

FCC CFR47 PART 27 SUBPART M CLASS II PERMISSIVE CHANGE

CERTIFICATION TEST REPORT

FOR

CDMA+ WIMAX + WIFI MOBILE HOT SPOT

MODEL NUMBER: AirCard W802S (OWL)

FCC ID: N7N-MHS802

REPORT NUMBER: 11U13729-1

ISSUE DATE: APRIL 14, 2011

Prepared for SIERRA WIRELESS INC. 2200 FARADAY AVENUE, SUITE 150 CARLSBAD, CA 92008, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

(R)

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	04/14/11	Initial Issue	T. Chan

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 2 of 20

TABLE OF CONTENTS

1.	ΑΤΤ	TESTATION OF TEST RESULTS4
2.	TES	ST METHODOLOGY
3.	FAC	CILITIES AND ACCREDITATION
4.	CAI	LIBRATION AND UNCERTAINTY
4	.1.	MEASURING INSTRUMENT CALIBRATION
4	.2.	SAMPLE CALCULATION
4	.3.	MEASUREMENT UNCERTAINTY
5.	EQI	UIPMENT UNDER TEST
5	.1.	DESCRIPTION OF EUT
5	.2.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE
5	.3.	MAXIMUM RF CONDUCTED OUTPUT POWER
5	.4.	DESCRIPTION OF AVAILABLE ANTENNAS
5	.5.	SOFTWARE AND FIRMWARE
5	.6.	WORST-CASE CONFIGURATION AND MODE
5	.7.	DESCRIPTION OF TEST SETUP7
6.	TES	ST AND MEASUREMENT EQUIPMENT9
7.	RAI	DIATED TEST RESULTS
	7.1. 7.1.	
8.	MAX	XIMUM PERMISSIBLE EXPOSURE17
9.	SET	TUP PHOTOS

Page 3 of 20

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	SIERRA WIRELESS INC.
	2200 FARADAY AVENUE, SUITE 150
	CARLSBAD, CA 92008, U.S.A.

EUT DESCRIPTION: CDMA+ WIMAX + WIFI MOBILE HOT SPOT

- MODEL: AirCard W802S
- SERIAL NUMBER: FCC Unit #3

DATE TESTED: MARCH 28 – APRIL 11, 2011

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 27 SUBPART M	PASS

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

THU CHAN ENGINEERING MANAGER UL CCS

Chin Pang

CHIN PANG EMC ENGINEER UL CCS

Page 4 of 20

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA/EIA 603C (2004), FCC CFR 47 Part 2, FCC CFR 47 Part 27M.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a CDMA + WiMax + WiFi mobile Hot Spot router

The WiMax radio module is manufactured by Sierra Wireless.

5.2. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The major change filed under this application is adding an external desktop cradle with 6dBi peak gain antennas.

5.3. MAXIMUM RF CONDUCTED OUTPUT POWER

The test measurement passed within \pm 0.5dBm of the original output power.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes 2 integral antennas for diversity, antenna 1 and antenna 2, with a maximum peak gain of 6dBi.

5.5. SOFTWARE AND FIRMWARE

The test utility software used during testing was X350 VSG Beceem Diagnostic Control Panel Version 4.00.00.

5.6. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

To determine the worst case on 16QAM and QPSK on both 5MHz and 10MHz bandwidth, the EIRP were measured to find the highest power, the result is that both QPSK on 5MHz and 10MHz is considered to be the worst case.

Page 6 of 20

5.7. DESCRIPTION OF TEST SETUP

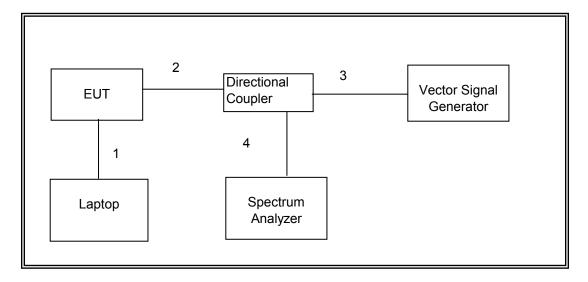
SUPPORT EQUIPMENT

	PERIP	HERAL SUPPOR	FEQUIPMENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
LAPTOP	HP	Compaq 6515b	CNU82518TY	DoC
AC/DC Adapter	HP	PA-1900-08H2	CT:597920ALLUJOXZ	DoC
Desktop Cradle	Sierra Wireless	Nest #1	60C574B8	NA
AC Adapter	Sierra Wireless	SSW-2012	NA	DoC

