

FCC OET BULLETIN 65 SUPPLEMENT C

SAR EVALUATION REPORT / Part 27 WIMAX Portion

For

USB MODEM

MODEL: AC250U

FCC ID: N7NAC250U

REPORT NUMBER: 09U12929-8C3

ISSUE DATE: May 05, 2010

Prepared for

SIERRA WIRELESS INC.

2200 FARADAY AVENUE, SUITE 150 CARLSBAD, CA 92008

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

Revision History

<u>Rev.</u>	Issue Date	Revisions	Revised By
	Feb.04, 2010	Initial Issue	
А	Feb.23, 2010	Redo SAR Linearity Plots	Sunny Shih
A	March 12, 2010	Additional SAR test for Antenna # 2 (Secondary Tx)	Sunny Shih
B1	March 17, 2010	Update Page 8 Probe Calibration Error %	Sunny Shih
B2	March 25, 2010	Added power drift data in Section 12 Updated some typos in Section 13	Sunny Shih
B3	April 19, 2010	Added the following note on section 19. Note: This USB dongle position of orientation is limited by the hinge detent for 100 degree, 130 degree and 150 degree	Sunny Shih
B4	April 22, 2010	Additional SAR for USB connector B (Horizontal-Up) with the device parallel with the phantom at 5 mm.	Sunny Shih
С	April 25, 2010	Revised based upon FCC comments	Sunny Shih
C1	April 26, 2010	Revised based upon FCC comments	Sunny Shih
C3	May 05, 2010	Modified statement made on page 50 and 52 Photos.	Sunny Shih

Page 2 of 58

TABLE OF CONTENTS

1.	Α	TTESTATION OF TEST RESULTS	5							
2.	TI	EST METHODOLOGY	6							
3.	F٨	ACILITIES AND ACCREDITATION	6							
4.	C	ALIBRATION AND UNCERTAINTY	7							
4	4.1.	MEASURING INSTRUMENT CALIBRATION	7							
4	4.2.	MEASUREMENT UNCERTAINTY	8							
5.	S	YSTEM SPECIFICATIONS1	0							
6.	С	OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS1	1							
7.	т	SSUE DIELECTRIC PARAMETERS CHECK1	2							
7	7.1.	LIQUID CHECK RESULTS FOR 2600 MHZ1	3							
8.	S	YSTEM VERIFICATION1	9							
8	3.1.	SYSTEM CHECK RESULTS FOR D2600V22	0							
9.	W	iMax DEVICE & SYSTEM OPERATING PARAMETERS2	1							
10.		EUT DESCRIPTION2	3							
1	10.1	. WiMAX Zone Types	3							
1	10.2	Duty Factor and Crest Factor Considerations2	4							
1	10.3	8. SAR Scaling Consideration2	7							
1	10.4	2. Duty-Factor Scaling to DL:UL Ratio of 29:182	9							
11.		SIGNAL GENERATOR DETAILS	0							
12.		OUTPUT POWER VERIFICATION	4							
13.		PEAK TO AVERAGE RATIO	6							
14.		SUMMARY OF SAR TEST RESULTS	9							
15.		WORST-CASE SAR TEST PLOTS	6							
16.		PAR AND SAR ERROR CONSIDERATIONPAR4	7							
17.		ATTACHMENTS4	9							
18		PRELIMINARY SAR EVALUATION 5	0							
10.			4							
19.			1							
20.		TEST SETUP PHOTO								

Page 3 of 58

21.	EUT EXTERNAL PHOTO	56

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 4 of 58

Pass

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	SIERRA WIRELESS IN	IC.						
	2200 Faraday Avenue,	2200 Faraday Avenue, Suite 150						
	CARLSBAD, CA 92008							
EUT DESCRIPTION:	USB MODEM							
MODEL NUMBER:	AC250U							
DEVICE CATEGORY:	Portable							
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure							
DATE TESTED:	December 19, 2009 – Feb.23, 2010 (Antenna # 1)							
	March 9 - 10, 2010 (An	tenna # 2)						
	April 21, 2010 (Addition	al test SAR test position)						
FCC rule parts	Freq. range (MHz)	Highest 1-g SAR (W/kg)	Limit (W/kg)					
		1.19						
27	(5MHz 16QAM)	1.6						
		USB Horizontal-down150°						
Applicable Standards Test Results								

FCC OET Bulletin 65 Supplement C 01-01 and the following specific FCC test procedures:

- KDB 615223 D01 802 16e WiMax SAR Guidance v01

KDB 447498 D02 SAR Procedures for Dongle Xmtr v02

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For CCS By:

Sunay Shih

SUNNY SHIH ENGINEERING SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

Charg

DEVIN CHANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 5 of 58

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01 and the following specific FCC test procedures:

- o KDB 615223 D01 802 16e WiMax SAR Guidance v01
- KDB 447498 D02 SAR Procedures for Dongle Xmtr v02

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

Page 6 of 58

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Norse of Equipment	Manufashinan	True o/NA o do l	Opriol No.	Cal. Due date		
Name of Equipment	Manufacturer	nuracturer Type/Model		MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003	N/A		
Electronic Probe kit	HP	85070C	N/A	N/A		
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010
E-Field Probe	SPEAG	EX3DV4	3686	3	23	2010
E-Field Probe	SPEAG	EX3DV3	3531	2	22	2011
Thermometer	ERTCO	639-1S	1718	9	15	2010
Data Acquisition Electronics	SPEAG	DAE3 V1	500	10	20	2010
System Validation Dipole	SPEAG	D2600V2	1006	4	22	2011
ESG Vector Signal Generator	Agilent	E4438C	US44271971	9	28	2010
Amplifier	Mini-Circuits	ZVE-8G	90606		N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A
Simulating Liquid	CCS	M2600	N/A	Withir	ו 24 h	rs of first test

Page 7 of 58

4.2. MEASUREMENT UNCERTAINTY

For December 19, 2009 – Feb.23, 2010 (Antenna # 1) & March 9 - 10, 2010 (Antenna # 2) Measurement uncertainty for 300 MHz – 3000 MHz

Specific Absorption Rate (SAR) uncertainty calculation

300 MHz to 3 GHz averaged over 1 gram

Component	error %	Distribution	Divisor	Sensitivity	U (Xi) %
Measurement System		Distribution	DIVISOI	Centrativity	0 (71), 70
Probe Calibration (k=1)@2600 MHz	5.5	Normal	1	1	5.5
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	4.24	Normal	1	0.64	2.71
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement uncertainty	2.36	Normal	1	0.6	1.42
Combined Standard Uncertainty Uc(y)					9.92
Expanded Uncertainty U, Coverage Factor = 2,	> 95 % Cor	fidence = 19.85%	%		
Expanded Uncertainty U, Coverage Factor = 2,	> 95 % Cor	fidence = 1.57dE	3		

Page 8 of 58

For April 21, 2010 (Additional test SAR test position)

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ 2600 MHz	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	9.20	Rectangular	1.732	0.7071	3.76
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement @ Body 2600 MHz	1.77	Normal	1	0.64	1.13
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement @ Body 2600 MHz	1.01	Normal	1	0.6	0.61
		Combined Standard	d Uncerta	inty Uc(y) =	10.20
Expanded Uncertainty U, Cover	age Facto	or = 2, > 95 % Confi	dence =	20.40	%
Expanded Uncertainty U, Cover	age Facto	or = 2, > 95 % Confi	dence =	1.61	dB

Page 9 of 58

5. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 10 of 58

6. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)												
(% by weight)	4	50	835		915		1900		2450		2600		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Body		
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	73.2		
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	0.05		
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	0.0		
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	0.0		
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	0.0		
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	27.2		
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	52.5		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	2.16		

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Page 11 of 58

7. TISSUE DIELECTRIC PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body			
raiget Frequency (Miriz)	ε _r	σ (S/m)		
2450	52.7	1.95		
2500	52.6	2.02		
2600	52.5	2.16		
2690	52.4	2.29		

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 12 of 58

7.1. LIQUID CHECK RESULTS FOR 2600 MHZ

Simulating Liquid Dielectric Parameter Check Result @ Body 2600 MHz Room Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Devin Chang

