

AirCard 504

Test Report

FOR

FCC and IC Certifications

IC: 2417C-AC500 FCC ID: N7NAC500

© 2009 Sierra Wireless, Inc.

This document contains information which is proprietary and confidential to Sierra Wireless, Inc. Disclosure to persons other than the officers, employees, agents, or subcontractors of the Company or licensee of this document without the prior written permission of Sierra Wireless, Inc. is strictly prohibited.

FCC Part 22, 24 / RSS 132, 133 AirCard 504 November 3, 2009 Page 2 of 74	FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 2 of 74
--	--------------------------------	-------------	------------------	--------------

able of Contents	
Introduction and Purpose	4
Test Summary	4
. The state of th	
<u> </u>	
•	
4.4.1 Test 1: RF Output Power Results for WCDMA R99	6
4.4.2 Test 2: RF Output Power Results for HSDPA Rel6	
4.4.3 Test 3: RF Output Power Results for HSPA (HSDPA & HSUPA) Rel6	9
4.5 Test Settings for UMTS Mode on CMU200	11
Occupied Bandwidth	15
5.1 Test Procedure	15
5.2 Test Equipment	15
5.3 Test Results	15
5.3.1 GSM Results	16
5.3.2 WCDMA Results	16
5.4 Test Plots	
6.1 Test Procedure	26
6.2 Test Equipment	26
6.3 Test Results	27
6.4 Test Plots	28
Block Edge Compliance	64
7.1 Test Procedure	64
7.2 Test Equipment	64
7.3 Test Results	64
7.4 Test Plots	65
Frequency Stability Versus Temperature	71
8.1 Summary of Results	71
8.2 Test Procedure	71
8.3 Test Equipment	
1 1	
Frequency Stability Versus Voltage	73
9.1 Summary of Results	
9.2 Test Procedure	
9.3 Test Equipment	
9.4 Test Results	74
	Test Summary Description of Equipment Under Test RF Power Output 4.1 Test Procedure 4.2 Test Equipment. 4.3 Test Results GSM/EDGE (GMSK: MCS4; 8-PSK: MCS9) 4.4 Test Results UMTS 4.4.1 Test 1: RF Output Power Results for WCDMA R99. 4.4.2 Test 2: RF Output Power Results for HSDPA Rel6. 4.4.3 Test 3: RF Output Power Results for HSDPA (HSDPA & HSUPA) Rel6. 4.5 Test Settings for UMTS Mode on CMU200 Occupied Bandwidth. 5.1 Test Procedure 5.2 Test Equipment. 5.3 Test Results 5.3.1 GSM Results 5.3.2 WCDMA Results 5.4 Test Plots. Out of Band Emissions at Antenna Terminals 6.1 Test Procedure 6.2 Test Equipment. 6.3 Test Results 6.4 Test Plots. Block Edge Compliance 7.1 Test Procedure 7.2 Test Equipment. 7.3 Test Results 7.4 Test Plots. Frequency Stability Versus Temperature 8.1 Summary of Results 8.2 Test Procedure 8.3 Test Results 8.4.1 GSM Frequency Error over Temperature 8.4.2 UMTS Frequency Error over Temperature Frequency Stability Versus Voltage 9.1 Summary of Results. 9.2 Test Procedure 9.3 Test Equipment.

FCC Part 2	2, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 3 of 74
9.4.1	GSM Frequency Erro	or over Voltage		74
9.4.2	UMTS Frequency Err	ror over Voltage		74

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 4 of 74
1 0 0 1 411 22, 2 1 7 1 1 2 2 1 2 2 , 1 2 2		1 10 10111001 0, 2005	1 0000

1 Introduction and Purpose

This document provides test data for the AC504 modem intended for FCC and Industry Canada certifications. The tests included in this report are limited to all conducted tests required. The radiated tests were performed at an external test facility.

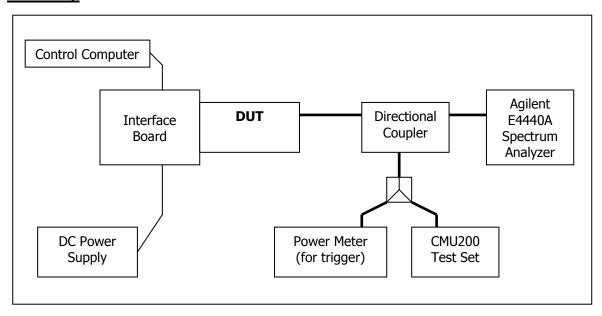
2 Test Summary

FCC Rule	IC Standards	DESCRIPTION OF TEST	RESULT	PAGE
2.1046	RSS-132, 4.4	RF Power Output	Complies	5
	RSS-133, 6.4			
2.1049	RSS-Gen, 4.6	Occupied Bandwidth	Complies	15
2.1051,	RSS-132, 4.5	Out of Band Emissions at	Complies	26
22.901(d)	RSS-133, 6.5	Antenna Terminals		
22.917,				
24.238(a)				
2.1053	RSS-132, 4.5	Field Strength of Spurious	Complies	See CCS
	RSS-133, 6.5	Radiation		Report
2.1055	RSS-132, 4.3	Frequency Stability versus	Complies	7171
	RSS-133, 6.3	Temperature		
2.1055	RSS-132, 4.3	Frequency Stability versus	Complies	73
	RSS-133, 6.3	Voltage		

3 Description of Equipment under Test

The AC504 modem, referred to as "EUT" hereafter, is a multi-band wireless modem operating on the GSM/GPRS/EDGE/UMTS networks. In the US and Canada, only cellular and PCS bands are used for GSM/GPRS/UMTS operation, so this test report only contains data for these two bands (850MHz and 1900MHz).

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 5 of 74
1 0 0 1 411 22, 2 1 7 1 1 2 2 1 2 2 , 1 2 2		1 10 10111001 0, 2007	1 0000 01 / .


4 RF Power Output

FCC 2.1046

4.1 Test Procedure

The transmitter output was connected to a Rohde & Schwarz CMU200 Test Set and configured to operate at maximum power in a call. The power was measured using the spectrum analyzer at three equally spaced operating frequencies for each band. The RBW was set to 300 KHz for the GSM and EDGE measurements and 5MHz for the WCDMA measurements. The spectrum analyzer was set to measure the RF output power with the cable and coupler losses accounted for.

Test Setup

4.2 Test Equipment

EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE
Control Computer	TC	Generic PC	100488	N/A
Wireless Test Set	Rohde & Schwarz	CMU200	110520	November 17, 2008
Spectrum Analyzer	Rohde & Schwarz	FSP	100714	November 15, 2008
DC Power Supply	HP	6632A	3530A	N/A
Interface Board	Shop built	ATEMux	N/A	N/A
Directional Coupler	Pasternack	PE2209-10	N/A	N/A

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 6 of 74
1 0 0 1 411 22, 2 1 7 1 1 2 2 1 2 2 , 1 2 2		1 10 10111001 0, 2005	1 000 0 01 / .

4.3 Test Results GSM/EDGE (GMSK: MCS4; 8-PSK: MCS9)

			GMSK Mode						
Frequency	<i>a</i>	1 Tim	ie Slot	2Tim	e Slots	3Time	e Slots	4Time	e Slots
(MHz)	Channel	RMS Power (dBm)	Peak Power (dBm)	RMS Power (dBm)	Peak Power (dBm)	RMS Power (dBm)	Peak Power (dBm)	RMS Power (dBm)	Peak Power (dBm)
824.2	128	31.90	32.00	31.81	31.95	29.86	29.99	27.86	28.00
836.6	190	32.10	32.18	31.98	32.13	30.02	30.15	28.02	28.16
848.8	251	32.00	32.18	31.97	32.11	29.99	30.13	27.99	28.12
1850.2	512	29.20	29.41	29.21	29.38	29.17	29.33	28.13	28.29
1880.0	661	29.40	29.53	29.33	29.49	29.27	29.43	28.24	28.39
1909.8	810	29.10	29.29	29.11	29.26	29.03	29.18	28.00	28.15

			8-PSK Mode						
Frequency	<i>a</i>	1 Tim	e Slot	2Time	e Slots	3Time	Slots	4Time	e Slots
(MHz)	Channel	RMS Power (dBm)	Peak Power (dBm)	RMS Power (dBm)	Peak Power (dBm)	RMS Power (dBm)	Peak Power (dBm)	RMS Power (dBm)	Peak Power (dBm)
824.2	128	27.20	30.30	27.01	30.18	26.99	30.17	26.94	30.13
836.6	190	27.30	30.50	27.20	30.39	27.17	30.41	27.11	30.30
848.8	251	27.30	30.50	27.18	30.41	27.14	30.35	27.09	30.29
1850.2	512	26.40	29.60	26.30	29.56	26.25	29.50	26.21	29.44
1880.0	661	26.60	29.70	26.42	29.70	26.36	29.56	26.31	29.56
1909.8	810	26.30	29.40	26.19	29.46	26.13	29.40	26.09	29.36

4.4 Test Results UMTS

4.4.1 Test 1: RF Output Power Results for WCDMA R99

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 V7.5.0 specification. The EUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7). RMC 12.2kps is used for this testing.

The test was performed according to section 5.2 of the 3GPP TS34.121-1 V7.5.

Frequency		WCDMA R99		
(MHz)	Channel	RMS Power	Peak Power	
		(dBm)	(dBm)	
826.4	4132	23.19	26.54	
836.4	4182	23.11	26.49	
846.6	4233	23.11	26.55	
1852.4	9262	22.96	26.35	
1880.0	9400	22.83	26.17	
1907.6	9538	22.92	26.19	

Note: The results above reflect max power with all up bits.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 7 of 74
1 0 0 1 411 22, 2 1 7 1 1 2 2 1 2 2 , 1 2 2		11010111001 0, 2007	1 4000

4.4.2 Test 2: RF Output Power Results for HSDPA Rel6

The EUT supports Category 8 FDD HS-DSCH physical layer. As stated in the 3GPP TS25.306 V7.3.0 Table 5.1a, the details of Category 8 are as follows:

- Maximum of 10 E-DSCH received codes
- Minimum 1 inter-TTI interval
- Maximum 14411bits in an E-DSCH transport block received within an E-DSCH TTI
- Total number of soft channel bits is 134400
- Support of QPSK and 16QAM

A detailed list of all settings used is included 4.5.

The following Sub-Tests were completed according to the test requirements outlined in section 5.2A of the 3GPP TS34.121-1 V7.5.0 specification. All TX RMS and Peak power requirements for Power Class 3 were met according to table 5.2AA.5 and achieved through the outlined test procedure in section 5.2AA.4.2. All UE channels and power ratio's are set according to table C10.1.4 in the 3GPP TS34.121-1 V7.5.0 specification. A summary of these settings is illustrated below:

Subtest	Mode	Call Type	RMC (kbps)	HSDPA FRC	Power Class 3 Max Limit dBm	β c/ βd	βhs	CM (db)	MPR (db)
1	HSDPA	PS	12.2	H-Set 1 QPSK	24 (+1.7/-3.7 db)	2 /15	4/15	0.0	0.0
2	HSDPA	PS	12.2	H-Set 1 QPSK	24 (+1.7/-3.7 db)	12 /15	24/15	1.0	0.0
3	HSDPA	PS	12.2	H-Set 1 QPSK	23.5 (+2.2/-3.7 db)	15 /8	30/15	1.5	0.5
4	HSDPA	PS	12.2	H-Set 1 QPSK	23.5 (+2.2/-3.7 db)	15 /4	30/15	1.5	0.5

Note: The recommended HSDPA MPRs are implemented as per following sub-tests.

4.4.2.1 Sub-Test 1

 β c=2/15, β d=15/15, β hs=4/15. MPR=0dB translates the min. and max. power limits to 20.3dBm and 25.7dBm respectively.

