.40 |
| 7520.00            | -110.4                                                    | -69.55                              | 10.6                                                  | Н            | -58.95        | 83.75 |
| 9400.00            | -113.2                                                    | -76.84                              | 11.4                                                  | Н            | -65.44        | 90.24 |
| 11280.00           | -112.6                                                    | -73.78                              | 12.4                                                  | Н            | -61.38        | 86.18 |
| 13160.00           | -109.5                                                    | -72.00                              | 12.2                                                  | Н            | -59.80        | 84.60 |
| 15040.00           | -108.9                                                    | -71.01                              | 13.7                                                  | Н            | -57.31        | 82.11 |
| 16920.00           | -107.8                                                    | -69.34                              | 14.7                                                  | Н            | -54.64        | 79.44 |
| 18800.00           | -108.3                                                    | -80.98                              | 7.5                                                   | Н            | -73.48        | 98.28 |

dBc

Radiated Measurements by Substitution Method:

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A standard gain horn antenna was substituted in place of the EUT. The antenna was fed through a directional coupler and the power at the coupler port was monitored. A signal generator and power amplifier controlled the antenna, and the input level of the antenna was adjusted to the same field strength level as the EUT. The feed point for the antenna was then connected to a calibrated power meter and the power adjusted to read the same as the coupler port previously recorded, this is to account for any mismatch in impedance, which may occur at the horn antenna. The conducted power at the antenna feed point was recorded. The forward power for the antenna was then determined and the EIRP level was determined by adding the forward power and the antenna gain in dB.

#### Field Strength of Spurious Radiation – §2.1053

| PCS | <b>GSM</b> | Mode |
|-----|------------|------|
|-----|------------|------|

| High Channel:              | 810                                    |
|----------------------------|----------------------------------------|
| Operating Frequency (MHz): | 1909.875                               |
| Measured EIRP:             | 26.71 dBm                              |
| Measured Conducted Power:  | 28.1 dBm                               |
| Mode:                      | GSM                                    |
| Distance:                  | 3 Meters                               |
| Limit:                     | $43 + 10 \log (W) = 38.13 \text{ dBc}$ |

| Frequency<br>(MHz) | Field<br>Strength<br>of<br>Spurious<br>Radiation<br>(dBm) | Horn Forward<br>Cond. Pwr.<br>(dBm) | <b>Standard</b><br>Gain Horn<br>Antenna Gain<br>(dBi) | POL<br>(H/V) | EIRP<br>(dBm) | dBc   |
|--------------------|-----------------------------------------------------------|-------------------------------------|-------------------------------------------------------|--------------|---------------|-------|
| 3819.75            | -86.8                                                     | -52.91                              | 9.4                                                   | Н            | -43.51        | 68.31 |
| 5729.63            | -100.6                                                    | -67.50                              | 10.4                                                  | Н            | -57.10        | 81.90 |
| 7639.50            | -101.4                                                    | -60.55                              | 10.6                                                  | Н            | -49.95        | 74.75 |
| 9549.38            | -102.1                                                    | -65.74                              | 11.4                                                  | Н            | -54.34        | 79.14 |
| 11459.25           | -104.6                                                    | -65.78                              | 12.4                                                  | Н            | -53.38        | 78.18 |
| 13369.13           | -103.2                                                    | -65.70                              | 12.2                                                  | н            | -53.50        | 78.30 |
| 15279.00           | -105.8                                                    | -67.91                              | 13.7                                                  | Н            | -54.21        | 79.01 |
| 17188.88           | -106.5                                                    | -68.04                              | 14.7                                                  | Н            | -53.34        | 78.14 |
| 19098.75           | -107                                                      | -79.68                              | 7.5                                                   | Н            | -72.18        | 96.98 |

Radiated Measurements by Substitution Method:

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A standard gain horn antenna was substituted in place of the EUT. The antenna was fed through a directional coupler and the power at the coupler port was monitored. A signal generator and power amplifier controlled the antenna, and the input level of the antenna was adjusted to the same field strength level as the EUT. The feed point for the antenna was then connected to a calibrated power meter and the power adjusted to read the same as the coupler port previously recorded, this is to account for any mismatch in impedance, which may occur at the horn antenna. The conducted power at the antenna feed point was recorded. The forward power for the antenna was then determined and the EIRP level was determined by adding the forward power and the antenna gain in dB.