 D_{a} (0() Line it (0()

t (MHz)	Liquid Parameters		ivieasured	rarget	Dena (%)	Limit (%)	
25.00	e'	51.7390	Relative Permittivity (ε_r):	51.739	52.6	-1.64	± 5
2300	e"	13.9801	Conductivity (σ):	1.944	2.02	-3.75	± 5
2500	e'	51.4756	Relative Permittivity (ε_r):	51.476	52.5	-1.95	± 5
2390	e"	14.3408	Conductivity (σ):	2.066	2.15	-3.89	± 5
2600	e'	51.4547	Relative Permittivity (c _r):	51.455	52.5	-2.01	± 5
2000	e"	14.3790	Conductivity (σ):	2.080	2.16	-3.75	± 5
2690	e'	51.1628	Relative Permittivity (ε_r):	51.163	52.4	-2.36	± 5
2000	e"	14.7379	Conductivity (σ):	2.205	2.29	-3.69	± 5
Liquid Check							
Ambient tempe	rature: 2	4 deg. C; L	iquid temperature: 23 de	g. C			
December 19, 2	2009 04:	12 PM					
Frequency		e'	e"				
2480000000.		51.7936	13.8885	5			
2490000000.		51.7723	13.9294	ŀ			
2500000000.		51.7390	13.9801				
2510000000.		51.7085	14.0266	6			
2520000000.		51.6803	14.0753	3			
2530000000.		51.6548	14.1197	,			
2540000000.		51.6227	14.1496	6			
2550000000.		51.6055	14.1889)			
2560000000.		51.5528	14.2314	ŀ			
2570000000.		51.5265	14.2589)			
2580000000.		51.4939	14.2942	2			
2590000000.		51.4756	14.3408	5			
260000000.		51.4547	14.3790)			
2610000000.		51.4301	14.4237	,			
2620000000.		51.3887	14.4747	,			
2630000000.		51.3577	14.5243	3			
2640000000.		51.3253	14.5683	3			
2650000000.		51.2866	14.5961				
2660000000.		51.2525	14.6380)			
2670000000.		51.2223	14.6653	3			
2680000000.		51.1931	14.6989)			
269000000.		51.1628	14.7379)			
2700000000.		51.1440	14.7715	5			
2710000000.		51.1122	14.8262	2			
2720000000.		51.0581	14.8789)			
The conductivit	ty (σ) car	n be given a	as:				
$\sigma = \omega \varepsilon_0 e'' = 2$	$2\pi f \varepsilon_0$	e"					

where $\mathbf{f} = target f * 10^6$

 $\mathbf{\epsilon}_0 = 8.854 * 10^{-12}$

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 13 of 58

f (MHz)	•	Liquid	Parameters	Measured	Target	- Delta (%)	Limit (%)				
25.00	e'	52.5576	Relative Permittivity (c _r):	52.558	52.6	-0.08	±5				
2500	e"	14.5068	Conductivity (σ):	2.018	2.02	-0.12	±5				
2500	e'	52.2595	Relative Permittivity (ε_r):	52.260	52.5	-0.46	±5				
2590	e"	14.8353	Conductivity (σ):	2.138	2.15	-0.58	±5				
26.00	e'	52.2093	Relative Permittivity (ε_r):	52.209	52.5	-0.57	±5				
2000	e"	14.8939	Conductivity (σ):	2.154	2.16	-0.30	±5				
2600	e'	51.9078	Relative Permittivity (ε_r):	51.908	52.4	-0.94	± 5				
2030	e"	15.1893	Conductivity (σ):	2.273	2.29	-0.74	± 5				
Liquid Check											
December 20.	2009 04:	- ueg. e, ∟ 39 PM		g. C							
Frequency	2000 0 1.	e'	e"								
2480000000.		52.6024	14.3869)							
2490000000.		52.5795	14.4381								
2500000000.		52.5576	14.5068	3							
2510000000.		52.5108	14.5785	5							
2520000000.		52.4766	14.6202	2							
2530000000.		52.4595	14.6677	,							
2540000000.		52.4184	14.7097	,							
2550000000.		52.3854	14.7449)							
2560000000.		52.3289	14.7615	5							
2570000000.		52.3060	14.7630)							
2580000000.		52.2805	14.7920)							
2590000000.		52.2595	14.8353	5							
260000000.		52.2093	14.8939								
2610000000.		52.1645	14.9403	3							
2620000000.		52.1270	14.9819)							
2630000000.		52.0838	15.0298	3							
2640000000.		52.0558	15.1001								
2650000000.		52.0074	15.1180)							
2660000000.		51.9707	15.1437	,							
2670000000.		51.9663	15.1490)							
2680000000.		51.9357	15.1624	ŀ							
269000000.		51.9078	15.1893	5							
2700000000.		51.8668	15.2375	5							
2710000000.	10000000. 51.8216 15.28										
2720000000.		51.7867	15.3239)							
The conductivi	ty (σ) car	n be given a	as:								
$\sigma = \omega \varepsilon_0 e'' =$	2 π f ε ₀	e″									
where $\mathbf{f} = targ$	get f * 10 ⁶)									
E _0 = 8.8	54 * 10 ⁻¹²	2									

Simulating Liquid Dielectric Parameter Check Result @ Body 2600 MHz Room Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Devin Chang

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 14 of 58

f (MHz)		Liquid	Parameters	Measured	Target	- Delta (%)	Limit (%)				
0500	e'	53.2439	Relative Permittivity (c _r):	53.244	52.6	1.22	±5				
2500	e"	14.7737	Conductivity (σ):	2.055	2.02	1.72	±5				
0500	e'	52.9446	Relative Permittivity (c _r):	52.945	52.5	0.85	±5				
2590	e"	14.9054	Conductivity (σ):	2.148	2.15	-0.11	±5				
2600	e'	52.9117	Relative Permittivity (c _r):	52.912	52.5	0.76	±5				
2000	e"	15.0545	Conductivity (σ):	2.178	2.16	0.77	±5				
2600	e'	52.6156	Relative Permittivity (ε_r):	52.616	52.4	0.41	± 5				
2090	e"	15.3102	Conductivity (σ):	2.291	2.29	0.05	± 5				
Liquid Check Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C December 21, 2009 03:15 PM											
Frequency		e'	e"								
2480000000.		53.1863	14.4811								
2490000000.		53.2339	14.5737	,							
2500000000.		53.2439	14.7737	,							
2510000000.		53.1984	14.9495	5							
2520000000.		53.1537	15.0426	6							
2530000000.		53.1457	15.1028	3							
2540000000.		53.1108	15.1407	,							
2550000000.		53.0230	15.1400)							
2560000000.		52.9368	15.0395	5							
2570000000.		52.9089	14.8993	3							
2580000000.		52.9239	14.8534	ŀ							
2590000000.		52.9446	14.9054	ŀ							
2600000000.		52.9117	15.0545	5							
2610000000.		52.8592	15.1915	5							
2620000000.		52.7961	15.3307	*							
2630000000.		52.7481	15.4430)							
2640000000.		52.7074	15.5256	6							
2650000000.		52.6421	15.5267	*							
2660000000.		52.6156	15.4709)							
2670000000.		52.6121	15.3689)							
2680000000.		52.6123	15.3170)							
2690000000.		52.6156	15.3102	2							
2700000000.		52.5623	15.3755	5							
2710000000.		52.4813	15.4666	6							
2720000000.		52.4162	15.5668	3							
The conductivit	ty (σ) car	n be given a	as:								
$\sigma = \omega \varepsilon_0 e'' = 2$	2 π f ε _{0,}	e″									
where $\mathbf{f} = targ$	et f * 10 ^c										
E ₀ = 8.8	54 * 10 ⁻¹²	2									

Simulating Liquid Dielectric Parameter Check Result @ Body 2600 MHz Room Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Devin Chang

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 15 of 58

Simulating Liquid Dielectric Parameter Check Result @ Body 2600 MHz Room Ambient Temperature = 23°C; Relative humidity = 40% Measured by: Devin Chang