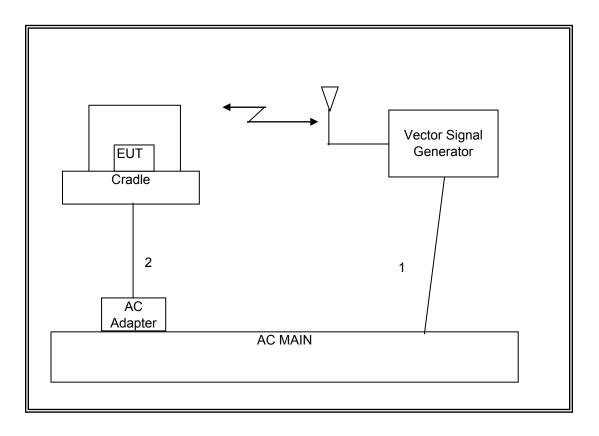
I/O CABLES (RF CONDUCTED TEST)

			I/O CABLE LIST			
Cable No.	Port	# of Identic Ports	Connector Type	Cable Type	Cable Length	Remarks
1	DC	1	DC	Un-shielded	2m	NA
2	USB	1	EUT	Un-shielded	1m	NA
3	Antenna Port	1	Spectrum Analyzer	Un-shielded	0.2m	NA
4	RF In/Out	1	Antenna	Un-shielded	None	NA

I/O CABLES (RF RADIATED TEST)


			I/O CABLE LIST			
Cable No.	Port	# of Identic Ports	Connector Type	Cable Type	Cable Length	Remarks
1	RF In/Out	1	Antenna	Un-shielded	None	NA

TEST SETUP


The EUT is a standalone device. Test software exercised the radio card.

Page 7 of 20

SETUP DIAGRAM FOR RF CONDUCTED TESTS

SETUP DIAGRAM FOR RADIATED TESTS

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 8 of 20

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIP	MENT LIST		
Description	Manufacturer	Model	Asset	Cal Due
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01176	08/24/11
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	08/04/11
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11
Antenna, Horn, 18 GHz	EMCO	3115	C00783	07/29/11
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00778	07/06/11
Signal Generator, 20 GHz	Agilent / HP	83732B	C00774	07/14/12
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/29/11
Sleeve Dipole 2300-2600 MHz	ETS	3126-2450	C01158	08/05/11
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/14/11
Highpass Filter, 4.0 GHz	Micro-Tronics	HPM13351	N02706	CNR
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/10/11
Vector Signal Generator	Agilent / HP	E4438C	None	09/28/11

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 9 of 20

7. RADIATED TEST RESULTS

7.1.1. RADIATED OUTPUT POWER (EIRP)

LIMITS

§2.1046 & §27.50 (h)(2) Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 2.2.17& FCC 27

RESULTS

Measurement was made with integrated antennas with 6dBi peak gain.

Mode	Channel	Frequency	EIRP	EIRP
Mode	onanner	(MHz)	(dBm)	(mW)
	Low	2498.5	27.70	588.84
5MHz QPSK	Middle	2593	27.81	603.95
	High	2687.5	27.45	555.90
	Low	2501	28.47	703.07
10MHz QPSK	Middle	2593	27.86	610.94
	High	2685	29.09	810.96

Page 10 of 20

OUTPUT POWER (EIRP)