Frequency	GI I	Power (dBm)	
(MHz)	Channel	20.3dBm <measured (dbm)<25.7dbm<="" rms="" th=""><th>Comments</th></measured>	Comments
826.4	4132	23.10	Pass
836.4	4182	23.09	Pass
846.6	4233	23.07	Pass
1852.4	9262	22.87	Pass
1880.0	9400	22.80	Pass
1907.6	9538	22.93	Pass

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 8 of 74
1 0 0 1 411 22, 2 1 7 1 1 2 2 1 2 2 , 1 2 2		1 10 10111001 0, 2007	1 450 0 01 / .

4.4.2.2 Sub-Test 2

 βc =12/15, βd =15/15, βhs =24/15. MPR=0dB translates the min. and max. power limits to 20.3dBm and 25.7dBm respectively.

Frequency		Power (dBm)	
(MHz)	Channel	20.3dBm <measured (dbm)<25.7dbm<="" rms="" th=""><th>Comments</th></measured>	Comments
826.4	4132	22.90	Pass
836.4	4182	22.93	Pass
846.6	4233	22.88	Pass
1852.4	9262	22.31	Pass
1880.0	9400	22.38	Pass
1907.6	9538	22.53	Pass

4.4.2.3 Sub-Test 3

 $\beta c=15/15$, $\beta d=15/8$, $\beta hs=30/15$. MPR=0.5dB translates the min. and max. power limits to 19.8dBm and 25.7dBm respectively.

Frequency		Power (dBm)	
(MHz)	Channel	19.8dBm <measured (dbm)<25.7dbm<="" rms="" th=""><th>Comments</th></measured>	Comments
826.4	4132	22.22	Pass
836.4	4182	22.20	Pass
846.6	4233	22.33	Pass
1852.4	9262	21.88	Pass
1880.0	9400	21.75	Pass
1907.6	9538	21.97	Pass

4.4.2.4 Sub-Test 4

 βc =15/15, βd =4/15, βhs =30/15. MPR=0.5dB translates the min. and max. power limits to 19.8dBm and 25.7dBm respectively.

	Power (dBm)	
Channel	19.8dBm <measured (dbm)<25.7dbm<="" rms="" th=""><th>Comments</th></measured>	Comments
4132	22.14	Pass
	==	Pass
	· -	Pass
		Pass
	2.7	Pass
		Pass
	Channel 4132 4182 4233 9262 9400 9538	Channel 19.8dBm Measured RMS (dBm)<25.7dBm 4132 22.14 4182 22.15 4233 22.15 9262 21.74 9400 21.74

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 9 of 74
--------------------------------	-------------	------------------	--------------

4.4.3 Test 3: RF Output Power Results for HSPA (HSDPA & HSUPA) Rel6

The EUT supports Category 5 FDD E-DCH physical layer. As stated in the 3GPP TS25.306 V7.3.0 Table 5.1g, the details of Category 5 are as follows:

- Maximum of 2 E-DCH transmitted codes
- Minimum spreading factor of SF2
- Support for only 10 ms TTI E-DCH
- Maximum 20000 bits in an E-DCH transport block within a 10 ms E-DCH TTI
- Data rate of 2 Mbps
- Support of QPSK only

A detailed list of all settings used is included in section 4.5.

The following five Sub-Tests were completed according to the test requirements outlined in section 5.2B of the 3GPP TS34.121-1 V7.5.0 specification. All TX RMS and Peak power requirements were met according to table 5.2B.5 and achieved through the outlined test procedure in section 5.2B.4.2. All UE channels and power ratio's are set according to table C11.1.3 in the 3GPP TS34.121-1 V7.5.0 specification. A summary of these settings is illustrated below:

Subtest	Mode	Call Type	RMC (kbps)	HSDPA FRC	Power Class 3 Max Limit dBm	β c/ βd	βhs	βес	β ed	CM (db)	MPR (db)
1	HSPA	PS	12.2	H-Set 1 QPSK	24 (+1.7/-5.2 db)	11 /15	22/15	209/225	1309/225	1.0	0.0
2	HSPA	PS	12.2	H-Set 1 QPSK	22 (+3.7/-5.2 db)	6 /15	12/15	12/15	94/75	3.0	2.0
3	HSPA	PS	12.2	H-Set 1 QPSK	23 (+2.7/-5.2 db)	15 /9	30/15	30/15	47/15	2.0	1.0
4	HSPA	PS	12.2	H-Set 1 QPSK	22 (+1.7/-5.2 db)	2/15	4/15	2/15	56/75	3.0	2.0
5	HSPA	PS	12.2	H-Set 1 QPSK	24 (+1.7/-5.2 db)	15/15	30/15	24/15	134/15	1.0	0.0

Note: The recommended HSUPA MPRs are implemented as per following sub-tests.

4.4.3.1 Sub-Test 1:

 β c=11/15, β d=15/15, β hs=22/15, β ec=209/225, β ed=1039/225, AG=20, 1xSF4, E-TFCI=75. MPR=0dB translates the min. and max. power limits to 18.8dBm and 25.7dBm respectively.

Frequency		Power (dBm)	
(MHz)	Channel	18.8dBm <measured (dbm)<25.7dbm<="" rms="" th=""><th>Comments</th></measured>	Comments
926.4	4122	21.04	Daga
826.4	4132	21.84	Pass
836.4	4182	22.80	Pass
846.6	4233	22.54	Pass
1852.4	9262	22.12	Pass
1880.0	9400	22.10	Pass
1907.6	9538	22.29	Pass

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 10 of 74

4.4.3.2 Sub-Test 2:

 βc =6/15, βd =15/15, βhs =12/15, βec =12/15, βed =94/75, AG=12, 1xSF4, E-TFCI=67. MPR=2dB translates the min. and max. power limits to 16.8dBm and 25.7dBm respectively.

Frequency		Power (dBm)	
(MHz)	Channel	16.8dBm <measured (dbm)<25.7dbm<="" rms="" th=""><th>Comments</th></measured>	Comments
826.4	4132	21.38	Pass
836.4	4182	21.59	Pass
846.6	4233	21.56	Pass
1852.4	9262	21.37	Pass
1880.0	9400	21.10	Pass
1907.6	9538	21.25	Pass

4.4.3.3 Sub-Test 3:

 β c=15/15, β d=9/15, β hs=30/15, β ec=30/15, β ed=47/15, AG=15, 2xSF4. E-TFCI=92, Note: # of Reference E-TFCI=2. MPR=1dB translates the min. and max. power limits to 17.8dBm and 25.7dBm respectively.

Frequency		Power (dBm)	
(MHz)	Channel	17.8dBm <measured (dbm)<25.7dbm<="" rms="" th=""><th>Comments</th></measured>	Comments
826.4	4132	22.12	Pass
836.4	4182	22.15	Pass
846.6	4233	22.11	Pass
1852.4	9262	21.97	Pass
1880.0	9400	21.68	Pass
1907.6	9538	22.06	Pass

4.4.3.4 Sub-Test 4:

 βc =2/15, βd =15/15, βhs =4/15, βec =2/15, βed =56/75, AG=17, 1xSF4, E-TFCI=71. MPR=2dB translates the min. and max. power limits to 16.8dBm and 25.7dBm respectively.

Frequency	GI I	Power (dBm)	
(MHz)	Channel	16.8dBm <measured (dbm)<25.7dbm<="" rms="" th=""><th>Comments</th></measured>	Comments
826.4	4132	21.58	Pass
836.4	4132	22.06	Pass
846.6	4233	22.00	Pass
1852.4		21.92	
	9262	17	Pass
1880.0	9400	22.84	Pass
1907.6	9538	22.97	Pass

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 AirCard 504 November 3, 2009 Page 11 of 74

4.4.3.5 Sub-Test 5:

 β c=15/15, β d=15/15, β hs=30/15, β ec=24/15, β ed=134/15, AG=21, 1xSF4, E-TFCI=81. MPR=0dB translates the min & max power limits to 18.8dBm and 25.7dBm respectively.

Frequency		Power (dBm)	
(MHz)	Channel	18.8dBm <measured (dbm)<25.7dbm<="" rms="" th=""><th>Comments</th></measured>	Comments
826.4	4132	22.00	Pass
836.4	4182	22.98	Pass
846.6	4233	22.94	Pass
1852.4	9262	22.10	Pass
1880.0	9400	21.15	Pass
1907.6	9538	21.28	Pass

4.5 Test Settings for UMTS Mode on CMU200

WCDMA R99 Mode Settings:

UE Power Control Settings

Maximum allowable UE-Power = 24.0 dBm

UL Target Power = 24.0 dBm

Node B Settings

Primary Scrambling Code = 9

Output Channel Power = -51.7 dBm

OCNS = Off

Total Output Power (Ior+Ioc) = -51.7 dBm

RMC Settings

Reference Channel Type: 12.2 kbps Downlink/Uplink

DL DTCH Transport Format: 12.2 kbps

DL Resources in Use: 100 %

UL CRC (Sym. Loop Mode 2): Off

Test Mode: Loop Mode 1

Channel Data Source DTCH: PRBS9

Voice Settings

Voice Source: Echo Loopback Type: Off

Adaptive Multirate Settings

Active Code Set: Selection A

Codec Mode: 12.2 kbps

Signaling RAB Settings

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 12 of 74
FCC Fait 22, 24 / NSS 152, 155	AIICAIO 304	I NOVEHIDELD, ZUU9	Fage 12 OF 74

SRB Cell DCH: 3.4 kbps

BS Down Link Physical Channels Settings

Ior = -51.7 dBm

P-CPICH = -3.3 dB

P-SCH = -8.3 dB

S-SCH = -8.3 dB

P-CCPCH = -5.3 dB

S-CCPCH = -5.3 dB

S-CCPCH Channel Code = 2

PICH = -8.3 dB

PICH Channel Code = 3

AICH = -8.3 dB

AICH Channel Code = 6

DPDCH = -10.3 dB

DPDCH Channel Code = 96

Power Offset (DPCCH/DPDCH) = 0.0 dB

DL DPCH Timing Offset = 0

Secondary Scrambling Code = 0

Secondary Scrambling Code (HSDPA) = 0

HSDPA Channels = On

TPC Settings

Algorithm = 2

TPC Step Size = 1dB

TPC Pattern Setup = Set 1 (All 1, after linked to get maximum power)

HSDPA Mode Settings:

Node B Settings

Primary Scrambling Code = 9

Output Channel Power = -86 dBm

OCNS = Off

Total Output Power (Ior+Ioc) = -86 dBm

Network Settings

Packet Switched Domain = ON

HSDPA Test Mode Settings

Radiobearer Setup = RMC 12.2 kbps + HSPDA

RMC Test Loop = Loop Mode 1 RLC TM

HSDPA HS-DSCH

CQI Feedback Cycle = 4ms

CQI Repetition Factor = 2

ACK/NACK Repetition Factor = 3

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 13 of 74
--------------------------------	-------------	------------------	---------------

UE Category = 8

Channel Configuration Type = FRC

H-Set Selection = H-Set 1 QPSK

RV Coding Sequence {0,2,5,6}

<u>HSDPA Gain Factors</u> are set according to each specific sub-test in table C.10.1.4 of 3GPP TS 34.121.

HSPA Mode Settings:

UE Power Control Settings

Maximum allowable UE-Power = 24.0 dBm

UL Target Power: Set according to each specific sub-test in table 5.2B.5 of 3GPP TS 34.121 less 5db for starting point.