-									
	Simulati	Simulating Liquid Parameters		Measured	Target	Deviation (%)	Limit (%)		
	f (MHz)	Depth (cm)			i didinetero	Meddaled	Target	Deviation (70)	Emit (70)
	0500 45		e'	52.1804	Relative Permittivity (ε_r):	52.1804	52.6	-0.80	± 5
	2500	15	e"	15.1396	Conductivity (o):	2.10559	2.02	4.24	± 5
	2500	15 -	e'	52.0877	Relative Permittivity (ε_r):	52.0877	52.5	-0.79	± 5
	2590		e"	15.4165	Conductivity (o):	2.22129	2.15	3.32	± 5
	2600	45	e'	51.9823	Relative Permittivity (ε_r):	51.9823	52.5	-1.01	± 5
	2000	15	e"	15.4926	Conductivity (o):	2.24087	2.16	3.71	± 5
0000	2600	15	e'	51.7596	Relative Permittivity (ε_r):	51.7596	52.4	-1.22	± 5
	2690	15	e"	15.8733	Conductivity (o):	2.37541	2.29	3.73	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C March 09, 2010 02:50 PM Frequency e' e''

i i oquonoy	U U	•
2480000000.	52.3499	14.9354
2490000000.	52.2728	14.9895
2500000000.	52.1804	15.1396
2510000000.	52.0314	15.2681
2520000000.	51.9653	15.3929
2530000000.	51.9807	15.4724
2540000000.	52.0287	15.5595
2550000000.	52.0766	15.6041
2560000000.	52.0793	15.5566
2570000000.	52.1125	15.4495
2580000000.	52.1206	15.4026
2590000000.	52.0877	15.4165
260000000.	51.9823	15.4926
2610000000.	51.8408	15.5768
2620000000.	51.7067	15.6743
2630000000.	51.5982	15.7788
2640000000.	51.5661	15.8754
2650000000.	51.5582	15.9354
2660000000.	51.6043	15.9626
2670000000.	51.6748	15.9256
2680000000.	51.7442	15.9052
269000000.	51.7596	15.8733
2700000000.	51.7125	15.8925
2710000000.	51.6069	15.9396
2720000000.	51.4572	15.9750

The conductivity (σ) can be given as:

$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\boldsymbol{\varepsilon_0} = 8.854 * 10^{-12}$

Page 16 of 58

Simulating Liquid Dielectric Parameter Check Result @ Body 2600 MHz Room Ambient Temperature = 23°C; Relative humidity = 40% Measured by: Devin Chang

	Simulating Liquid Parameters		Parameters	Measured	Target	Deviation (%)	Limit (%)		
	f (MHz)	Depth (cm)			i didinetero	Measurea	Turget	Deviation (70)	Emit (70)
	2500 45		e'	52.5852	Relative Permittivity (ε_r):	52.5852	52.6	-0.03	±5
	2500	15	e"	14.7241	Conductivity (o):	2.04780	2.02	1.38	± 5
	2500	15	e'	52.4946	Relative Permittivity (ε_r):	52.4946	52.5	-0.01	± 5
	2590	15	e"	15.0119	Conductivity (o):	2.16299	2.15	0.60	± 5
	2600	45	e'	52.3908	Relative Permittivity (ε_r):	52.3908	52.5	-0.23	± 5
	2000	ID ID	e"	15.0887	Conductivity (o):	2.18245	2.16	1.00	± 5
2690	2600	15	e'	52.1726	Relative Permittivity (ε_r):	52.1726	52.4	-0.43	± 5
	15	e"	15.4386	Conductivity (o):	2.31036	2.29	0.89	±5	

Liquid Check

Ambient temperature	e: 24 deg. C; Liquid te	mperature: 23 deg. C
March 10, 2010 11:2	4 AM	
Frequency	e'	e"
2480000000.	52.7680	14.5281
2490000000.	52.6925	14.5873
2500000000.	52.5852	14.7241
2510000000.	52.4409	14.8478
2520000000.	52.3594	14.9477
2530000000.	52.3757	15.0330
2540000000.	52.4269	15.1197
2550000000.	52.4631	15.1541
2560000000.	52.4710	15.1220
2570000000.	52.5148	15.0258
2580000000.	52.5204	14.9846
2590000000.	52.4946	15.0119
260000000.	52.3908	15.0887
2610000000.	52.2616	15.1577
2620000000.	52.1300	15.2430
2630000000.	52.0235	15.3300
2640000000.	51.9887	15.4202
2650000000.	51.9627	15.4772
2660000000.	52.0007	15.5025
2670000000.	52.0719	15.4804
2680000000.	52.1400	15.4561
269000000.	52.1726	15.4386
2700000000.	52.1290	15.4699
2710000000.	52.0269	15.4919
2720000000.	51.8887	15.5321

The conductivity (σ) can be given as:

$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

E₀ = 8.854 * 10⁻¹²

Page 17 of 58

Simulating Liquid Dielectric Parameter Check Result @ Body 2600 MHz Room Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Devin Chang

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
2500	e'	52.2449	Relative Permittivity (ε_r):	52.245	52.6	-0.68	± 5
2500	e"	14.7806	Conductivity (σ):	2.056	2.02	1.77	± 5
2500	e'	52.2246	Relative Permittivity (ε_r):	52.225	52.5	-0.52	± 5
2590	e"	14.9768	Conductivity (σ):	2.158	2.15	0.37	± 5
2600	e'	52.1098	Relative Permittivity (ε_r):	52.110	52.5	-0.76	± 5
2000	e"	15.0900	Conductivity (σ):	2.183	2.16	1.01	± 5
2690	e'	51.9277	Relative Permittivity (ε_r):	51.928	52.4	-0.90	± 5
2000	e"	15.4627	Conductivity (σ):	2.314	2.29	1.05	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C							
April 21, 2010 03:43 PM							
Frequency	e'	e"					
2450000000.	52.7296	14.8226					
2460000000.	52.6125	14.7299					
2470000000.	52.4742	14.5919					
2480000000.	52.3922	14.5087					
2490000000.	52.3416	14.5805					
2500000000.	52.2449	14.7806					
2510000000.	52.1076	14.9820					
2520000000.	52.0332	15.1260					
2530000000.	52.0605	15.2305					
2540000000.	52.1307	15.3169					
2550000000.	52.1830	15.3358					
2560000000.	52.1816	15.2372					
2570000000.	52.2144	15.0677					
2580000000.	52.2397	14.9650					
2590000000.	52.2246	14.9768					
260000000.	52.1098	15.0900					
2610000000.	51.9463	15.2157					
2620000000.	51.7896	15.3497					
2630000000.	51.6919	15.4850					
2640000000.	51.6383	15.6138					
2650000000.	51.6272	15.6680					
2660000000.	51.6928	15.6573					
2670000000.	51.7936	15.5755					
2680000000.	51.8864	15.5030					
269000000.	51.9277	15.4627					
2700000000.	51.8930	15.4820					
2710000000.	51.7538	15.5357					
2720000000.	51.5836	15.6046					
2730000000.	51.4262	15.7038					
2740000000.	51.2919	15.8417					
2750000000.	51.2022	15.9369					
The conductivity (σ) can be given as:							
$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$							
where $\mathbf{f} = target f * 10^6$							
$\epsilon_0 = 8.854 \times 10^{\circ}$	-12						

COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 18 of 58

8. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV4 and EX3DV3 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

Reference SAR Values for BODY-tissue from calibration certificate of SPEAG.

System	Cal. certificate #	Cal.	SAR Avg (mW/g)			
validation dipole		due date	Tissue:	Head	Body	
	$D_{2600}/2 1006 \text{ Apr00}$	4/22/10	SAR _{1g} :		57.6	
D2000V2	D2000V2-1000_Apr09	4/22/10	SAR _{10g} :		25.8	

Page 19 of 58

8.1. SYSTEM CHECK RESULTS FOR D2600V2

System Validation Dipole: D2600V2 SN: 1006 Date: December 19, 2009

Ambient Temperature = 24° C. Relative humidity = 40%

Ambient Ter	mperature = :	24°C; Relative h	Measured	by: Devin Ch	ang		
Medium	CW Signal	W Signal Forward Pwr Measure		sured	Target Delta (%)		Tolerance
Medium	(MHz)	(mW)	(Normalized to 1 W)		Taiyet		(%)
Body	2600	250	1g SAR:	54.2	57.6	-5.90	+10
воцу	2000	230	10g SAR:	23.7	25.8	-8.14	10

Date: March 9, 2009

Ambient Ter	nperature = 2	24°C; Relative h	Measured	by: Devin Ch	ang		
Madium	CW Signal	Forward Pwr	vr Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance
wealum	(MHz)	(mW)					(%)
Body	2600	250	1g SAR:	58.9	57.6	2.26	+10
БОЦУ	2600	2600 250		25.8	25.8	0.00	ΞĪŪ