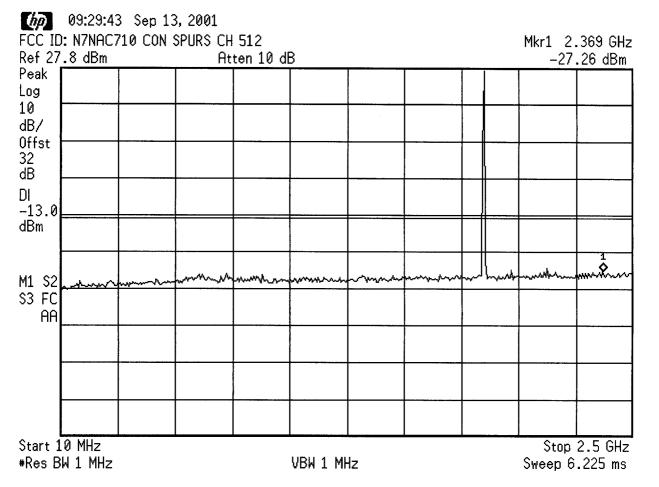
# 3.4 FREQUENCY STABILITY (PCS GSM) - §24.135

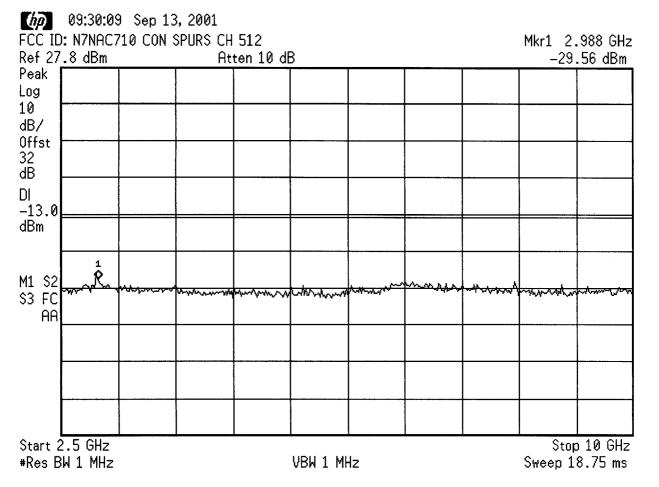
| <u>Temperature</u> | <u>Voltage</u> | <u>channel</u> | <b>Frequency Error</b> | <b>Frequency Error</b> |
|--------------------|----------------|----------------|------------------------|------------------------|
| (deg C)            | (volts)        |                | <u>(Hz)</u>            | (ppm)                  |
|                    |                |                |                        |                        |
| 50                 | 5              | 661            | -5.1                   | -0.0027                |
| 40                 | 5              | 661            | 6.84                   | 0.0036                 |
| 30                 | 5              | 661            | -4.26                  | -0.0023                |
| 20                 | 5              | 661            | 0.19                   | 0.0001                 |
| 10                 | 5              | 661            | -14.59                 | -0.0078                |
| 0                  | 5              | 661            | -17.05                 | -0.0091                |
| -10                | 5              | 661            | -11.3                  | -0.0060                |
| -20                | 5              | 661            | -37.77                 | -0.0201                |
| -30                | 5              | 661            | -58.5                  | -0.0311                |
|                    |                |                |                        |                        |

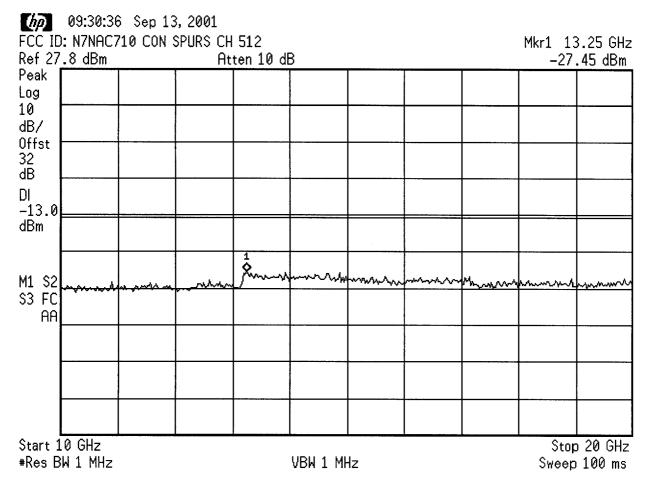
#### **AFC Frequency Error vs. Temperature**