UE Packet Data Gain Factors

Bc and Bd: *

 Δ ACK, Δ NACK, Δ CQI=8

HSUPA

E-DCH Physical Layer Category = 5

E-TFCI Table Index = 1

Minimum Set E-TFCI = 1*

Maximum Channelisation Code: 1xSF4 or 2xSF4*

Initial Service Grant: *

UE Gain Factors

ΔE-DPCCH: *

Number of Reference E-TFCIs: **

Reference E-TFCI's: **
E-TFCI Power offsets: **

Node B Settings

Primary Scrambling Code = 9

Output Channel Power = -86 dBm

OCNS = Off

Total Output Power (Ior+Ioc) = -86 dBm

Paket Switched

DCH Type: HSUPA Test Mode Data Rate: HSDPA/HSUPA

HSDPA Test Mode Settings

Radiobearer Setup = RMC 12.2kbps + HSDPA RMC Test Loop = Loop Mode 1 RLC TM

HSDPA HS-DSCH

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 14 of 74
FCC Part 22, 2 4 / RSS 132, 133	i AirCaru 304	i November 5, Zoo9	Page 14 of 74

CQI Feedback Cycle = 4ms

CQI Repetition Factor = 2

ACK/NACK Repetition Factor = 3

UE Category = 8

Channel Configuration Type = FRC

H-Set Selection = H-Set 1 QPSK

RV Coding Sequence {0,2,5,6}

HSUPA Test Mode Settings

Radiobearer Setup = SRB 3.4 + HSPA

HSUPA Settings

TTI mode: 10ms

E-AGCH

Pattern Length: 1 AG Value: *

Downlink Physical Channels

HSUPA Channels: On

E-AGCH: -6.0db

E-AGCH Chan. Code: 6

E-RGCH/E-HICH: -5.0db

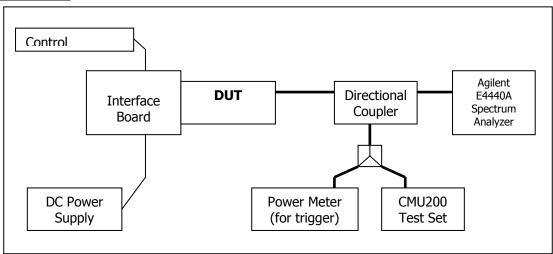
E-RGCH Active: Off

E-RGCH/E-HICH Chan. Code: 6

^{*}Set according to each specific sub-test in table C.11.1.3 of 3GPP TS 34.121.

^{**} Set according to each specific sub-test in table <u>5.2B.2/3</u> of 3GPP TS 34.121.

	FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 15 of 74
--	--------------------------------	-------------	------------------	---------------


5 Occupied Bandwidth

FCC 2.1049

5.1 Test Procedure

The transmitter output was connected to a spectrum analyzer through a calibrated coaxial cable and a coupler. The occupied bandwidth (defined as the 99% Power Bandwidth) was measured with the spectrum analyzer at low, middle, and high frequencies in each band. The –26dB bandwidth was also measured and recorded.

Test Setup

5.2 Test Equipment

-	•			
EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE
Control Computer	TC	Generic PC	100488	N/A
Wireless Test Set	Rohde & Schwarz	CMU200	110520	November 17, 2008
Spectrum Analyzer	Rohde & Schwarz	FSP	100714	November 15, 2008
DC Power Supply	HP	6632A	3530A	N/A
Interface Board	Shop built	ATEMux	N/A	N/A
Directional Coupler	Pasternack	PE2209-10	N/A	N/A

5.3 Test Results

The performance of the GSM 850 MHz Cellular band is shown in plots 5.3.1 to 5.3.6. Performance of the GSM 1900 MHz PCS band is shown in plots 5.3.7 to 5.3.12. Performance of the UMTS 850 Cellular band is shown in plots 5.3.13 to 5.3.15. Performance of the UMTS 1900 PCS band is shown in plots 5.3.16 to 5.3.18.

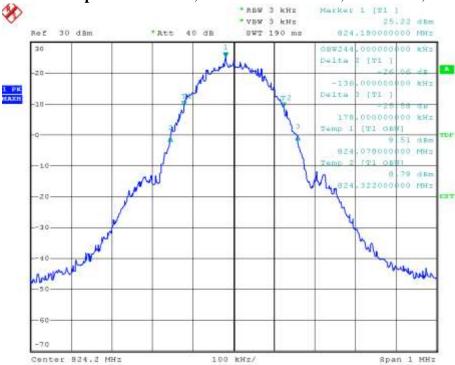
The following GSM test results are based on single slot, and use CS1 for GMSK and MCS9 for 8PSK mode. For WCDMA testing, RMC 12.2kps has been used.

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 16 of 74
1 0 0 1 411 22, 2 1 7 1 1 2 2 1 2 2 , 1 2 2		1 10 10111001 0, 2005	1 000 10 01 / .

5.3.1 GSM Results

Frequency (MHz)		99% Occupied Bandwidth (kHz)		-26dBc Occupied	Bandwidth (kHz)
	Channel	GMSK Mode	8-PSK Mode	GMSK Mode	8-PSK Mode
824.2	128	244	244	314	298
836.6	190	244	240	312	300
848.8	251	246	242	316	304
1850.2	512	243	242	302	308
1880.0	661	246	244	298	300
1909.8	810	245	243	314	290

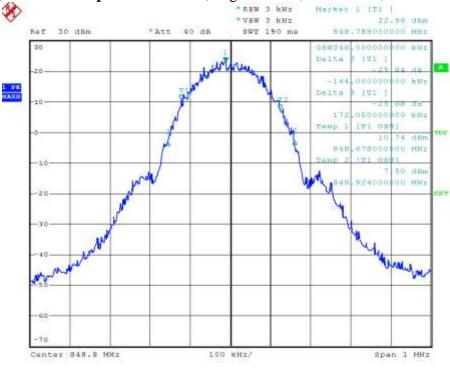

5.3.2 WCDMA Results

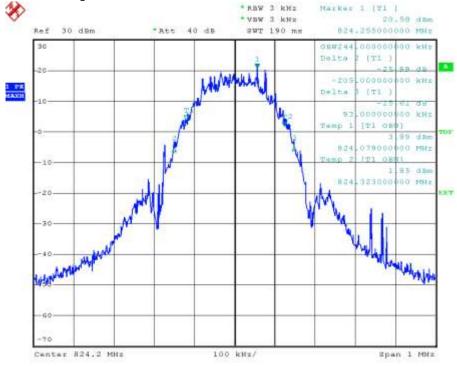
Frequency (MHz)	Channel	99% Occupied Bandwidth (MHz)	-26dBc Occupied Bandwidth (MHz)
826.4	4132	4.1775	4.6225
836.4	4182	4.1625	4.6350
846.6	4233	4.1700	4.6200
1852.4	9262	4.1850	4.6050
1880.0	9400	4.1700	4.6500
1907.6	9538	4.1850	4.6200

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 17 of 74 |

5.4 Test Plots

5.3.1) GMSK Occupied Bandwidth, Cellular Low channel, 824.2 MHz, 99% BW


5.3.2) GMSK Occupied Bandwidth, Middle channel, 836.6 MHz, 99% bandwidth


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 18 of 74 |

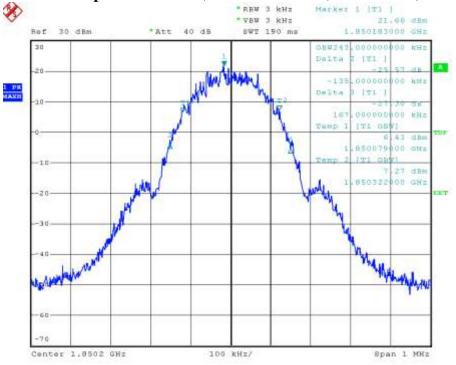
5.3.3) GMSK Occupied Bandwidth, High channel, 848.8 MHz, 99% bandwidth

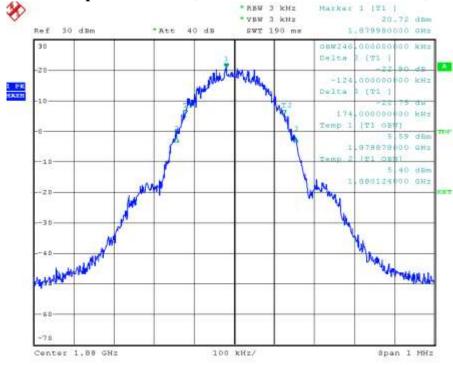
5.3.4) **8-PSK Occupied Bandwidth**, Cellular Low channel, 824.2 MHz, 99% BW


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 19 of 74 |

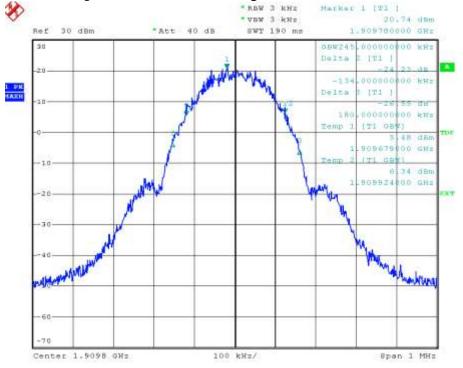
5.3.5) 8-PSK Occupied Bandwidth, Middle channel, 836.6 MHz, 99% bandwidth

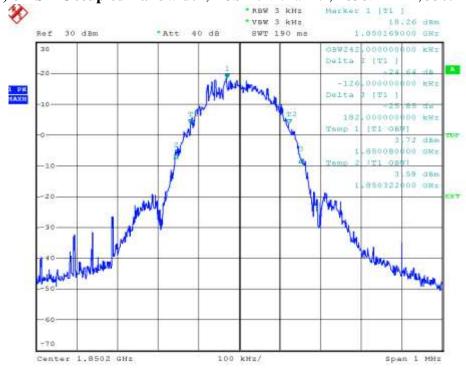

5.3.6) 8-PSK Occupied Bandwidth, High channel, 848.8 MHz, 99% bandwidth


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 20 of 74 |

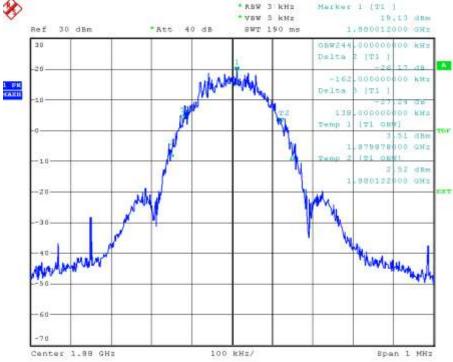
5.3.7) GMSK Occupied Bandwidth, PCS Low channel, 1850.2 MHz, 99% BW

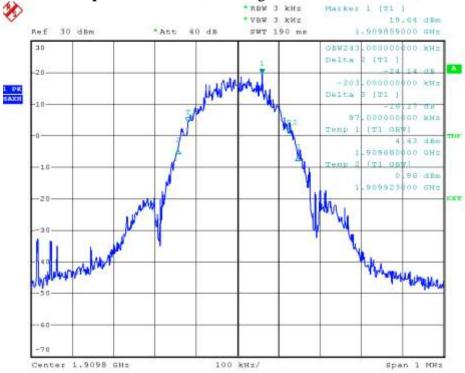

5.3.8) GMSK Occupied Bandwidth, PCS Middle channel, 1880.0 MHz, 99% BW


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 21 of 74

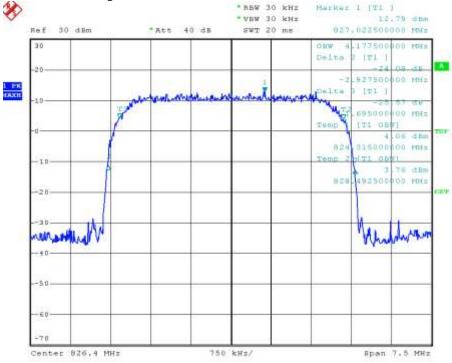
$\textbf{5.3.9) GMSK Occupied Bandwidth}, PCS \ High \ channel, 1909.8 \ MHz, 99\% \ BW$

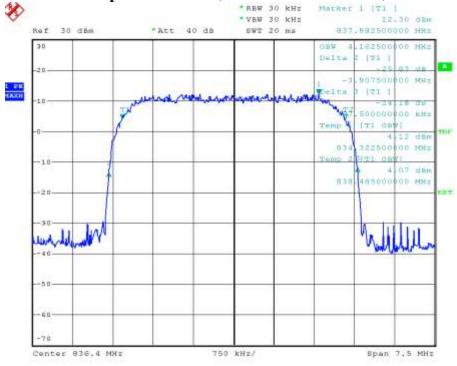

5.3.10) 8-PSK Occupied Bandwidth, PCS Low channel, 1850.2 MHz, 99% BW


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 22 of 74

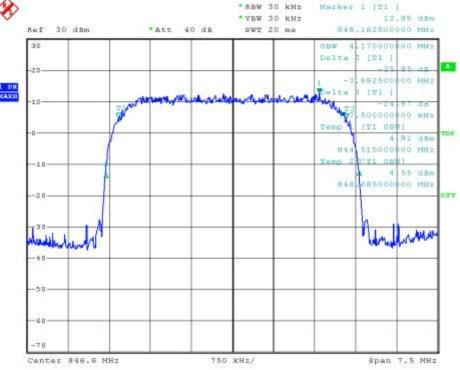
5.3.11) 8-PSK Occupied Bandwidth, PCS Middle channel, 1880.0 MHz, 99% BW