Date: April 21, 2009

Ambient Temperature = 24° C: Relative humidity = 40%

Measured by: Devin Chang

Medium	CW Signal (MHz)	Forward Pwr (mW)	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
Dedu	2600	250	1g SAR:	55.6	57.6	-3.47	+10
воцу	2000	2000 250	10g SAR:	24.4	25.8	-5.43	10

Page 20 of 58

9. WiMax DEVICE & SYSTEM OPERATING PARAMETERS

Description	Parameter	Comment
FCC ID	N7NAC250U	CDMA/WiMAX Combo USB Adapter
Radio Service	FCC Part 27	Rule parts
Transmit Frequency Range (MHz)	5 MHz BW: 2498.5 – 2687.5 10MHz BW:2501 - 2685	System parameter
System/Channel Bandwidth (MHz)	5MHz / 10MHz	System parameter
System Profile	Release 1.0 (Revision 1.7.1 2008)Band Class 3 Radio Profile 3A	Defined by WiMAX Forum
Modulation Schemes	QPSK, 16QAM	Identify all applicable UL modulations
Sampling Factor	28/25	System parameter
Sampling Frequency (MHz)	5 MHZ BW:5.6MHz 10MHz BW:11.2MHz	(Fs)
Sample Time (ns)	5MHz BW:178usec 10MHz BW:89.3usec	(1/Fs)
FFT Size (NFFT)	5MHz BW:512 10MHz BW:1024	(NFFT)
Sub-Carrier Spacing (kHz)	5MHz BW:10.9KHz 10MHz BW:10.9KHz	(lf)
Useful Symbol time (as)	Symbol timing (NOT including guard time): 91.43us	(Tb=1/Δf)
Guard Time (as)	1/8 symbol:11.43us	(Tag=Tb/cp); cp = cyclic prefix
OFDMA Symbol Time (as)	102.86usec	(Ts=Tibet)
Frame Size (ms)	5	System parameter
TTG + RTG (as or number of symbols)	165.7usec	Idle time, system parameter
Number of DL OFDMA Symbols per Frame	29	Identify the allowed & maximum symbols, including both traffic & control symbols
Number of UL OFDMA Symbols per Frame	18	
DL:UL Symbol Ratio	29/18	For determining UL duty factor
Power Class (dBm)	Power Class 2 16QAM: 21 <= PTx,max < 25 QPSK: 23 <= PTx,max < 27	
Wave1 / Wave2	Wave 2: two antennas. Antenna1 2(aux) is TX/RX diversity antenna. simultaneously.	(main) is TX/RX diversity antenna, Antenna Antenna 1 and Antenna 2 cannot transmit
UL Zone Types (FUSC, PUSC, OFUSC, OPUSC, AMC, TUSC1, TUSC2)	PUSC only	

Page 21 of 58

Maximum Number of UL Sub- Carriers	10 MHz BW	5 MHz BW		
	Null Sub-Carriers=184 Pilot Sub-Carriers=280 Data Sub-Carriers=560	Null Sub-Carriers=104 Pilot Sub-Carriers=136 Data Sub-Carrier=272		
UL Burst Maximum Average	ANT 1 (Main)	ANT 2 (AUX)		
Power	10 MHz/16QAM: 23.24 dBm	10 MHz/16QAM:22.96 dBm		
	10 MHz / QPSK: 23.29 dBm	10 MHz /QPSK:22.9 dBm		
	5 MHz / 16QAM:23.4 dBm	5 MHz/16QAM: 23.17 dBm		
	5 MHz:/QPSK: 23.43 dBm	5 MHz/QPSK:23.25 dBm		
Symbols	HARQ ACKCH is used for transmission of ACK/NACK for downlink HARQ burst. HARQ allows BS to employ aggressive link adaptation to improve system throughput. CQICH is used for transmission of CQI information from MS to BS. BS may utilize this information for link adaptation and handover decision. MS is configured by BS to transmit CQI every Nth frame, which implies that CQI feedback delay is determined by BS configuration. BS determines CQI period N as a result of trade-off between CQI overhead and CQI accuracy.			
	ANT 1(Main)	Calculation		
	64.79mW for 5 MHz / QPSK	220.29mW x 5/17		
	64.35mW for 5 MHZ / 16QAM	218.78mW x 5/17		
UL Control Symbol Maximum Average Power	30.47mW for 10MHz / QPSK	213.30mW x 5/35		
	30.12mW for 10MHz / 16QAM	210.86mW x 5/35		
	ANT 2 (AUX)	Calculation		
	62.16mW for 5 MHz / QPSK	211.35 mWx5/17		
	61.03mW for 5 MHz / 16QAM	207.49 mWx5/17		
	27.85mW for 10 MHz / QPSK	194.98 mWx5/35		
	28.24mW for 10 MHz / 16QAM	197.70 mWx5/35		

Page 22 of 58

10. EUT DESCRIPTION

- a. The Sierra Wireless CDMA/WiMAX Combo USB modem, model no: AC250U is equipped with cellular / PCS CDMA 2000 1xEVDO Rev. A and 2.6 GHz WiMAX radio capabilities.
- b. AC250U transmits on 5 ms frames using 5 MHz and 10 MHz channels. The 10 MHz channel bandwidth uses 1024 sub-carriers and 35 sub-channels, with 184 null sub-carriers and 840 available for transmission, consisting of 560 data sub-carriers and 280 pilot sub-carriers. The 5 MHz channel bandwidth uses 512 sub-carriers and 17 sub-channels, with 104 null sub-carriers and 408 available for transmission, consisting 272 data sub-carriers and 136 pilot sub-carriers.
- c. The 802.16e WiMAX and CDMA radio will not transmit simultaneously. Once the network is chosen by the end user during WiMAX/CDMA network, only the WiMAX radio or CDMA radio will transmit.

10.1. WiMAX Zone Types

The device and its system are both transmitting using only PUSC zone type. This enables multiple users to transmit simultaneously within the system. FUSC, AMC and other zone types are not used by AC250U for uplink transmission. The maximum DL:UL symbol ratio can be determined according to the PUSC requirements. The system transmit an odd number of symbols using DL-PUSL consisting of even multiples of traffics and control symbols plus one symbol for the preamble. Multiples of three symbols are transmitted by the device using UL-PUSC. The OFDMA symbol time allows up to 48 downlink and uplink symbols in each 5 ms frame. TTG and RTG are also included in each frame as DL/UL transmission gaps; therefore, the system can only allow 47 or less symbols per frame. The maximum DL:UL symbol ratio is determined according to these PUSC parameters for evaluating SAR compliance.

WiMAX chipset is capable of supporting the following Downlink / Uplink based upon 802.16e.

Description	Down Link	Up Link
	35	12
	34	13
Number of OEDM Symbols	32	15
in Down Link and Un Link	31	16
for 5 MHz and 10 MHz	30	17
Bandwidth	29	18
Banawiath	28	19
	27	20
	26	21

Page 23 of 58

10.2. Duty Factor and Crest Factor Considerations

Vector Waveform File	Channel BW	Modulation	DL:UL Ratio	Measured Duty Factor (%) (1Δ-3Δ)/2Δ	Calculated Duty Factor	Calculated Crest Factor
T5D29U184Q34S85	5 MHz	QPSK	29:18	31.2%	30.86%	3.24
T5D29U1816Q34S85	5 MHz	16QAM	29:18	31.1%	30.86%	3.24
T10D29U184Q34S175	10 MHz	QPSK	29:18	31.2%	30.86%	3.24
T10D29U1816Q12S175	10 MHz	16QAM	29:18	31.2%	30.86%	3.24

Crest Factor: The SAR of this device is measured using a DL:UL symbol ratio of 29:18, consisting of 15 traffic symbols and 3 control symbols are not activated. A duty factor of (15 x 102.857 μ s)/5000 μ s = 30.86% is applied by the SAR system to calculate the measured SAR. The cf factor, a conversion factor related to 1/(duty factor), used by SAR measurement systems for periodic pulse signal compensation is set to 1/0.3086 = 3.24.

Note: On the spectrum analyzer plots, very small power level corresponding to the noise floor of the TX in these first three control symbols. The remaining 15 symbols are fully occupied with a TX burst which uses all slots and therefore all sub channels.