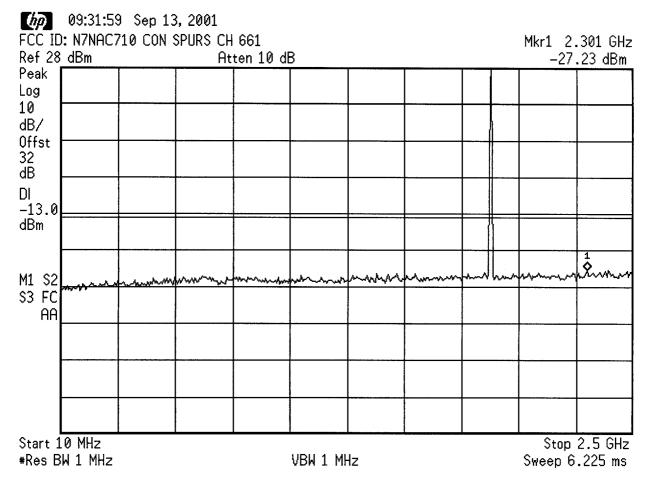
#### **AFC Frequency Error vs. Voltage**

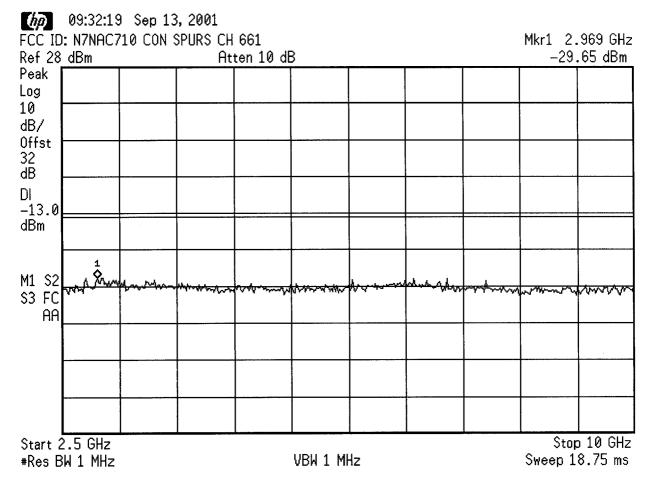
| <u>Temperature</u> | <u>Voltage</u> | <u>Channel</u> | Frequency Error | <b>Frequency Error</b> |
|--------------------|----------------|----------------|-----------------|------------------------|
| (deg C)            | (volts)        |                | <u>(Hz)</u>     | (ppm)                  |
|                    |                |                |                 |                        |
| 25                 | 5.5            | 661            | -3.62           | -0.0019                |
| 25                 | 5.3            | 661            | -2.91           | -0.0015                |
| 25                 | 5.1            | 661            | -4.33           | -0.0023                |
| 25                 | 5              | 661            | -0.9            | -0.0005                |
| 25                 | 4.9            | 661            | -15.56          | -0.0083                |
| 25                 | 4.7            | 661            | 3.62            | 0.0019                 |
| 25                 | 4.5            | 661            | 6.78            | 0.0036                 |
| 25                 | 3.5            | 661            | 7.94            | 0.0042                 |
| 25                 | 3.3            | 661            | 14.33           | 0.0076                 |
| 25                 | 3.1            | 661            | -7.43           | -0.0040                |
|                    |                |                |                 |                        |