				ental Measuremen Services Chamber				
Company		SIERRA WIREL	ESS					
Project #:		11U13729						
Date:		2011-4-9						
Fest Engi		Chin Pang						
onfigura			ERNAL ANTENNAI	_ AND LAPTOP				
ode:		TX, QPSK_5 MI	Hz BW					
eceiving	j: Horn T59, an			208947003) Warehou Antenna Gain	se EIRP	Limit	Delta	Notes
Receiving Substituti f GHz	j: Horn T59, an on: Horn T60 S	Substitution, 6	oft SMA Cable (2			Limit (dBm)	Delta (dB)	Notes
Receiving Substituti f GHz	: Horn T59, an on: Horn T60 S SG reading	Substitution, 6 Ant. Pol.	oft SMA Cable (2 Cable Loss	Antenna Gain	EIRP			Notes
Receiving Substituti f GHz ow Ch): Horn T59, an on: Horn T60 S SG reading (dBm)	Substitution, 6 Ant. Pol. (H/∨)	6ft SMA Cable (2 Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	(dBm)	(dB)	Notes
f GHz ow Ch 2.4985 2.4985	: Horn T59, an on: Horn T60 S SG reading (dBm) 19.1	Gubstitution, 6 Ant. Pol. (H/∨) V	oft SMA Cable (2 Cable Loss (dB) 0.50	Antenna Gain (dBi) 9.15	EIRP (dBm) 27.70	(dBm) 33.0	(dB) -5.3	Notes
Receiving Substituti GHz ow Ch 2.4985 2.4985	: Horn T59, an on: Horn T60 S SG reading (dBm) 19.1	Gubstitution, 6 Ant. Pol. (H/∨) V	oft SMA Cable (2 Cable Loss (dB) 0.50	Antenna Gain (dBi) 9.15	EIRP (dBm) 27.70	(dBm) 33.0	(dB) -5.3	Notes
Receiving Substituti f GHz .ow Ch 2.4985 2.4985 Mid Ch	: Horn T59, an on: Horn T60 S (dBm) 19.1 5.9	Substitution, 6 Ant. Pol. (H/V) V H	Sft SMA Cable (2 Cable Loss (dB) 0.50 0.50	Antenna Gain (dBi) 9.15 9.15	EIRP (dBm) 27.70 14.54	(dBm) 33.0 33.0	(dB) -5.3 -18.5	Notes
Receiving Substituti GHz .ow Ch 2.4985 2.4985 2.4985 Mid Ch 2.5930 2.5930	: Horn T59, an on: Horn T60 S SG reading (dBm) 19.1 5.9 19.1	Substitution, 6 Ant. Pol. (H/V) V H V	Sft SMA Cable (2 Cable Loss (dB) 0.50 0.50 0.60	Antenna Gain (dBi) 9.15 9.15 9.30	EIRP (dBm) 27.70 14.54 27.81	(dBm) 33.0 33.0 33.0 33.0	(dB) -5.3 -18.5 -5.2	Notes
Receiving Substituti f GHz ow Ch 2.4985 2.4985 11id Ch 2.5930	: Horn T59, an on: Horn T60 S SG reading (dBm) 19.1 5.9 19.1	Substitution, 6 Ant. Pol. (H/V) V H V	Sft SMA Cable (2 Cable Loss (dB) 0.50 0.50 0.60	Antenna Gain (dBi) 9.15 9.15 9.30	EIRP (dBm) 27.70 14.54 27.81	(dBm) 33.0 33.0 33.0 33.0	(dB) -5.3 -18.5 -5.2	Notes