Page 24 of 58

🔆 Ag	ilent 14	:49:03 [)ec 20,	2009						F	RΤ		Marker	
Ref 30 #Peak	dBm	#	Atten	30 dB					Δ Mk	03 38 31.:	55 µs 59 dB	Sele 1	ect Mar 2 <u>3</u>	ker <u>4</u>
Log 10 dB/ Offst													No	ormal
10.6 dB														Delta
LgAv	eperity (tak	Mar Mar		•	Stational State		a der felten skippels	>			ayan da dijari.	(Tı Ref	Delta racking F	Pair Ref) ≜
Center Res BV	2.593 0 V 1 MHz	00 GHz		v	BW 1 M	Hz	Swe	ep	10 n	Spa ns (2001	an 0 Hz pts)	Span	Span Ci	Pair _{enter}
Markei 4 D	r T	race (4)	Type Time		×	Axis 045 mc				Amplite 47.25.49	ude	<u> </u>		
18 1∆ 2R 2∆ 20	1	(1) (1) (1) (1)	Time Time Time Time		2.	0-0 ms 1.92 ms 045 ms 5 ms				-47.25 dB -47.25 dB 1.74 d	B Im IB			Off
3R 3 <u>A</u>		(1)	Time		2.	очо ms 365 µs				-47.20 dB 31.59 (18		۱ ۱	Vlore of 2
Copyrig	ht 2000-	2009 Ag	ilent Te	chnologi	ies							-		

Figure 1 5 MHZ BW / 16QAM

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 25 of 58

🔆 Agilent 1	4:54:07 Dec 20, 2009	R 1	Freq/Channel
Ref 30 dBm #Peak	#Atten 30 dB	Δ Mkr3 360 μs 38.55 dE	Center Freq 2.59300000 GH
Log 10 dB/ Offst			Start Freq 2.59300000 GHz
10.6 dB			Stop Free

Figure 2 5 MHz BW / QPSK

ter Freg Ref 30 dBi 3000 GHz #Peak Log 10 art Freq dB/ 3000 GHz Offst 10.6 top Freq dB 3000 GHz A MARKET PARTY CF Step ۲ 1.00000000 MHz LgAv <u>Auto</u> Man Center 2.593 000 GHz Span 0 Hz Freq Offset Res BW 1 MHz Sweep 10 ms (2001 pts) VBW 1 MHz 0.00000000 Hz Amplitude Marker Trace Туре X Axis 1R (1) Time 1.335 ms -47.57 dBm -1 10 dB 1∆ (1) Time 1.92 ms Signal Track 2R (1) Time 1.335 ms -47.57 dBm On <u>Off</u> 2∆ (1)Time 5 ms -1.20 dB -47.57 dBm 3R (1) Time 1.335 ms 38.55 dB З∆ (1)Time 360 µs opyright 2000-2009 Agilent Technologies

Figure 3 10 MHz BW / 16QAM

Page 26 of 58

10.3. SAR Scaling Consideration

- d. All Test Vectors are performing with all UL symbols at maximum power
- e. Although the chipset can supply higher downlink-to-uplink (DL/UL) symbol ratios, AC250U SAR values are scaled up or down based upon BRS/EBS WiMAX operators with agreements to transmit at a maximum DL/UL symbol ratio of 29:18 Vs actual UL traffic symbols were used during SAR measurement. Therefore, the maximum transmission duty factor supported by the chipset is not applicable for this device. The system can transmit up to 48 OFDMA symbols in each 5 ms frame, including 1.6 symbols for TTG and RTG.
- f. UL Burst Max. Average Power: was measured using spectrum analyzer gated to measure the power only during TX "ON" stage.

IA II	NT 1 (Main)		ANT 2 (AUX)			
10 MHz/16QAM	23.24 dBm	210.86mW	10 MHz/16QAM	22.96 dBm	197.70mW	
10 MHz / QPSK	23.29 dBm	213.30mW	10 MHz /QPSK	22.9 dBm	194.98mW	
5 MHz / 16QAM	23.4 dBm	218.78mW	5 MHz/16QAM	23.17 dBm	207.49mW	
5 MHz:/QPSK	23.43 dBm	220.29mW	` 5 MHz/QPSK	23.25 dBm	211.35mW	

- g. The control channels may occupy up to 5 slots during normal operation. A slot is a subchannel with the duration of 3 symbols. There are a total of 35 slots in the 10 MHz channel configuration.
- h. The control channels may occupy up to 5 slots during normal operation. A slot is a subchannel with the duration of 3 symbols. There are a total of 17 slots in the 5 MHz channel configuration.
- i. When the device is transmitting at max. rated power, the output power for the control symbol is:

	ANT 1 (Main)		ANT 2 (AUX)			
10 MHz/16QAM	210.86mWx5/35	30.12mW	10 MHz/16QAM	197.70mWx5/35	28.24mW	
10 MHz / QPSK	213.30mWx5/35	30.47mW	10 MHz /QPSK	194.98mWx5/35	27.85mW	
5 MHz / 16QAM	218.78mWx5/17	64.35mW	5 MHz/16QAM	207.49mWx5/17	61.03mW	
5 MHz:/QPSK	220.29mWx5/17	64.79mW	` 5 MHz/QPSK	211.35mWx5/17	62.16mW	

Page 27 of 58

j. The target output power for DL:UL ratio of 29:18 is calculated as the following:

Modulation	Channel Bandwidth	ANT1/Main 29:18 DL:UL Ratio Power /mW	ANT2/Main 29:18 DL:UL Ratio Power /mW
16QAM	10 MHz	(30.12 x 3)+(210.86x15)=3253.26	(28.24x3)+(197.70x15)=3050.22
QPSK	10 MHz	(30.47x3)+(213.3X15)=3290.91	(27.85x3)+(194.98x15)=3008.25
16QAM	5 MHz	(64.35 X 3) +(218.78x15)=3474.75	(61.03x3)+(207.49x15)=3295.44
QPSK	5 MHz	(64.79X3) +(220.29X15)=3498.72	(62.16x3)+(211.35x15)=3356.73

k. Test Vector waveform power

T10D29U1816Q12S175 (29:18 DL:UL Ratio)										
	10 MHz BW/ 16 QAM									
Channe No	Frequency /MHz	ANT1 (Main) Measured Power/mW	ANT2(AUX) Measured Power/mW	Number of Traffic Symbols	ANT1(Main) Traffic Symbols Power/mW	ANT2(Aux) Traffic Symbols Power/mW				
0	2501	210.86	176.20	15	3162.9	2643				
368	2593	195.43	162.55	15	2931.45	2438.25				
736	2685	204.17	197.7	15	3062.55	2965.5				
	T10D29U184Q34S175 (29:18 DL:UL Ratio)									
			10 MHz BW / 0	QPSK						
0	2501	213.30	178.65	15	3199.5	2679.75				
368	2593	196.34	164.06	15	2945.1	2460.9				
736	2685	208.93	194.98	15	3133.95	2924.7				
		T5D29U18	16Q34S85 (29:	18 DL:UL Rat	tio)					
			5 MHz BW / 16	QAM						
0	2498.5	218.78	190.99	15	3281.7	2864.85				
378	2593	209.41	177.42	15	3141.15	2661.3				
756	2687.5	217.27	207.49	15	3259.05	3112.35				
		T5D29U18	84Q34S85 (29:1	18 DL:UL Rat	io)					
5 MHz BW/ QPSK										
0	2498.5	220.29	192.31	15	3304.35	2884.65				
378	2593	217.77	180.72	15	3266.55	2710.8				
756	2687.5	218.78	211.35	15	3281.7	3170.25				