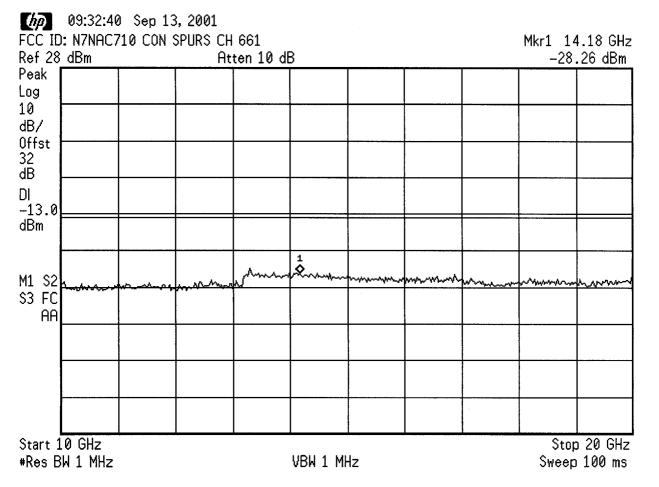

# 4.1 TEST EQUIPMENT

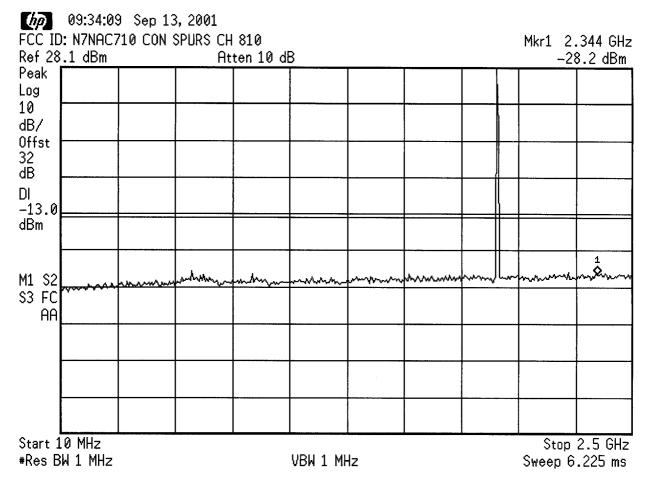

| Type                            | <u>Model</u>                     | Calibration Date | <u>Serial No.</u> |
|---------------------------------|----------------------------------|------------------|-------------------|
| HP Signal Generator             | 8648D (9kHz-4.0GHz)              | Nov 1999         | 3847A00611        |
| Rohde & Schwarz Signal Generato | r SMR40 (10MHz-40GHz)            | Nov 2000         | 835537/022        |
| Gigatronics Power Meter         | 8652A                            | Oct 1999         | 1835272           |
| Gigatronics Power Sensor (2)    | 80701A (0.05-18GHz)              | Oct 1999         | 1833535, 1833542  |
| Amplifier Research Power Amp.   | 5S1G4 (5W, 800MHz-4.2GHz)        | N/A              | 26235             |
| Microwave System Amplifier      | HP 83017A (0.5-26.5GHz)          | N/A              | 3123A00587        |
| Network Analyzer                | HP 8753E (30kHz-3GHz)            | Nov 1999         | US38433013        |
| Audio Analyzer                  | HP 8903B                         | March 1999       | 3729A18691        |
| Modulation Analyzer             | HP 8901A                         | March 1999       | 3749A07154        |
| Frequency Counter               | HP 53181A (3GHz)                 | May 1999         | 3736A05175        |
| DC Power Supply                 | HP E3611A                        | N/A              | KR83015294        |
| CDMA Base Station Test Set      | Agilent E8285A                   | N/A              | US40332926        |
| Multi-Device Controller         | EMCO 2090                        | N/A              | 9912-1484         |
| Mini Mast                       | EMCO 2075                        | N/A              | 0001-2277         |
| Turntable                       | EMCO 2080-1.2/1.5                | N/A              | 0002-1002         |
| Double Ridged Horn Antenna      | ETS 3115 (1-18GHz)               | Oct. 2000        | 6267              |
| Double Ridged Horn Antenna      | ETS 3115 (1-18GHz)               | Oct. 2000        | 6276              |
| Horn Antenna                    | Chase BBHA 9120-A (0.7-4.8GHz    | z) Sept 1998     | 9120A-239         |
| Horn Antenna                    | Chase BBHA 9120-A (0.7-4.8GHz    | z) Sept 1998     | 9120A-240         |
| Roberts Dipoles                 | Compliance Design (2 sets) 3121C | June 2000        |                   |
| Spectrum Analyzer               | HP 8594E                         | March 2000       | 3543A02721        |
| Spectrum Analyzer               | HP E4408B                        | Nov 1999         | US39240170        |
| Shielded Screen Room            | Lindgren R.F. 18W-2/2-0          | N/A              | 16297             |
| Environmental Chamber           | ESPEC ECT-2 (Temperature/Humic   | lity) Feb 2000   | 0510154-B         |