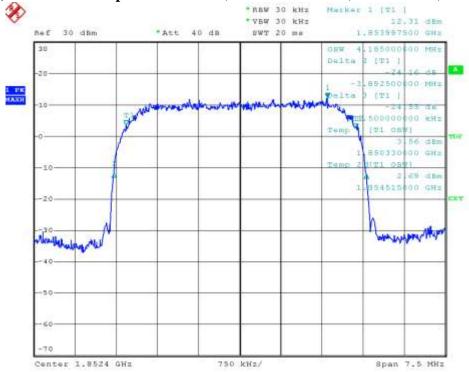

5.3.12) 8-PSK Occupied Bandwidth, PCS High channel, 1909.8 MHz, 99% BW


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 23 of 74 |

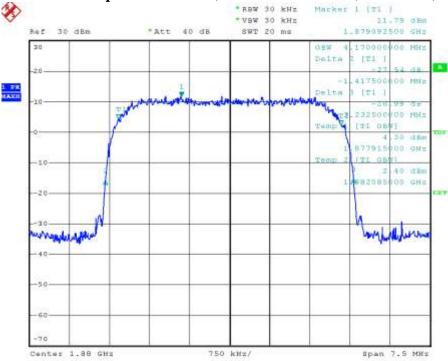
5.3.13) WCDMA Occupied Bandwidth, Cellular Low channel, 826.4 MHz, 99% BW

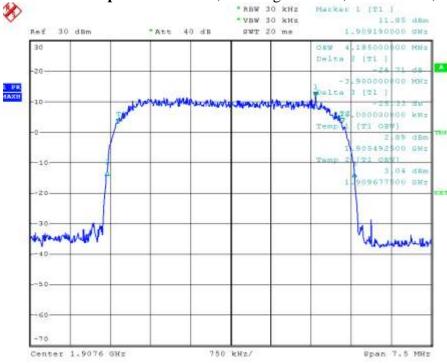

5.3.14) WCDMA Occupied Bandwidth, Cellular Middle channel, 836.4 MHz, 99% BW


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 24 of 74

5.3.15) WCDMA Occupied Bandwidth, Cellular High channel, 846.6 MHz, 99% BW


5.3.16) WCDMA Occupied Bandwidth, PCS Low channel, 1852.4 MHz, 99% BW


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 25 of 74 |

5.3.17) WCDMA Occupied Bandwidth, PCS Middle channel, 1880 MHz, 99% BW

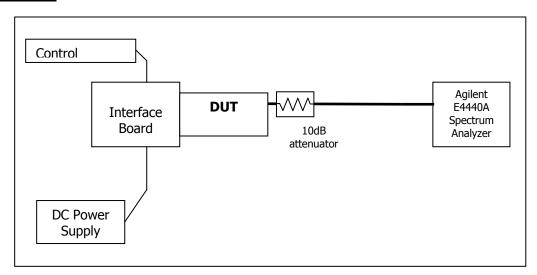
5.3.18) WCDMA Occupied Bandwidth, PCS High channel, 1907.6 MHz, 99% BW

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 AirC

6 Out of Band Emissions at Antenna Terminals

FCC 22.901(d), 22.917, 24.238(a)


Out of Band Emissions:

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least (43 + 10 log P) dB. The out of band emission limit translates to a worst case absolute limit of -13dBm in this case.

6.1 Test Procedure

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band emissions, if any, up to 10th harmonic. The EUT was scanned for spurious emissions from 1MHz to 20GHz with sufficient bandwidth and video resolution. Data plots are included. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were captured.

Test Setup

6.2 Test Equipment

EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE
Control Computer	TC	Generic PC	100488	N/A
Wireless Test Set	Rohde & Schwarz	CMU200	110520	November 17, 2008
Spectrum Analyzer	Rohde & Schwarz	FSP	100714	November 15, 2008
Spectrum Analyzer	Rohde & Schwarz	FSQ	200428	March 03, 2008
DC Power Supply	HP	6632A	3530A	N/A
Interface Board	Shop built	ATEMux	N/A	N/A
Directional Coupler	Pasternack	PE2209-10	N/A	N/A

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 27 of 74

6.3 Test Results

Refer to the following plots.

• Cellular Band

Plot Number	Description
6.4.1 - 6.4.3	GMSK Mode, Low channel, 824.20 MHz
6.4.4 - 6.4.6	GMSK Mode, Middle Channel, 836.6 MHz
6.4.7 - 6.4.9	GMSK Mode, High Channel, 848.8 MHz
6.4.10 - 6.4.12	8-PSK Mode, Low channel, 824.20 MHz
6.4.13 - 6.4.15	8-PSK Mode, Middle Channel, 836.6 MHz
6.4.16 - 6.4.18	8-PSK Mode, High Channel, 848.8 MHz

PCS Band

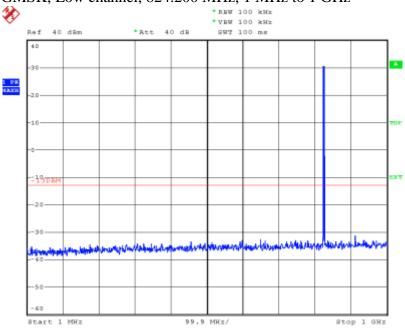
Plot Number	Description
6.4.19 - 6.4.21	GMSK Mode, Low Channel, 1850.2 MHz
6.4.22 - 6.4.24	GMSK Mode, Middle Channel, 1880.0 MHz
6.4.25 - 6.4.27	GMSK Mode, High Channel, 1909.8 MHz
6.4.28 - 6.4.30	8-PSK, Mode, Low Channel, 1850.2 MHz
6.4.31 - 6.4.33	8-PSK Mode, Middle Channel, 1880.0 MHz
6.4.34 - 6.4.36	8-PSK Mode, High Channel, 1909.8 MHz

• UMTS Cellular Band

CIVILO COMUNIO DUMO		
Plot Number	Description	
6.4.37 - 6.4.39	WCDMA Mode, Low Channel, 826.4 MHz	
6.4.40 - 6.4.42	WCDMA Mode, Middle Channel, 836.4 MHz	
6.4.43 - 6.4.45	WCDMA Mode, High Channel, 846.6 MHz	

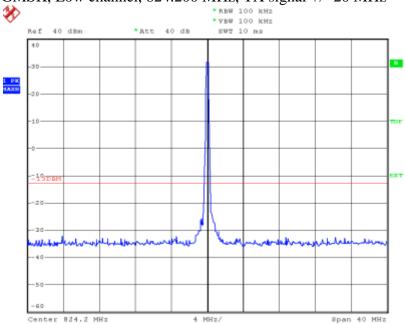
• UMTS PCS Band

Plot Number	Description
6.4.46 - 6.4.48	WCDMA Mode, Low Channel, 1852.4 MHz
6.4.49 - 6.4.51	WCDMA Mode, Middle Channel, 1880.0 MHz
6.4.52 - 6.4.54	WCDMA Mode, High Channel, 1907.6 MHz


The plots below show that the conducted emission limits requirements are met.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 28 of 74
--------------------------------	-------------	------------------	---------------

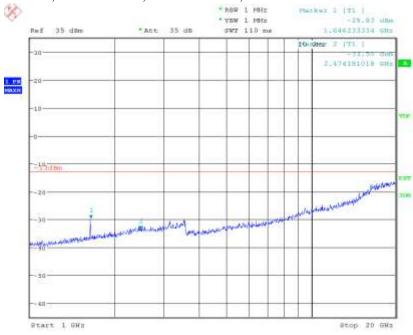
6.4 Test Plots


Plot 6.4.1) Out of Band Emissions at Antenna Terminals

GMSK, Low channel, 824.200 MHz, 1 MHz to 1 GHz

Plot 6.4.2) Out of Band Emissions at Antenna Terminals

GMSK, Low channel, 824.200 MHz, TX signal +/- 20 MHz

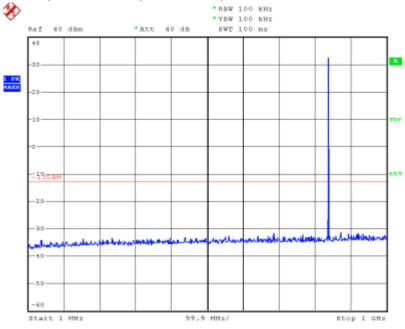

The strong emission shown in each case is the carrier signal.

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 29 of 74

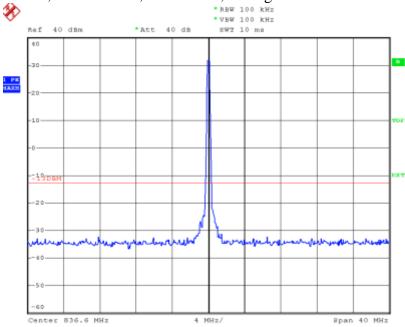
Plot 6.4.3) Out of Band Emissions at Antenna Terminals

GMSK, Low channel, 824.200 MHz, 1 GHz to 20 GHz



Cellular Harmonics for	Level (dBm)
Ch. 128 (824.2 MHz)	
Second	-29.83 dBm
Third	-33.50 dBm
Others	

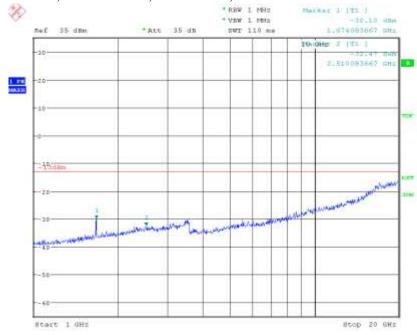
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 30 of 74 |


Plot 6.4.4) Out of Band Emissions at Antenna Terminals

GMSK, Mid Channel, 836.6 MHz, 1 MHz to 1 GHz

Plot 6.4.5) Out of Band Emissions at Antenna Terminals

GMSK, Mid Channel, 836.6 MHz, TX signal +/- 20 MHz

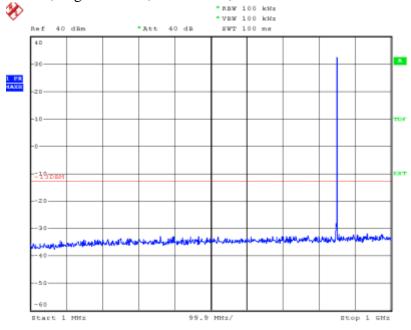

The strong emission shown in each case is the carrier signal.