Page 28 of 58

10.4. Duty-Factor Scaling to DL:UL Ratio of 29:18

T10D29U1816Q12S175 (29:18 DL:UL Ratio)								
10 MHz BW/ 16 QAM								
Channel No	Frequenc y/MHz	29:18 Tar	get Power	29:18 Traffic Symbol Power		Scaling Factor (rated power/traffic power)		
		ANT1	ANT2	ANT1	ANT2	ANT1	ANT2	
0	2501	3253.26	3050.22	3162.9	2643	1.03	1.15	
368	2593	3253.26	3050.22	2931.45	2438.25	1.11	1.25	
736	2685	3253.26	3050.22	3062.55	2965.5	1.07	1.03	
T10D29U184Q34S175 (29:18 DL:UL Ratio)								
			10 MHz B	W / QPSK				
0	2501	3290.91	3008.25	3199.5	2679.75	1.03	1.12	
368	2593	3290.91	3008.25	2945.1	2460.9	1.12	1.22	
736	2685	3290.91	3008.25	3133.95	2924.7	1.05	1.03	
		T5D29U	1816Q34S85	(29:18 DL	:UL Ratio)			
			5 MHz BW	/ / 16QAM				
0	2498.5	3474.75	3295.44	3281.7	2864.85	1.06	1.15	
378	2593	3474.75	3295.44	3141.15	2661.3	1.11	1.24	
756	2687.5	3474.75	3295.44	3259.05	3112.35	1.07	1.06	
		T5D29	J184Q34S85	(29:18 DL:	UL Ratio)			
5 MHz BW/ QPSK								
0	2498.5	3498.72	3356.73	3304.35	2884.65	1.06	1.16	
378	2593	3498.72	3356.73	3266.55	2710.8	1.07	1.24	
756	2687.5	3498.72	3356.73	3281.7	3170.25	1.07	1.06	

11. SIGNAL GENERATOR DETAILS

Frame Profile loaded in Vector Signal Generator:

Vector Waveform File	Channel BW	Modulation	DL:UL Ratio	No of Traffic Symbol at Max. Power	No of Control Symbol with reduced power
T5D29U184Q34S85	5 MHz	QPSK	29:18	15	0
T5D29U1816Q34S85	5 MHz	16QAM	29:18	15	0
T10D29U184Q34S175	10 MHz	QPSK	29:18	15	0
T10D29U1816Q12S175	10 MHz	16QAM	29:18	15	0

Vector wave form Time Domain Plots Vs Modulated Plots

T10D29U1816Q12S175 / 10MHz BW / 16QAM

Green Trace= Vector Wave Form Generated by Vector Signal Generator before establishing the link to the EUT, *the green trace is not needed for analysis and should be ignored.*

Blue Trace = Modulated Link

T10D29U184Q34S175 / 10 MHz BW / QPSK

Green Trace= Vector Wave Form Generated by Vector Signal Generator before establishing the link to the EUT, *the green trace is not needed for analysis and should be ignored.*

Page 31 of 58

T5D29U1816Q34S85 / 5 MHz / 16QAM

Green Trace= Vector Wave Form Generated by Vector Signal Generator before establishing the link to the EUT. *the green trace is not needed for analysis and should be ignored.*

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 32 of 58

T5D29U184Q34S85 / 5 MHz / QPSK

Green Trace= Vector Wave Form Generated by Vector Signal Generator before establishing the link to the EUT, *the green trace is not needed for analysis and should be ignored.*

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 33 of 58

12. OUTPUT POWER VERIFICATION

The max. conducted output power is measured for the uplink durst in the difference modulation and channel bandwidth. Conducted output powers were measured with the module connected to the test jig with over-to-air communication link to Vector Signal generator. During SAR evaluation, the AC250U is connected to notebook PC and the over-the-air communication link is established between AC250U data modem and Vector signal generator. The output power is measured for the uplink bursts through triggering and gating.

With Spectrum Analyzer with Gate-On, Channel Power

Vector Waveform File	Frequency (MHz)	Channel BW	Modulation	DL:UL Ratio	No of Traffic Symbol at Max. Power	No of Control Symbol with reduced power	
	2498.5			29:18			
T5D29U184Q34S85	2593	5 MHz	QPSK		15	0	
	2687.5						
	2498.5	5 MHz	16QAM	29:18	15	0	
T5D29U1816Q34S85	2593						
	2687.5						
	2501						
T10D29U184Q34S175	2596	10 MHz	QPSK	29:18	15	0	
	2685						
T10D29U1816Q12S175	2501				15		
	2596	10 MHz	16QAM	29:18		0	
	2685						

Page 34 of 58

Power Drift: Per the requirement stated in IEEE1528 section 6.3.3., power drift shall be recorded the absolute value between step 1 and step 4. However, with repeat testing, it is not possible to obtain meaningful absolute value. In order to determine if device output has been stable during a SAR measurement, conducted power were measured before and after based upon the length of time of each SAR test to verify if the output changes are within the 5% drift (< 0.25 dB).

Antenna 1 (Main) Port

		Freq			Delta		
Mode	Test Vector file name	Fieq.	Bet	fore	After S	After SAR test	
		(MHz)	(dBm)	(mW)	(dBm)	(mW)	(%)
		2498.5	23.43	220.29	23.40	218.78	-0.13
5MHz QPSK	T5D29U184Q12S85	2593	23.38	217.77	23.38	217.77	0.00
		2687.5	23.40	218.78	23.35	216.27	-0.21
	T5D29U1816Q34S85	2498.5	23.40	218.78	23.40	218.78	0.00
5MHz 16QAM		2593	23.21	209.41	23.20	208.93	-0.04
		2687.5	23.37	217.27	23.35	216.27	-0.09
		2501	23.29	213.30	23.28	212.81	-0.04
10MHz QPSK	T10D29U184Q12S175	2593	22.93	196.34	22.90	194.98	-0.13
		2685	23.20	208.93	23.20	208.93	0.00
		2501	23.24	210.86	23.20	208.93	-0.17
10MHz 16QAM	T10D29U1816Q12S175	2593	22.91	195.43	22.90	194.98	-0.04
		2685	23.10	204.17	23.10	204.17	0.00

Antenna 2(Aux) Port

		Frog		Outpu	ut Pwr		Delta
Mode	Test Vector file name	Fieq.	Bet	fore	After S	AR test	Deita
		(MHz)	(dBm)	(mW)	(dBm)	(mW)	(%)
		2498.5	22.84	192.31	22.80	190.55	-0.18
5MHz QPSK	T5D29U184Q12S85	2593	22.57	180.72	22.55	179.89	-0.09
		2687.5	23.25	211.35	23.20	208.93	-0.22
		2498.5	22.81	190.99	22.80	190.55	-0.04
5MHz 16QAM	T5D29U1816Q34S85	2593	22.49	177.42	22.45	175.79	-0.18
		2687.5	23.17	207.49	23.15	206.54	-0.09
		2501	22.52	178.65	22.50	177.83	-0.09
10MHz QPSK	T10D29U184Q12S175	2593	22.15	164.06	22.11	162.55	-0.18
		2685	22.90	194.98	22.80	190.55	-0.44
		2501	22.46	176.20	22.46	176.20	0.00
10MHz 16QAM	T10D29U1816Q12S175	2593	22.11	162.55	22.05	160.32	-0.27
		2685	22.96	197.70	22.90	194.98	-0.26

Page 35 of 58

13. PEAK TO AVERAGE RATIO

Peak and Average Output power measurements were made with Power Meter.

Mada	Tost Vostor filo namo	f (MU-)	Conducted I	Power (dBm)	Peak-to-average	
Mode			Peak	Average	ratio (PAR)	
5MHz QPSK	T5D29U184Q12S85	2593	31.872	23.971	7.901	
5MHz 16QAM	T5D29U1816Q34S85	2593	31.872	23.93	7.942	
10MHz QPSK	T10D29U184Q12S175	2593	31.872	23.529	8.343	
10MHz 16QAM	T10D29U1816Q12S175	2593	31.872	23.541	8.331	

Page 36 of 58

5MHz_16QAM

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of CCS. FORM NO: CCSUP4031B TEL: (510) 771-1000 FAX: (510) 661-0888

Page 37 of 58

10MHz_16QAM

COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 38 of 58

14. SUMMARY OF SAR TEST RESULTS

1_HORIZONTAL-UP/Connector A/Side B faced phantom/150 degree/ Setup Picture #1

(A)

Horizontal-Up Inserted into laptop

Antenna # 1 (Primary Tx)

						95	SAR (mW/g)	
BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	1-g	Scaling Factor	Adjusted 1-g
				Low	2498.5			
5MHz	QPSK	T5D29U184Q34S85	Horizontal-up	Middle	2593.0	0.136	1.070	0.15
			100 Dog.000	High	2687.5			
				Low	2498.5			
5MHz 16QA	16QAM	T5D29U1816Q34S85	Horizontal-up	Middle	2593.0	0.156	0.156 1.110	
				High	2687.5			
				Low	2501.0			
10MHz	QPSK	T10D29U184Q34S175	Horizontal-up	Middle	2593.0	0.144	1.120	0.16
			Too Dogrooo	High	2685.0			
				Low	2501.0			
10MHz	16QAM	6QAM T10D29U1816Q34S175	Horizontal-up	Middle	2593.0	0.140	1.110	0.16
				High	2685.0			

Antenna # 2 (Secondary Tx)

514/					0,	SAR (mW/g)		
BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	1-g	Scaling Factor	Adjusted 1-g
				Low	2498.5			
5MHz ´	16QAM	M T5D29U1816Q34S85	Horizontal-up 150º Degrees	Middle	2593.0	0.305	1.240	0.38
				High	2687.5			

Note: Based upon the power measurement, ANT2 has lower output power by comparing to ANT1. Based upon section 19 antenna location, the antenna-to-user separation distance of ANT1 is closer than ANT2. At ANT2 position, SAR is performed on the highest SAR value at ANT1 position.