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 11 of 20

				ental Measuremen Services Chamber				
Company	1	SIERRA WIREL	ESS					
Project #:		11U13729						
Date:		2011-4-9						
Test Engi	neer:	Chin Pang						
Configura	tion:	EUT WITH EXTE	ERNAL ANTENNAL	AND LAPTOP				
Node:		TX, QPSK_10 N	1Hz BW					
Receivin	j: Horn T59, an			08947003) Warehou Antenna Gain	se EIRP	Limit	Delta	Notes
Substitut f GHz	y: Horn T59, an on: Horn T60 S	Substitution, 6	ft SMA Cable (2			Limit (dBm)	Delta (dB)	Notes
Receiving Substitut f GHz Low Ch	y: Horn T59, an on: Horn T60 S SG reading	Substitution, 6 Ant. Pol.	ft SMA Cable (2 Cable Loss	Antenna Gain	EIRP			Notes
Receiving Substitut f GHz	j: Horn T59, an on: Horn T60 S SG reading (dBm)	Substitution, 6 Ant. Pol. (H/∨)	ft SMA Cable (2 Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	(dBm)	(dB)	Notes
Receiving Substitut GHz Low Ch 2.5010 2.5010	j: Horn T59, an on: Horn T60 S SG reading (dBm) 19.8	Substitution, 6 Ant. Pol. (H/V) V	ft SMA Cable (2 Cable Loss (dB) 0.50	Antenna Gain (dBi) 9.16	EIRP (dBm) 28.47	(dBm) 33.0	(dB) 4.5	Notes
Receiving Substitut f GHz Low Ch 2.5010	j: Horn T59, an on: Horn T60 S SG reading (dBm) 19.8	Substitution, 6 Ant. Pol. (H/V) V	ft SMA Cable (2 Cable Loss (dB) 0.50	Antenna Gain (dBi) 9.16	EIRP (dBm) 28.47	(dBm) 33.0	(dB) 4.5	Notes
Receiving Substitut <u>f</u> <u>GHz</u> Low Ch 2.5010 2.5010 Mid Ch	: Horn T59, an on: Horn T60 S SG reading (dBm) 19.8 6.6	Substitution, 6 Ant. Pol. (H/V) V H	Sft SMA Cable (2 Cable Loss (dB) 0.50 0.50	Antenna Gain (dBi) 9.16 9.16	EIRP (dBm) 28.47 15.25	(dBm) 33.0 33.0	(dB) 4.5 -17.8	Notes
Receiving Substitut f GHz Low Ch 2.5010 2.5010 Mid Ch 2.5930 2.5930	: Horn T59, an on: Horn T60 S SG reading (dBm) 19.8 6.6 19.2	Substitution, 6 Ant. Pol. (H/V) V H V	Sft SMA Cable (2 Cable Loss (dB) 0.50 0.50 0.60	Antenna Gain (dBi) 9.16 9.30	EIRP (dBm) 28.47 15.25 27.86	(dBm) 33.0 33.0 33.0 33.0	(dB) 4.5 -17.8 -5.1	Notes
Receiving Substitut f GHz Low Ch 2.5010 2.5010 Mid Ch 2.5930	: Horn T59, an on: Horn T60 S SG reading (dBm) 19.8 6.6 19.2	Substitution, 6 Ant. Pol. (H/V) V H V	Sft SMA Cable (2 Cable Loss (dB) 0.50 0.50 0.60	Antenna Gain (dBi) 9.16 9.30	EIRP (dBm) 28.47 15.25 27.86	(dBm) 33.0 33.0 33.0 33.0	(dB) 4.5 -17.8 -5.1	Notes

Page 12 of 20

7.1.2. FIELD STRENGTH OF SPURIOUS RADIATION

<u>LIMIT</u>

§2.1053

§27.53 (m)(4) For mobile digital stations, the attenuation factor shall be not less than 43 + 10 log (P) dB at the channel edge and 55 + 10 log (P) dB at 5.5 megahertz from the channel edges.

TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 3.2.12 & FCC 27

RESULTS

Below 1GHz at 5MHz Bandwidth (Worst Case)

ompany: roject #: ate: est Engi onfigura lode:	neer: ition:		EKURIA	INAL AND LAPT ST CASE)	OP				
f	SA reading	Ant. Pol.	SG reading	Cable Loss	Antenn Gain	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
95.00	-66.3	Н	-76.9	0.5	-2.15	-79.5	-25.0	-54.5	
180.00	-67.5	Н	-75.8	0.5	-2.15	-78.5	-25.0	-53.5	
267.60	-68.0	H	-74.6	0.5	-2.15	-77.3	-25.0	-52.3	
299.70	-70.6	H	-75.3	0.5	-2.15	-78.0	-25.0	-53.0	
399.60	-70.2	Н	-74.7	0.5	-2.15	-77.4	-25.0	-52.4	
779.80	-74.5	H	-71.8	0.5	-2.15	-74.5	-25.0	49.5	
41.60	-59.8	V V	42.5	0.5	-2.15	45.1	-25.0	-20.1	
78.50	-53.6	v	-53.3 -66.0	0.5 0.5	-2.15 -2.15	-55.9 -68.7	-25.0	-30.9	
92.10 176.50	-57.4 -61.2	v	-66.1	0.5	-2.15	-68.7	-25.0 -25.0	_43.7 _43.7	
267.60	-61.2	v	-00.1	0.5	-2.15	-66.7	-25.0 -25.0	-54.2	,
399.60	-71.4	v	-70.0	0.5	-2.15	-79.2	-25.0	-54.2	