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 31 of 74

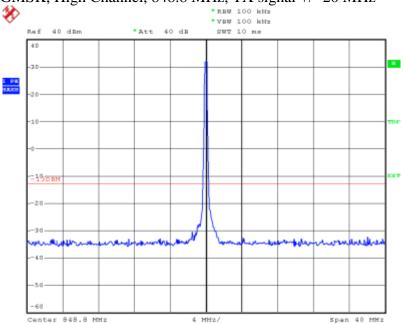
Plot 6.4.6) Out of Band Emissions at Antenna Terminals

GMSK, Mid Channel, 836.6 MHz, 1 GHz to 20 GHz



Cellular Harmonics for	Level (dBm)
Ch. 190 (836.6 MHz)	
Second	-30.10 dBm
Third	-32.47 dBm
Others	

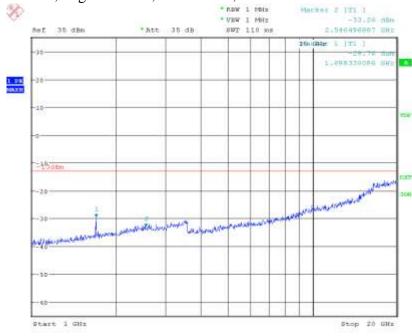
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 32 of 74


Plot 6.4.7) Out of Band Emissions at Antenna Terminals

GMSK, High Channel, 848.8 MHz, 1 MHz to 1 GHz

Plot 6.4.8) Out of Band Emissions at Antenna Terminals

GMSK, High Channel, 848.8 MHz, TX signal +/- 20 MHz

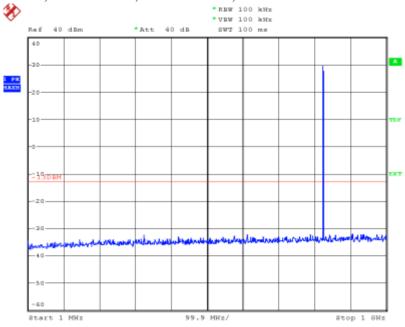


The strong emission shown in each case is the carrier signal.

© 2009 Sierra Wireless, Inc.

Plot 6.4.9) Out of Band Emissions at Antenna Terminals

GMSK, High Channel, 848.8 MHz, 1 GHz to 20 GHz



Cellular Harmonics for	Level (dBm)
Ch. 251 (848.8 MHz)	
Second	-29.76 dBm
Third	-33.26 dBm
Others	

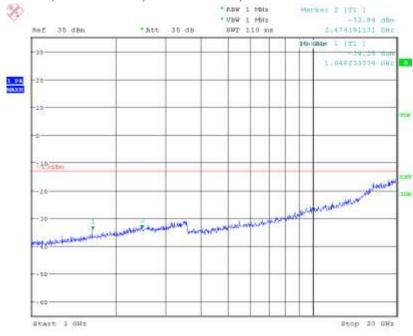
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 34 of 74

Plot 6.4.10) Out of Band Emissions at Antenna Terminals

8-PSK, Low channel, 824.200 MHz, 1 MHz to 1 GHz

Plot 6.4.11) Out of Band Emissions at Antenna Terminals

8-PSK, Low channel, 824.200 MHz, TX signal +/- 20 MHz

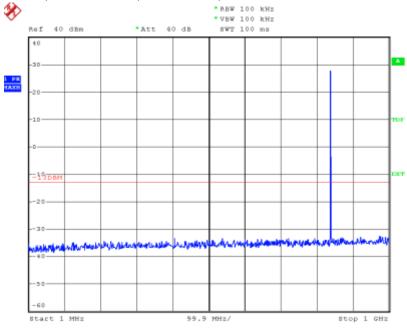

The strong emission shown in each case is the carrier signal.

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 35 of 74

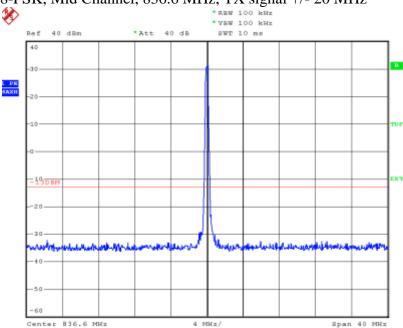
Plot 6.4.12) Out of Band Emissions at Antenna Terminals

8-PSK, Low channel, 824.200 MHz, 1 GHz to 20 GHz



Cellular Harmonics for	Level (dBm)
Ch. 128 (824.2 MHz)	
Second	-33.84 dBm
Third	-34.25 dBm
Others	

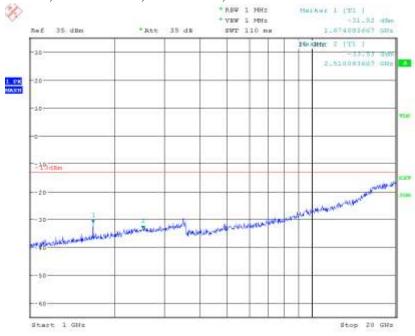
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 36 of 74


Plot 6.4.13) Out of Band Emissions at Antenna Terminals

8-PSK, Mid Channel, 836.6 MHz, 1 MHz to 1 GHz

Plot 6.4.14) Out of Band Emissions at Antenna Terminals

8-PSK, Mid Channel, 836.6 MHz, TX signal +/- 20 MHz

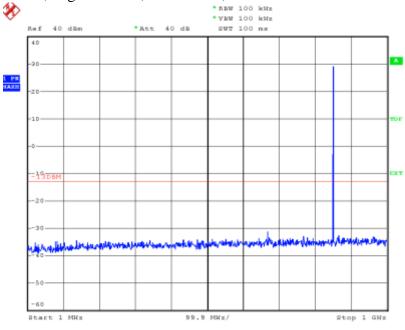

The strong emission shown in each case is the carrier signal.

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 37 of 74

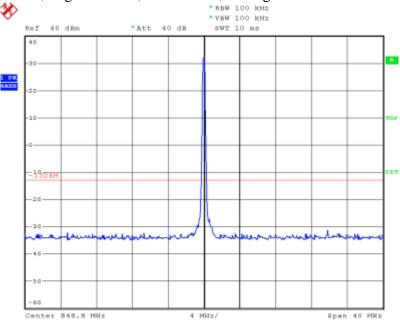
Plot 6.4.15) Out of Band Emissions at Antenna Terminals

8-PSK, Mid Channel, 836.6 MHz, 1 GHz to 20 GHz



Cellular Harmonics for	Level (dBm)
Ch. 190 (836.6 MHz)	
Second	-31.52 dBm
Third	-33.53 dBm
Others	

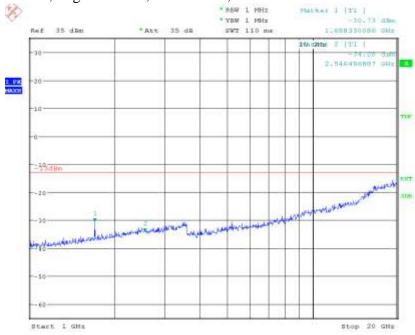
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 38 of 74


Plot 6.4.16) Out of Band Emissions at Antenna Terminals

8-PSK, High Channel, 848.8 MHz, 1 MHz to 1 GHz

Plot 6.4.17) Out of Band Emissions at Antenna Terminals

8-PSK, High Channel, 848.8 MHz, TX signal +/- 20 MHz

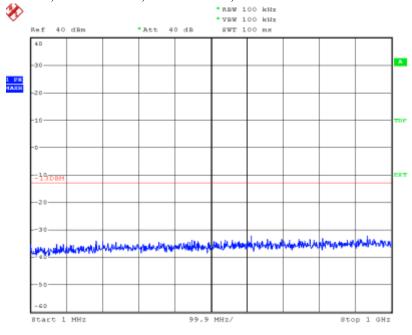

The strong emission shown in each case is the carrier signal.

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 39 of 74

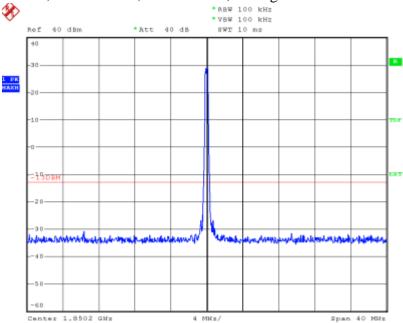
Plot 6.4.18) Out of Band Emissions at Antenna Terminals

8-PSK, High Channel, 848.8 MHz, 1 GHz to 20 GHz



Cellular Harmonics for	Level (dBm)
Ch. 251 (848.8 MHz)	
Second	-30.73 dBm
Third	-34.20 dBm
Others	

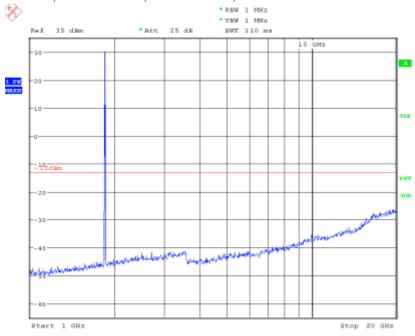
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 40 of 74 |


Plot 6.4.19) Out of Band Emissions at Antenna Terminals

GMSK, Low channel, 1850.2 MHz, 1 MHz to 1 GHz

Plot 6.4.20) Out of Band Emissions at Antenna Terminals

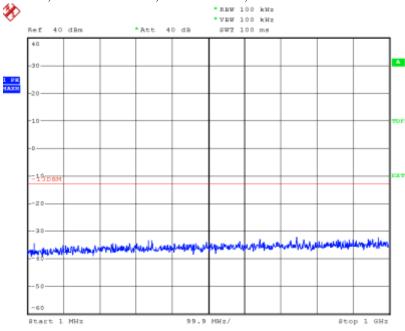
GMSK, Low channel, 1850.2 MHz, TX signal +/- 20 MHz


The strong emission shown is the carrier signal.

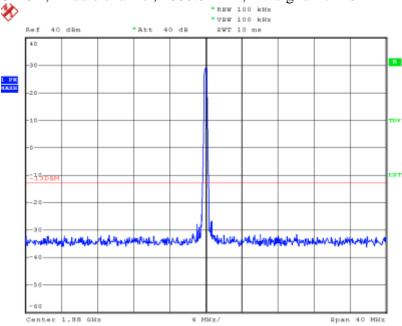
© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 41 of 74
--------------------------------	-------------	------------------	---------------

Plot 6.4.21) Out of Band Emissions at Antenna Terminals


GMSK, Low channel, 1850.2 MHz, 1 GHz to 20 GHz

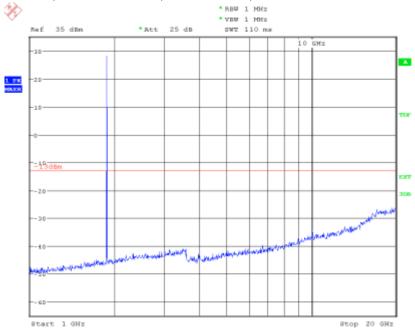
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 42 of 74 |


Plot 6.4.22) Out of Band Emissions at Antenna Terminals

GMSK, Middle channel, 1880.0 MHz, 1 MHz to 1 GHz

Plot 6.4.23) Out of Band Emissions at Antenna Terminals

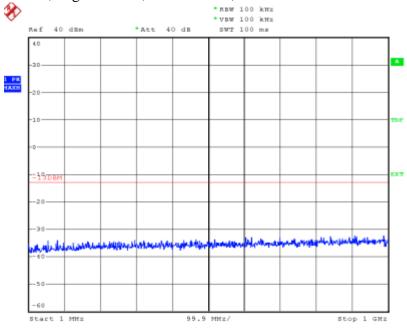
GMSK, Middle channel, 1880.0 MHz, TX signal +/- 20 MHz



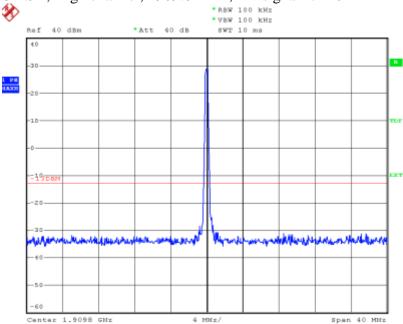
The strong emission shown is the carrier signal.

© 2009 Sierra Wireless, Inc.

Plot 6.4.24) Out of Band Emissions at Antenna Terminals


GMSK, Middle channel, 1880.0 MHz, 1 GHz to 20 GHz

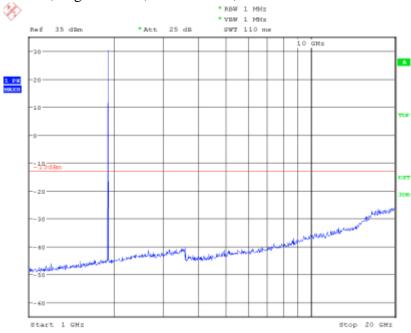
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 44 of 74 |


Plot 6.4.25) Out of Band Emissions at Antenna Terminals

GMSK, High channel, 1909.8 MHz, 1 MHz to 1 GHz

Plot 6.4.26) Out of Band Emissions at Antenna Terminals

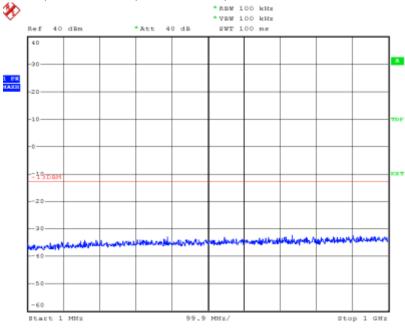
GMSK, High channel, 1909.8 MHz, TX signal +/- 20 MHz


The strong emission shown is the carrier signal.