Page 39 of 58

2-1_<u>HORIZONTAL-DOWN/Connector B/Side A faced phantom/150 degree/Setup</u> <u>Picture #2</u>

(B)

Horizontal-Down With USB cable .Due to the 150 degree operation, this test position to evaluate the 5 mm distance to the closest point of EUT dongle.

Antenna	a # 1 (Pr	imary ix)							
							SAR (mW/g) 1-g Scaling Factor Adjust Factor 0.749 1.070 0. 0.757 1.110 0. 0.757 1.110 0.		
BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	1-g	SAR (mW) 1-g Scaling Factor .749 1.070	Adjusted 1- g	
				Low	2498.5				
5MHz	QPSK	T5D29U184Q34S85	150º Degrees	Middle	2593.0	0.749	1.070	0.80	
			loo Doglooo	High	2687.5				
				Low	2498.5				
5MHz	16QAM	T5D29U1816Q34S85	150º Degrees	Middle	2593.0	0.757	1.110	0.84	
			Too Degrees	High	2687.5				
				Low	2501.0				
10MHz	QPSK	T10D29U184Q34S175	150º Degrees	Middle	2593.0	0.676	1.120	0.76	
			Too Degrees	High	2685.0				
				Low	2501.0				
10MHz	16QAM	T10D29U1816Q34S175	150º Degrees	Middle	2593.0	0.655	1.110	0.73	
			loo Dogrooo	High	2685.0				

Antenna # 1 (Primary Tx)

Antenna # 2 (Secondary Tx)

DW					93	SAR (mW/g))	
BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	1-g	Scaling Factor	Adjusted 1-g
5MHz			Horizontal-up 150º Degrees	Low	2498.5			
	16QAM	T5D29U1816Q34S85		Middle	2593.0	0.405	1.240	0.50
				High	2687.5			

Note: Based upon the power measurement, ANT2 has lower output power by comparing to ANT1. Based upon section 19 antenna location, the antenna-to-user separation distance of ANT1 is closer than ANT2. At ANT2 position, SAR is performed on the highest SAR value at ANT1 position.

Page 40 of 58

2-2_<u>HORIZONTAL-DOWN/Connector B/ Side A parallel with phantom/Setup</u> Picture#3

(B)

Horizontal-Down With USB cable

Antenna # 1 (Primary Tx)

							SAR (mW/	g)
BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	1-g	Scaling Factor	Adjusted 1-g
			Llerizentel deuro	Low	2498.5	1.120	1.060	1.19
5MHz 16	16QAM	T5D29U1816Q34S85	150° Degrees	Middle 2593.0	0.991	1.110	1.10	
			lee begreee	High	2687.5	0.956	1.070	1.02
				Low	2501.0	0.990	1.030	1.02
10MHz	QPSK	T10D29U184Q34S175	150° Degrees	Middle	2593.0	0.850	1.120	0.95
			150 Degrees	High	2685.0	0.895	1.050	0.94

Antenna # 2 (Secondary Tx)

		Ande Test vector file name Test position Ch No		SAR (mW/g)				
BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	1-g	Scaling Factor	Adjusted 1-g
				Low	2498.5			
5MHz	16QAM	T5D29U1816Q34S85	Horizontal-up	Middle	2593.0	0.436	1.240	0.54
			100 Bogioco	High	2687.5			

Page 41 of 58

3-1_VERTICAL-FRONT/Connector C/Side A faced phantom (Worst-Case)/150 degree/ Setup Picture#4

(C)

Vertical-Front With USB cable. Due to the 150 degree operation, this test position to evaluate the 5 mm distance to the closest point of EUT dongle. *This test position was chosen voluntarily and was not required by KDB 447498 D02.*

Antenna # 1 (Primary Tx)

BW Mode						:	SAR (mW/	g)
BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	1-g	Scaling Factor	Adjusted 1-g
			Vertical front	Low	2498.5	1.020	1.060	1.08
5MHz	QPSK	T5D29U184Q34S85	(Face UP)	Middle	2593.0	0.892	1.070	0.95
			(! 466 6!)	High	2687.5	0.649	1.070	0.69
				Low	2498.5	1.030	1.060	1.09
5MHz 16QAM	16QAM	T5D29U1816Q34S85	(Face UP)	Middle	2593.0	0.859	1.110	0.95
				High	2687.5	0.644	1.070	0.69
				Low	2501.0	0.898	1.030	0.92
10MHz	QPSK	T10D29U184Q34S175	(Face UP)	Middle	2593.0	0.817	1.120	0.92
			(! 466 6!)	High	2685.0	0.592	1.050	0.62
				Low	2501.0			
10MHz ⁻	16QAM	T10D29U1816Q34S175	(Face UP)	Middle	2593.0	0.789	1.110	0.88
				High	2685.0			

Antenna # 2 (Secondary Tx)

						•	SAR (mW/g	AR (mW/g)	
BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	1-g	Scaling Factor	Adjusted 1-g	
5MHz	QPSK	T5D29U184Q34S85	Vertical-front (Face UP)	Middle	2593.0	0.408	1.240	0.51	
5MHz	16QAM	T5D29U1816Q34S85	Vertical-front (Face UP)	Middle	2593.0	0.405	1.240	0.50	
10MHz	QPSK	T10D29U184Q34S175	Vertical-front (Face UP)	Middle	2593.0	0.375	1.220	0.46	
10MHz	16QAM	T10D29U1816Q34S175	Vertical-front (Face UP)	Middle	2593.0	0.368	1.250	0.46	

Note: Based upon the power measurement, ANT2 has lower output power by comparing to ANT1. Based upon section 19 antenna location, at this position, ANT2 has closer antenna-to-user separation distance by comparing to ANT1. Thus all BW and Modulations are investigated on ANT1 and ANT2 position.

Page 42 of 58

3-2_VERTICAL-FRONT/Connector B/ Edge B faced phantom/Setup Picture#5

Antenna # 1 (Primary Tx)

							SAR (mW/g)
BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	1-g	Scaling Factor	Adjusted 1-g
) (antical frant	Low	2498.5			
5MHz	QPSK	T5D29U184Q34S85	(Face Left)	Middle	2593.0	0.365	1.070	0.39
				High	2687.5			
			Vertical front	Low	2498.5			
5MHz	16QAM	T5D29U1816Q34S85	(Face Left)	Middle	2593.0	0.347	1.110	0.39
				High	2687.5			
			Vertical front	Low	2501.0			
10MHz	QPSK	T10D29U184Q34S175	(Face Left)	Middle	2593.0	0.321	1.120	0.36
				High	2685.0			
			Vertical front	Low	2501.0			
10MHz	16QAM	1 T10D29U1816Q34S175	(Face Left)	Middle	2593.0	0.303	1.110	0.34
				High	2685.0			

Antenna # 2 (Secondary Tx)

					0,	SAR (mW/g)		
BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	1-g	Scaling Factor	Adjusted 1-g
5MHz		6QAM T5D29U1816Q34S85 Horizontal 150° Degr		Low	2498.5			
	16QAM		150° Degrees	Middle	2593.0	0.223	1.240	0.28
				High	2687.5			

Note: Based upon the power measurement, ANT2 has lower output power by comparing to ANT1. Based upon section 19 antenna location, the antenna-to-user separation distance of ANT1 is closer than ANT2. At ANT2 position, SAR is performed on the highest SAR value at ANT1 position.