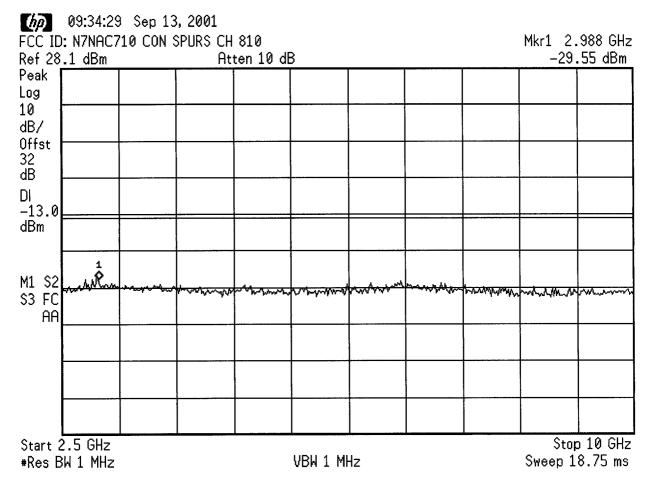

## 5.1 CONCLUSION

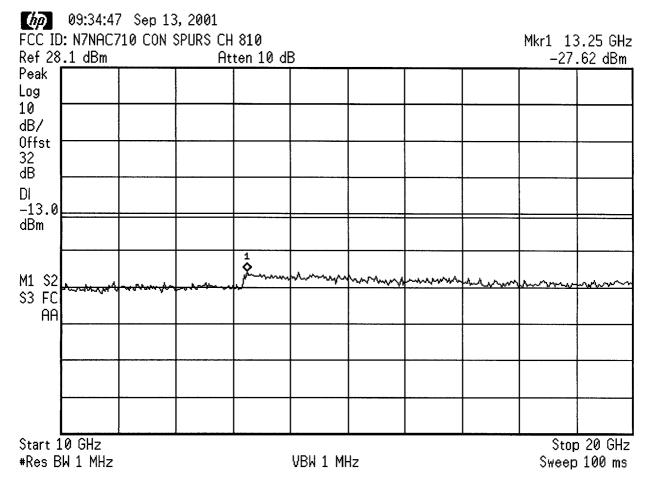

The data in this measurement report shows that the SIERRA WIRELESS INC. Model: AirCard 710 PCS GSM Wireless Network Card (for laptop PC) FCC ID: N7NAC710 complies with all the requirements of Parts 2 and 24 of the FCC rules.