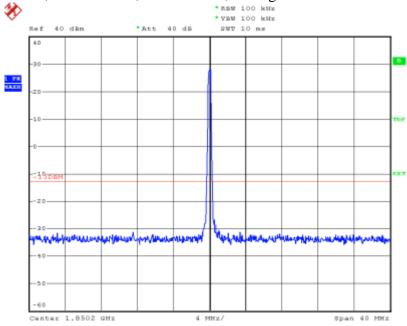
© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 45 of 74
--------------------------------	-------------	------------------	---------------

Plot 6.4.27) Out of Band Emissions at Antenna Terminals


GMSK, High channel, 1909.8 MHz, 1 GHz to 20 GHz

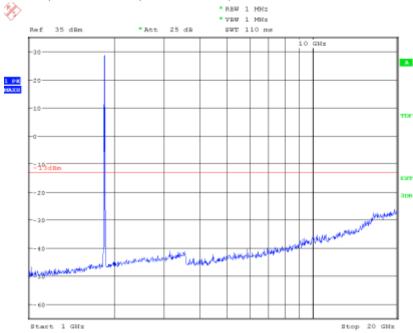
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 46 of 74


Plot 6.4.28) Out of Band Emissions at Antenna Terminals

8-PSK, Low channel, 1850.2 MHz, 1 MHz to 1 GHz

Plot 6.4.29) Out of Band Emissions at Antenna Terminals

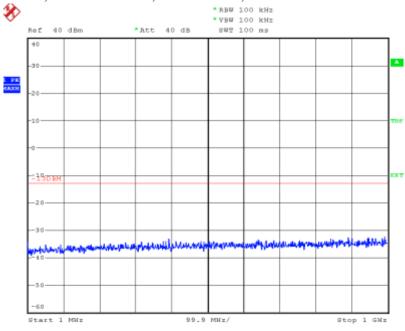
8-PSK, Low channel, 1850.2 MHz, TX signal +/- 20 MHz


The strong emission shown is the carrier signal.

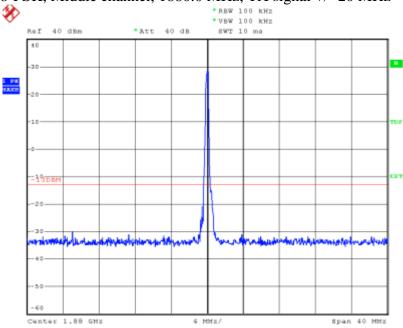
© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 47 of 74
--------------------------------	-------------	------------------	---------------

Plot 6.4.30) Out of Band Emissions at Antenna Terminals


8-PSK, Low channel, 1850.2 MHz, 1 GHz to 20 GHz

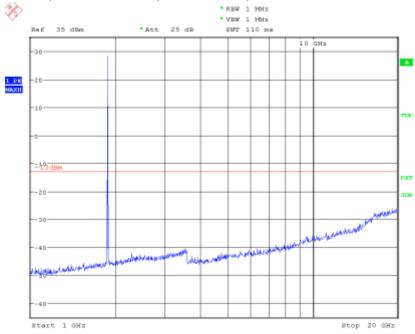
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 48 of 74


Plot 6.4.31) Out of Band Emissions at Antenna Terminals

8-PSK, Middle channel, 1880.0 MHz, 1 MHz to 1 GHz

Plot 6.4.32) Out of Band Emissions at Antenna Terminals

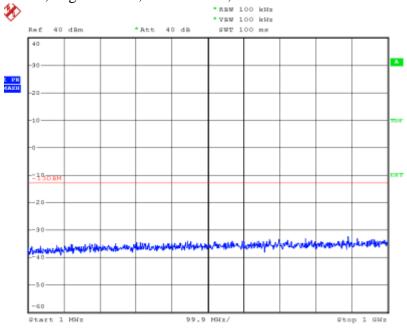
8-PSK, Middle channel, 1880.0 MHz, TX signal +/- 20 MHz



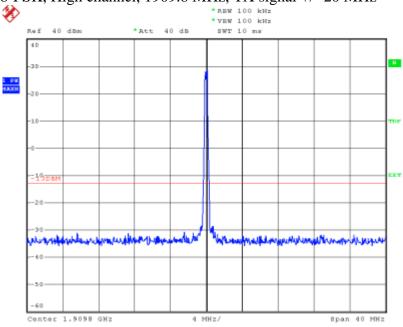
The strong emission shown is the carrier signal.

© 2009 Sierra Wireless, Inc.

Plot 6.4.33) Out of Band Emissions at Antenna Terminals


8-PSK, Middle channel, 1880.0 MHz, 1 GHz to 20 GHz

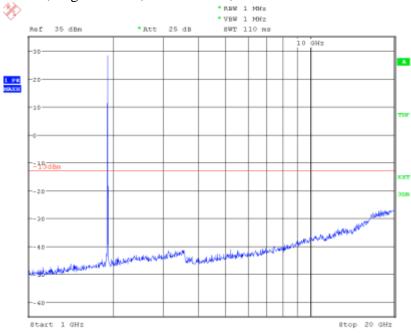
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 50 of 74


Plot 6.4.34) Out of Band Emissions at Antenna Terminals

8-PSK, High channel, 1909.8 MHz, 1 MHz to 1 GHz

Plot 6.4.35) Out of Band Emissions at Antenna Terminals

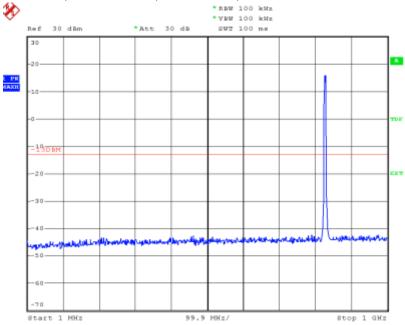
8-PSK, High channel, 1909.8 MHz, TX signal +/- 20 MHz



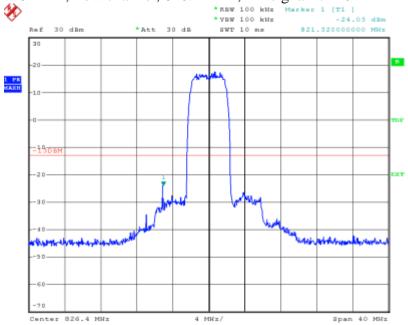
The strong emission shown is the carrier signal.

© 2009 Sierra Wireless, Inc.

Plot 6.4.36) Out of Band Emissions at Antenna Terminals


8-PSK, High channel, 1909.8 MHz, 1 GHz to 20 GHz

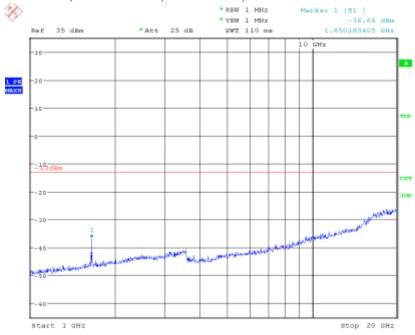
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 52 of 74


Plot 6.4.37) Out of Band Emissions at Antenna Terminals

WCDMA, Low channel, 826.4 MHz, 1 MHz to 1 GHz

Plot 6.4.38) Out of Band Emissions at Antenna Terminals

WCDMA, Low channel, 826.4 MHz, TX signal +/- 20 MHz

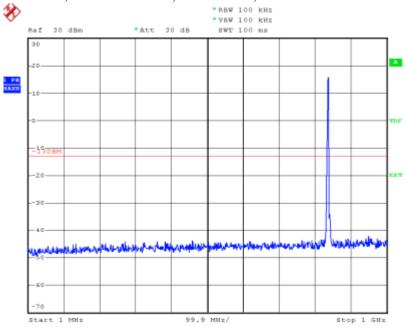


The strong emission shown in each case is the carrier signal.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 53 of 74

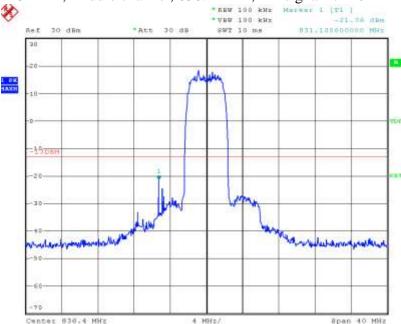
Plot 6.4.39) Out of Band Emissions at Antenna Terminals

WCDMA, Low channel, 826.4 MHz, 1 GHz to 20 GHz



Cellular Harmonics for	Level (dBm)
Ch. 4132 (826.4 MHz)	
Second	-36.64 dBm
Third	
Others	

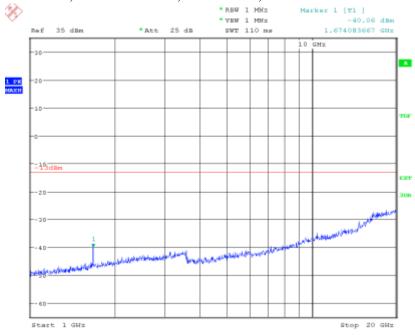
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 54 of 74 |


Plot 6.4.40) Out of Band Emissions at Antenna Terminals

WCDMA, Middle channel, 836.4 MHz, 1 MHz to 1 GHz

Plot 6.4.41) Out of Band Emissions at Antenna Terminals

WCDMA, Middle channel, 836.4 MHz, TX signal +/- 20 MHz

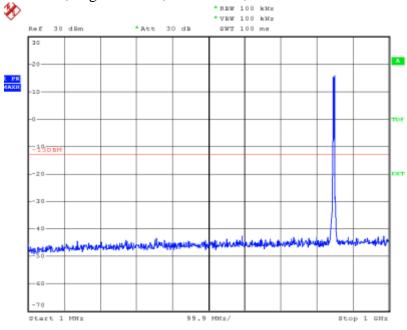

The strong emission shown in each case is the carrier signal.

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 55 of 74

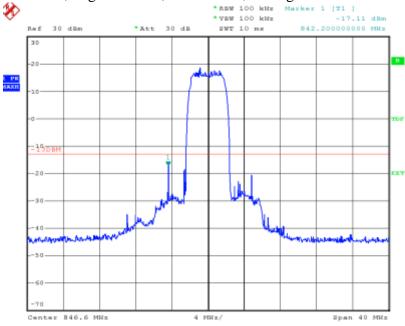
Plot 6.4.42) Out of Band Emissions at Antenna Terminals

WCDMA, Middle channel, 836.4 MHz, 1 GHz to 20 GHz



Cellular Harmonics for	Level (dBm)
Ch. 4182 (836.4 MHz)	
Second	-40.06 dBm
Third	
Others	

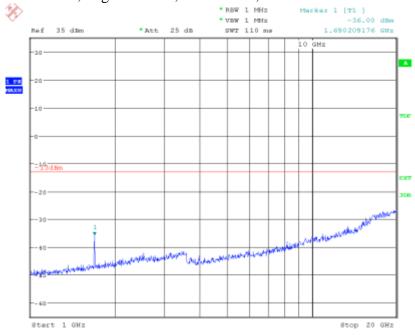
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 56 of 74


Plot 6.4.43) Out of Band Emissions at Antenna Terminals

WCDMA, High Channel, 846.6 MHz, 1 MHz to 1 GHz

Plot 6.4.44) Out of Band Emissions at Antenna Terminals

WCDMA, High Channel, 846.6 MHz, TX signal +/- 20 MHz

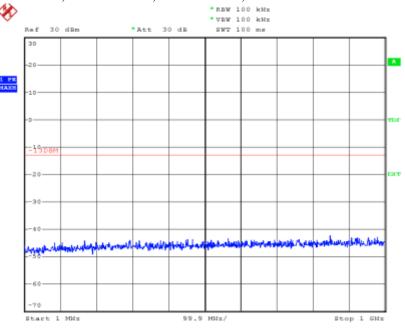

The strong emission shown in each case is the carrier signal.