Page 43 of 58

4-1_VERTICAL-BACK/Connector D/ Side B faced phantom/Setup Picture#6

(D)

Vertical-Back Inserted into laptop. Due to the 150 degree operation, this test position to evaluate the 5 mm distance to the closest point of EUT dongle. *This test position was chosen voluntarily and was not required by KDB 447498 D02.*

Antenna # 1 (Primary Tx)

	Mode	Test vector file name	Test position	Ch No.	f (MHz)	SAR (mW/g)		
BW						1-g	Scaling Factor	Adjusted 1-g
			Vertical-back	Low	2498.5			
5MHz	QPSK	T5D29U184Q34S85		Middle	2593.0	0.130	1.070	0.14
			Too Degrees	High	2687.5			
5MHz	16QAM	T5D29U1816Q34S85	Vertical-back 150° Degrees	Low	2498.5			
				Middle	2593.0	0.126	1.110	0.14
				High	2687.5			
) / antical hast	Low	2501.0			
10MHz	QPSK	T10D29U184Q34S175	Vertical-back	Middle	2593.0	0.120	1.120	0.13
			loo Degrees	High	2685.0			
10MHz		QAM T10D29U1816Q34S175	Vertical-back 150° Degrees	Low	2501.0			
	16QAM			Middle	2593.0	0.117	1.110	0.13
				High	2685.0			

Antenna # 2 (Secondary Tx)

	BW Mode Test vector file name Test po					SAR (mW/g)		
BW		Test position	Ch No.	f (MHz)	1-g	Scaling Factor	Adjusted 1-g	
5MHz	16QAM	AM T5D29U1816Q34S85	Horizontal-up 150º Degrees	Low	2498.5			
				Middle	2593.0	0.226	1.240	0.28
				High	2687.5			

Note: Based upon the power measurement, ANT2 has lower output power by comparing to ANT1. Based upon section 19 antenna location, the antenna-to-user separation distance of ANT1 is closer than ANT2. At ANT2 position, SAR is performed on the highest SAR value at ANT1 position.

Page 44 of 58

4-2_VERTICAL-BACK/ Connector D/ Edge A faced phantom/Setup Picture#7

Antenna # 1 (Primary Tx)

	Mode	Test vector file name	Test position	Ch No.	f (MHz)	SAR (mW/g)		
BW						1-g	Scaling Factor	Adjusted 1-g
			Vertical-back (Face Right)	Low	2498.5			
5MHz	QPSK	T5D29U184Q34S85		Middle	2593.0	0.109	1.070	0.12
				High	2687.5			
	16QAM	M T5D29U1816Q34S85	Vertical-back (Face Right)	Low	2498.5			
5MHz				Middle	2593.0	0.115	1.110	0.13
				High	2687.5			
	QPSK	QPSK T10D29U184Q34S175	Vertical-back (Face Right)	Low	2501.0			
10MHz				Middle	2593.0	0.104	1.120	0.12
				High	2685.0			
		6QAM T10D29U1816Q34S175	Vertical-back (Face Right)	Low	2501.0			
10MHz	16QAM			Middle	2593.0	0.102	1.110	0.11
				High	2685.0			

Antenna # 2 (Secondary Tx)

BW	Mode	Test vector file name	Test position	Ch No.	f (MHz)	SAR (mW/g)		
						1-g	Scaling Factor	Adjusted 1-g
5MHz	16QAM	M T5D29U1816Q34S85	Horizontal-up 150º Degrees	Low	2498.5			
				Middle	2593.0	0.050	1.240	0.06
				High	2687.5			

Note: Based upon the power measurement, ANT2 has lower output power by comparing to ANT1. Based upon section 19 antenna location, the antenna-to-user separation distance of ANT1 is closer than ANT2. At ANT2 position, SAR is performed on the highest SAR value at ANT1 position.

Page 45 of 58

15. WORST-CASE SAR TEST PLOTS

WORST-CASE SAR PLOT

Date/Time: 4/21/2010 5:06:20 PM

Test Laboratory: Compliance Certification Services

Horizon Down Antena 1_5M_16QAM

DUT: Sierra Wireless; Type: AC250; Serial: Unit # 1

Communication System: WIMAX 2.6G 5M; Frequency: 2498.5 MHz;Duty Cycle: 1:3.24 Medium parameters used (interpolated): f = 2498.5 MHz; σ = 2.05 mho/m; ϵ_r = 52.3; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 188

Low-ch/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.41 mW/g

Low-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 12.8 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.576 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.39 mW/g

Page 46 of 58

16. PAR AND SAR ERROR CONSIDERATIONPAR

In order to estimate the measurement error due to PAR issues, the configuration with the highest SAR in each channel bandwidth and frequency band is measured at various power levels, from approximately 12.5 mW, at approx. 3 dB steps, until the maximum power level is reached. As shown by the results and plot below, SAR is linear to power only when the probe sensors are operating within the square-law region.

10MHz_QPSK

Average Power (mW):	12.96	24.92	49.06	99.87	200.40
Single Point SAR (W/kg):	0.121	0.229	0.443	0.896	1.860
Linear line (SAR):	0.121	0.233	0.458	0.932	1.871
Estimation (%):	0.000	-1.575	-3.285	-3.907	-0.589

Procedure:

- 1. Position the EUT at flat phantom with 0 cm separation distance
- 2. Perform single point SAR evaluation with EUT power to be tuned at 12.96mW
- 3. Record the highest single point SAR value 0.121W/kg @ 12.96mW.
- 4. Without changing probe position but tune the EUT power to 24.92mW (3dB step).
- 5. Record the highest single point SAR value 0.229 W/kg @ 24.92mW- second single peak SAR
- 6. Repeat the step 4 and 5 to measure single peak SAR for third, fourth and fifth single peak SAR
- 7. Procedure in establishing reference line
 - a. First Reference Point= 0.121 W/kg @ 12.96mW
 - b. 0.121 / 12.96 = 0.0093 W/kg per mW
 - c. Second reference point=0.0093 x 24.92=0.233W/kg
 - d. Third reference point = $0,0093 \times 49.06=0.458$ W/kg
 - e. Fourth reference point= 0,0093 x 99.87=0.932W/kg
 - f. Fifth reference point= 0.0093 x 200.4=1.871W/kg
 - g. Sixth reference point = 0,0093 x 225 = 2.101W/kg
 - h. Draw a reference line from first reference point to sixth reference point.

Page 47 of 58

5MHz_16QAM

Average Power (mW):	13.05	25.62	51.34	101.40	202.80
Single Point SAR (W/kg):	0.110	0.217	0.436	0.875	1.810
Linear line (SAR):	0.110	0.216	0.433	0.855	1.709
Estimation (%):	0.110	0.484	0.751	2.374	5.884

Procedure:

- 8. Position the EUT at flat phantom with 0 cm separation distance
- 9. Perform single point SAR evaluation with EUT power to be tuned at 13.05mW
- 10. Record the highest single point SAR value 0.110W/kg @ 13.05mW.
- 11. Without changing probe position but tune the EUT power to 25.62mW (3dB step).
- 12. Record the highest single point SAR value 0.217 W/kg @ 25.62mW- second single peak SAR
- 13. Repeat the step 4 and 5 to measure single peak SAR for third, fourth and fifth single peak SAR
- 14. Procedure in establishing reference line
 - a. First Reference Point= 0.110 W/kg @ 13.05mW
 - b. 0.110 / 13.05 = 0.0084 W/kg per mW
 - c. Second reference point=0.0084 x 25.62=0.216W/kg
 - d. Third reference point = 0,0084 x 51.34=0.433W/kg
 - e. Fourth reference point= 0,0084 x 101.4=0.855W/kg
 - f. Fifth reference point= 0.0084 x 202.8=1.709W/kg
 - g. Sixth reference point = 0,0084 x 225 = 1.897W/kg
 - h. Draw a reference line from first reference point to sixth reference point.

Page 48 of 58

17. ATTACHMENTS

<u>No.</u>	Contents	No. of page (s)
1	System Check Plots	6
2-1	SAR Test Plots	39
2-2	SAR Test Plots for additional test position	7
3	Certificate of E-Field Probe EX3DV4 SN3686	10
4	Certificate of E-Field Probe EX3DV3 SN3531	11
5	Certificate of System Validation Dipole D2600V2 SN:1006	9

Page 49 of 58