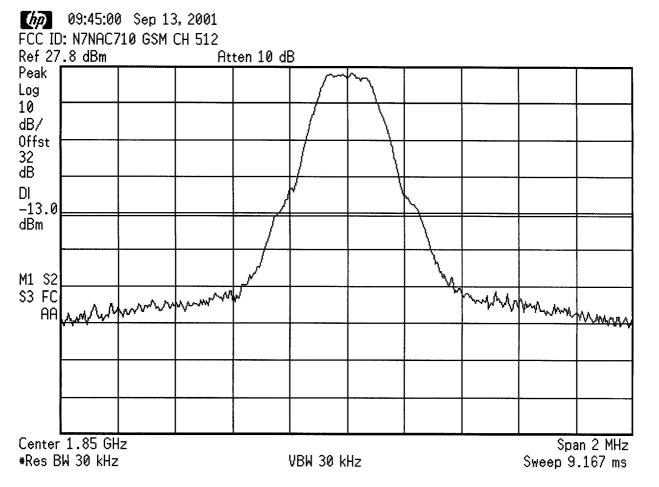

# **TEST PLOTS**

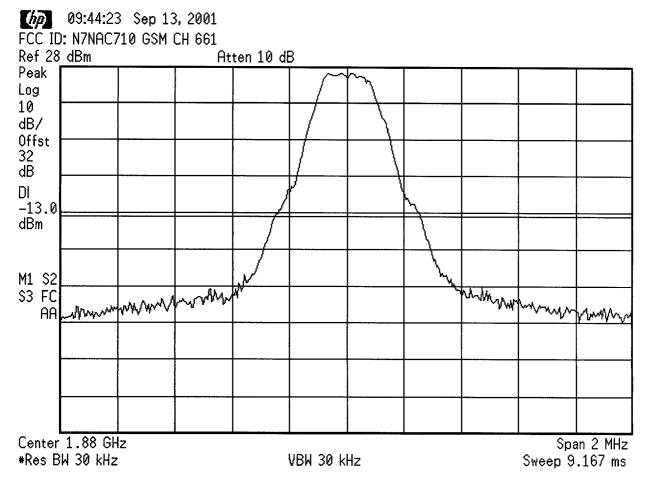


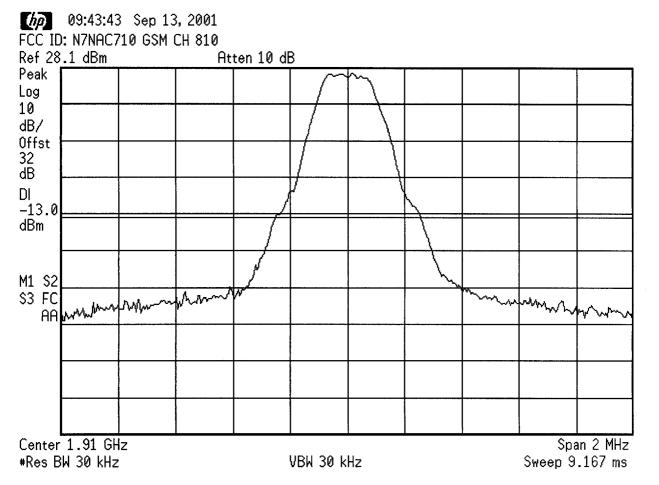



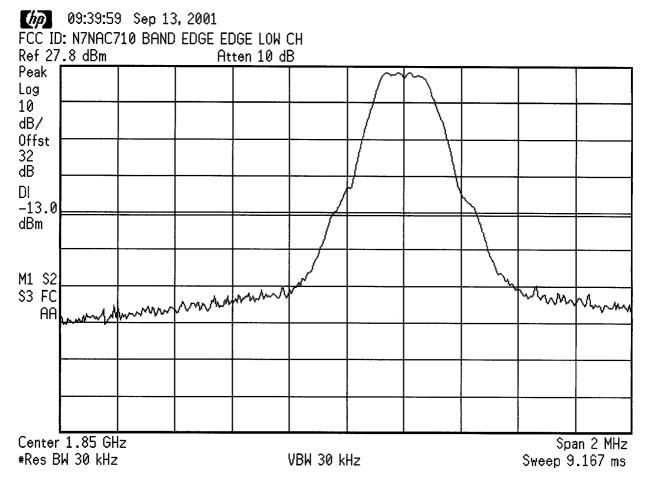



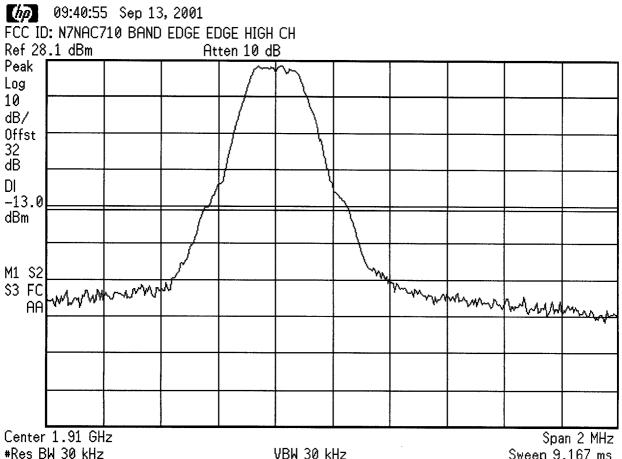



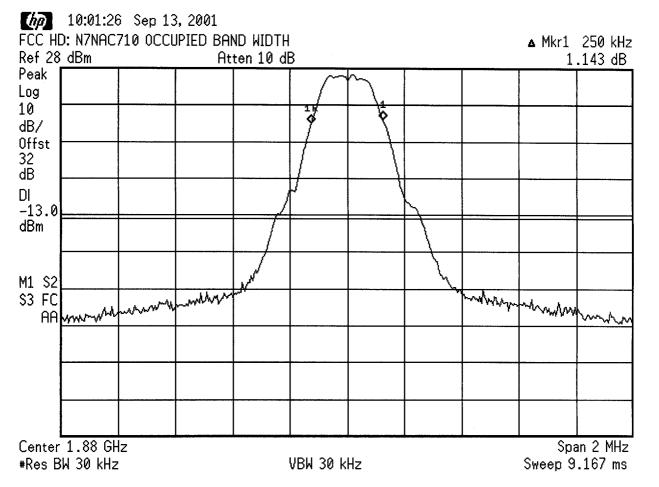












VBW 30 kHz

Sweep 9.167 ms