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 57 of 74

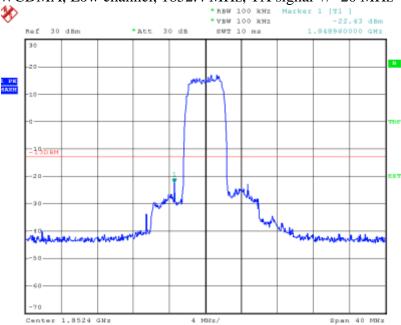
Plot 6.4.45) Out of Band Emissions at Antenna Terminals

WCDMA, High Channel, 846.6 MHz, 1 GHz to 20 GHz



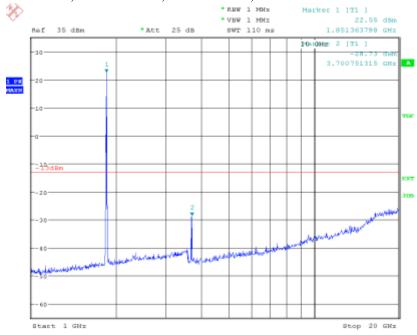
Cellular Harmonics for	Level (dBm)
Ch. 4233 (846.6 MHz)	
Second	-36.00 dBm
Third	
Others	

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 58 of 74


Plot 6.4.46) Out of Band Emissions at Antenna Terminals

WCDMA, Low channel, 1852.4 MHz, 1 MHz to 1 GHz

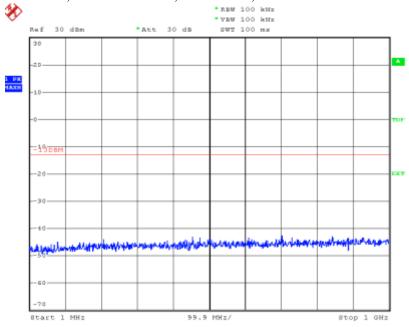
Plot 6.4.47) Out of Band Emissions at Antenna Terminals


WCDMA, Low channel, 1852.4 MHz, TX signal +/- 20 MHz

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 59 of 74

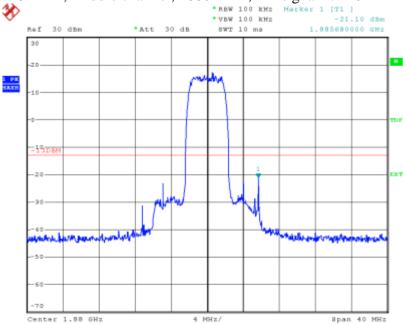
Plot 6.4.48) Out of Band Emissions at Antenna Terminals

WCDMA, Low channel, 1852.4 MHz, 1 GHz to 20 GHz



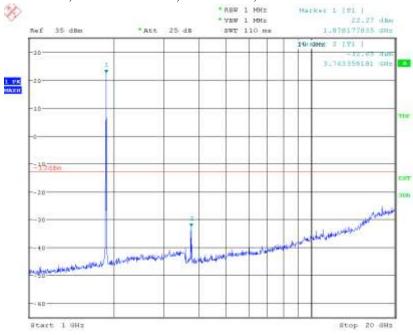
PCS Harmonics for	Level (dBm)
Ch. 9262 (1852.4 MHz)	
Second	- 28.73 dBm
Third	
Others	

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 60 of 74 |


Plot 6.4.49) Out of Band Emissions at Antenna Terminals

WCDMA, Middle channel, 1880 MHz, 1 MHz to 1 GHz

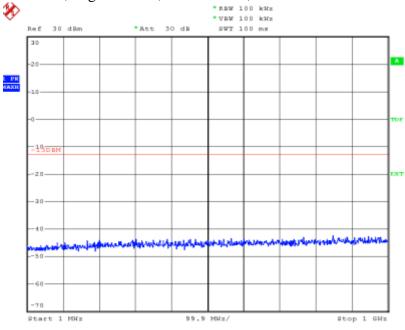
Plot 6.4.50) Out of Band Emissions at Antenna Terminals


WCDMA, Middle channel, 1880 MHz, TX signal +/- 20 MHz

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 61 of 74

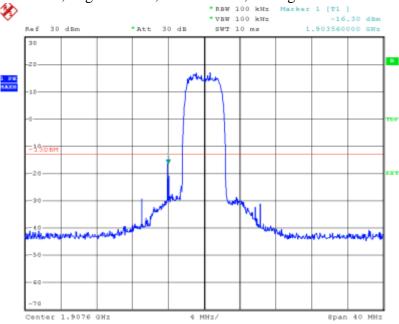
Plot 6.4.51) Out of Band Emissions at Antenna Terminals

WCDMA, Middle channel, 1880 MHz, 1 GHz to 20 GHz



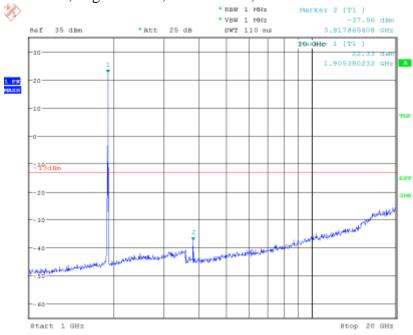
PCS Harmonics for	Level (dBm)
Ch. 9400 (1880.0 MHz)	
Second	-32.65 dBm
Third	
Others	

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 62 of 74 |


Plot 6.4.52) Out of Band Emissions at Antenna Terminals

WCDMA, High channel, 1907.6 MHz, 1 MHz to 1 GHz

Plot 6.4.53) Out of Band Emissions at Antenna Terminals


WCDMA, High channel, 1907.6 MHz, TX signal +/- 20 MHz

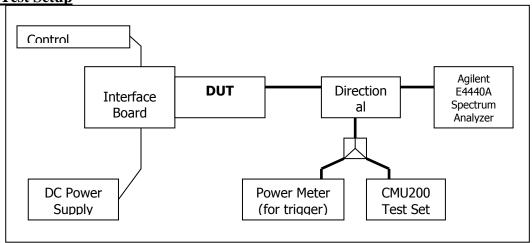
FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 63 of 74

Plot 6.4.54) Out of Band Emissions at Antenna Terminals

WCDMA, High channel, 1907.6 MHz, 1 GHz to 20 GHz

PCS Harmonics for	Level (dBm)
Ch. 9538 (1907.6 MHz)	
Second	-37.56 dBm
Third	
Others	

FCC Part 22, 24 / RSS 132, 133 AirCard	504 November 3, 2009 Page 64 of 74
--	--


7 Block Edge Compliance

FCC Part 22H/24E

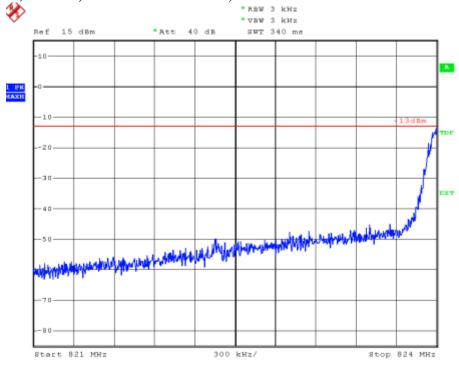
7.1 Test Procedure

The transmitter output was connected to a Rohde & Schwarz CMU200 Test Set, through a coaxial RF cable and a directional coupler, and configured to operate at maximum power. The block edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

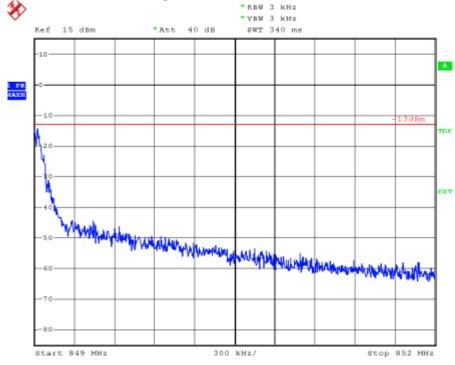
7.2 Test Equipment

EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE
Control Computer	TC	Generic PC	100488	N/A
Wireless Test Set	Rohde & Schwarz	CMU200	110520	November 17, 2008
Spectrum Analyzer	Rohde & Schwarz	FSP	100714	November 15, 2008
DC Power Supply	HP	6632A	3530A	N/A
Interface Board	Shop built	ATEMux	N/A	N/A
Directional Coupler	Pasternack	PE2209-10	N/A	N/A

7.3 Test Results

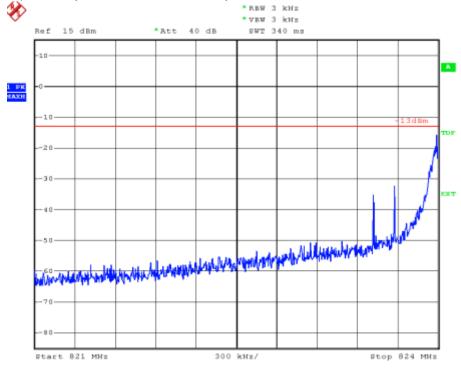

Block	Frequency Boundaries (MHz)	Channels	Correspondin	Result
Test		Tested	g Plots	
1	GMSK: Below 824 MHz, above 849 MHz	128, 251	7.4.1, 7.4.2	Complies
2	8PSK: Below 824 MHz, above 849 MHz	128, 251	7.4.3, 7.4.4	Complies
3	GMSK: Below 1850MHz, above 1910MHz	512, 810	7.4.5, 7.4.6	Complies
4	8PSK: Below 1850MHz, above 1910MHz	512, 810	7.4.7, 7.4.8	Complies
Block	Frequency Boundaries (MHz)	Channels	Correspondin	Result
Test		Tested	g Plots	
1	WCDMA: Below 824MHz, above 849MHz	4132, 4233	7.4.9, 7.4.10	Complies
2	WCDMA: Below 1850MHz, above 1910MHz	9262, 9538	7.4.11, 7.4.12	Complies

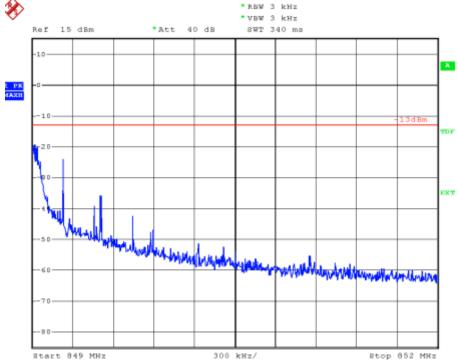
© 2009 Sierra Wireless, Inc.


FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 65 of 74
FCC Part 22, 2 4 / RSS 132, 133	AirCara 304	i November 5, Zoo9	Page 65 of 74

7.4 Test Plots

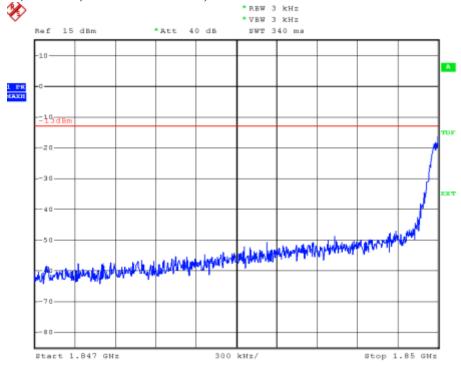
Plot 7.4.1) GSMK; Cellular low channel, below 824 MHz

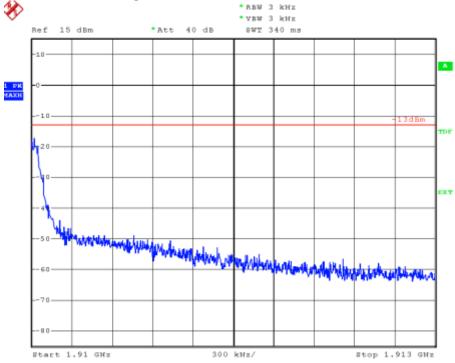

Plot 7.4.2) GMSK; Cellular high channel, above 849 MHz


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 66 of 74

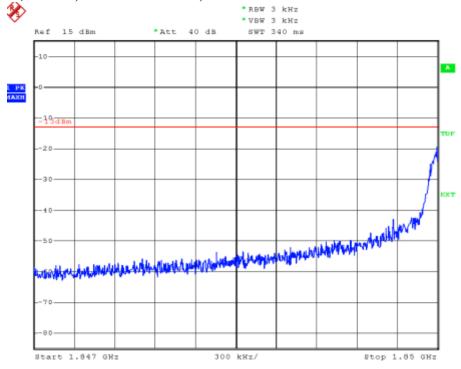
Plot 7.4.3) 8-PSK; Cellular low channel, below 824 MHz

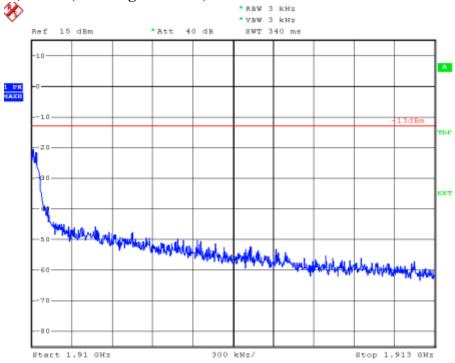

Plot 7.4.4) 8-PSK; Cellular high channel, above 849 MHz


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 67 of 74

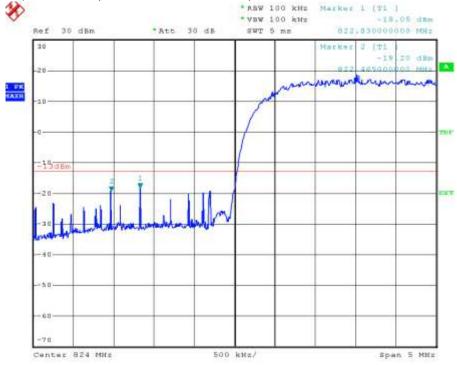
Plot 7.4.5) GMSK; PCS low channel, below 1850 MHz

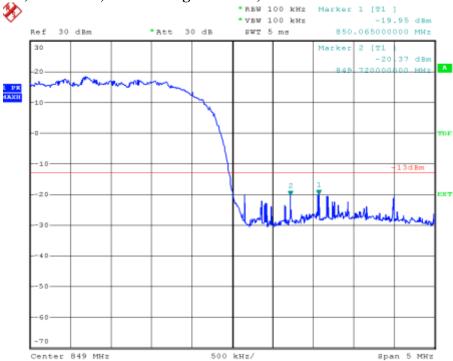

Plot 7.4.6) GMSK; PCS high channel, above 1910 MHz


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 68 of 74

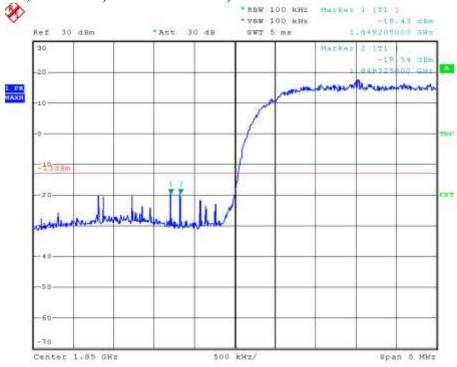
Plot 7.4.7) 8-PSK; PCS low channel, below 1850 MHz

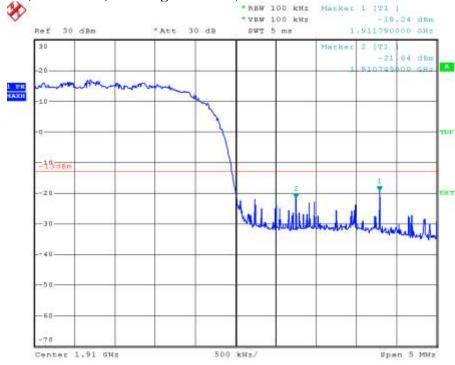

Plot 7.4.8) 8-PSK; PCS high channel, above 1910 MHz


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 69 of 74

Plot 7.4.9) WCDMA; Cellular low channel, below 824 MHz


Plot 7.4.10) WCDMA; Cellular high channel, above 849 MHz


© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 | AirCard 504 | November 3, 2009 | Page 70 of 74

Plot 7.4.11) WCDMA; PCS low channel, below 1850 MHz

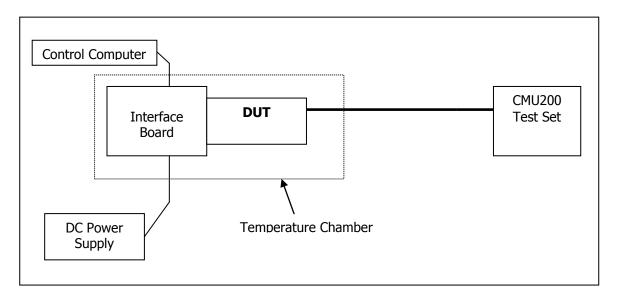
Plot 7.4.12) WCDMA; PCS high channel, above 1910 MHz

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133 AirCard 504 November 3, 2009 Page 71 of 74

8 Frequency Stability versus Temperature

FCC 2.1055, FCC 22.355, FCC 24.235


8.1 Summary of Results

The EUT's Frequency Stability versus temperature meets the requirements of less than 2.5ppm when temperature varies from -30°C to +50°C.

8.2 Test Procedure

The EUT was placed inside a temperature chamber. The temperature was set to -30°C and maintained to stabilize. After sufficient soak time, the transmitting frequency error was measured. The temperature was then increased by 10 degrees, maintained to stabilize, and the measurement was repeated. This procedure was repeated until +50°C is reached. Frequency metering included internal averaging of the CMU200 to stabilize the reading. Reference power supply voltage for these tests is 3.3 volts.

Test Setup

8.3 Test Equipment

EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE
Control Computer	TC	Generic PC	100488	N/A
Wireless Test Set	Rohde & Schwarz	CMU200	110520	November 17, 2008
Spectrum Analyzer	Rohde & Schwarz	FSP	100714	November 15, 2008
DC Power Supply	HP	6632A	3530A	N/A
Interface Board	Shop built	ATEMux	N/A	N/A
Directional Coupler	Pasternack	PE2209-10	N/A	N/A

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 72 of 74

8.4 Test Results

8.4.1 GSM Frequency Error over Temperature

	Cellul	ar Band: 82	4MHz to 84	48MHz	PCS 1	Band: 1850N	MHz to 191	0MHz
	GMSF	K Mode	8PSK	Mode	GMSF	K Mode	8PSK	Mode
Temp	Offset	Offset	Offset	Offset	Offset	Offset	Offset	Offset
(°C)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)
-30	-15.10	-0.0180	-30.38	-0.0363	-16.40	-0.0087	-43.65	-0.0232
-20	16.10	0.0192	7.97	0.0095	-8.27	-0.0044	14.69	0.0078
-10	12.50	0.0149	-16.66	-0.0199	-4.78	-0.0025	0.97	0.0005
0	-1.16	-0.0014	1.26	0.0015	-7.17	-0.0038	18.27	0.0097
10	2.97	0.0036	3.26	0.0039	-0.84	-0.0004	21.41	0.0114
20	-21.10	-0.0252	1.00	0.0012	-16.50	-0.0088	-30.45	-0.0162
30	-5.10	-0.0061	-18.66	-0.0223	-20.00	-0.0106	-32.77	-0.0174
40	-26.50	-0.0317	-14.82	-0.0177	-39.50	-0.0210	-27.64	-0.0147
50	-29.10	-0.0348	-40.16	-0.0480	-57.90	-0.0308	-67.22	-0.0358

8.4.2 UMTS Frequency Error over Temperature

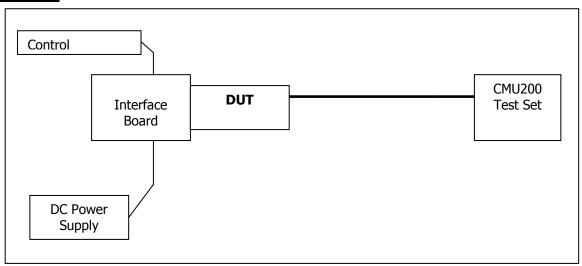
		UMTS	Mode	
	850 MHz Band		1900 M	Hz Band
Temp (°C)	Offset (Hz)	Offset (ppm)	Offset (Hz)	Offset (ppm)
-30	-4.39	-0.0052	-5.14	-0.0027
-20	-2.64	-0.0032	-5.91	-0.0031
-10	-1.95	-0.0023	-9.54	-0.0051
0	-8.77	-0.0105	-13.05	-0.0069
10	-3.98	-0.0048	-18.36	-0.0098
20	-5.59	-0.0067	-7.71	-0.0041
30	0.85	0.0010	-7.22	-0.0038
40	-1.30	-0.0016	1.14	0.0006
50	-6.29	-0.0075	-9.86	-0.0052

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 73 of 74
--------------------------------	-------------	------------------	---------------

9 Frequency Stability versus Voltage

FCC 2.1055, FCC 22.355, FCC 24.235

9.1 Summary of Results


The EUT is specified to operate with a supply voltage varying between 3.0VDC and 3.6VDC, having a nominal voltage of 3.3 VDC. It meets the frequency stability limit of less than 2.5ppm when supply voltage varies within the specified limits. Operation above or below these voltage limits is prohibited by firmware in order to prevent improper operation.

9.2 Test Procedure

The EUT was connected to a DC Power Supply and a UMTS test set (CMU 200) with frequency error measurement capability. The power supply output was adjusted to the test voltage as measured at the input terminals to the device while transmitting. A voltmeter was used to confirm the terminal voltage. The peak frequency error is recorded (worst case). The test voltages are 3.0 volts to 3.6 volts.

NOTE: Below 3.0V and above 3.6V, the device stops transmitting.

Test Setup

9.3 Test Equipment

EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE
Control Computer	TC	Generic PC	100488	N/A
Wireless Test Set	Rohde & Schwarz	CMU200	110520	November 17, 2008
Spectrum Analyzer	Rohde & Schwarz	FSP	100714	November 15, 2008
DC Power Supply	HP	6632A	3530A	N/A
Interface Board	Shop built	ATEMux	N/A	N/A
Directional Coupler	Pasternack	PE2209-10	N/A	N/A

© 2009 Sierra Wireless, Inc.

FCC Part 22, 24 / RSS 132, 133	AirCard 504	November 3, 2009	Page 74 of 74

9.4 Test Results

9.4.1 GSM Frequency Error over Voltage

	Cellular Band: 824MHz to 848MHz			PCS Band: 1850MHz to 1910MHz				
	GMSK	Mode	8PSK Mode		GMSK Mode		8PSK Mode	
Voltage	Offset	Offset	Offset	Offset	Offset	Offset	Offset	Offset
(V)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)
3.0	-193.00	-0.2307	-153.29	-0.1832	-343.00	-0.1824	-299.94	-0.1595
3.3	-30.06	-0.0359	-28.31	-0.0338	-27.30	-0.0145	-7.30	-0.0039
3.6	0.71	0.0008	-12.69	0.0152	-35.10	-0.0187	-27.86	-0.0148

9.4.2 UMTS Frequency Error over Voltage

	UMTS Mode					
	850 M	Hz Band	1900 MHz Band			
Voltage (V)	Offset (Hz)	Offset (ppm)	Offset (Hz)	Offset (ppm)		
3.0	-0.23	-0.0003	-16.48	-0.0088		
3.3	-2.69	-0.0032	-20.95	-0.0111		
3.6	1.34	0.0007	1.75	0.0009		