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 13 of 20

Below 1GHz at 10MHz Bandwidth (Worst Case)

Company: SIERRA WIRELESS Project #: 11U13729									
Date: 2011-3-26									
est Engi		MENGISTU MI	EKURIA						
nfiguration: EUT WITH EXTERNAL ANTENNAL AND LAPTOP									
ode:		TX, QPSK_10	MHz BW						
f	SA reading	Ant. Pol.	SG reading	Cable Loss	Antenn Gain	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
93.00	-69.0	Н	-79.7	0.5	-2.15	-82.4	-25.0	-57.4	
267.60	-66.8	Н	-73.4	0.5	-2.15	-76.0	-25.0	-51.0	
399.60	-71.6	Н	-76.1	0.5	-2.15	-78.8	-25.0	-53.8	
419.90	-72.4	Н	-76.7	0.5	-2.15	-79.4	-25.0	-54.4	
40.70	-58.6	H	-35.5	0.5	-2.15	-38.1	-25.0	-13.1	
77.50	-55.7	H	-55.9	0.5	-2.15	-58.5	-25.0	-33.5	
93.00	-57.4	V	-65.8	0.5	-2.15	-68.5	-25.0	43.5	
160.00 180.40	-63.9 -65.5	V	-67.6 -70.4	0.5 0.5	-2.15 -2.15	-70.2 -73.0	-25.0 -25.0	45.2 48.0	
255.00	-05.5	v	-70.4	0.5	-2.15	-75.0	-25.0 -25.0	-40.0	
255.00	-/1.3	v	-11.0	0.5	-2.13	-13.1	-23.0	-34.1	
	r		*					,	
	.ii				۸h			I	
v. 03.03.0	19								

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 14 of 20

Above 1GHz at 5MHz Bandwidth (Worst Case)

Date: Test Enginee Configuratior Mode: f SA I GHz (c Low Channel (4.997 7.496 9.994 4.997 7.496 9.994 4.997 7.496 9.994 4.997 7.496 9.994 4.997 7.496 9.994 4.997 7.496 9.994	eer: (on: ((dBm)) (2498.5 MH -2.7 -6.6 -1.5 -2.6 -3.7 -2.6	TX, QPSK_5 N Ant. Pol. (H/V)	TERNAL ANTEN		Gain (dBi) 10.4 12.4 13.5 10.4 12.4	Gain (dBd) 8.2 10.3 11.3 8.2 10.3	EIRP (dBm) -36.5 -40.5 -35.9 -31.2	Limit (dBm) -25.0 -25.0 -25.0 -25.0	Margin (dB) -11.5 -15.5 -10.9	Notes
GHz (c Low Channel (4.997 7.496 9.994 4.997 7.496 9.994 9.994 Mid Channel (2 5.186 7.779 7.79	eer: (on: ((dBm)) (2498.5 MH -2.7 -6.6 -1.5 2.6 -3.7 -2.6 -3.7 -2.6	2011-4-7 Chin Pang EUT WITH EX TX, QPSK_5 N Ant. Pol. (H/V) Iz) V V V V H H	AHz BW SG reading (dBm) 45.3 -51.1 47.2 -40.0 -48.2	CL (dB) 1.5 1.9 2.2 1.5 1.9	Gain (dBi) 10.4 12.4 13.5 10.4 12.4	(dBd) 8.2 10.3 11.3 8.2	(dBm) -36.5 -40.5 -35.9 -31.2	(dBm) -25.0 -25.0 -25.0	(dB) -11.5 -15.5 -10.9	Notes
Test Enginee Configuration Mode: f SA r GHz (c Low Channel (4.997 7.496 9.994 4.997 7.496 9.994 4.997 7.496 9.994 4.997 7.496 9.994 4.997 7.496 9.994 4.997 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 7.497 9.994 4.997 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 4.977 7.496 9.994 7.497 7.496 9.994 7.497 7.496 9.994 7.497 7.496 9.994 7.497 7.496 9.994 7.497 7.497 7.497 7.496 7.497 7.497 7.496 7.497 7.497 7.496 7.497 7.496 7.497 7.497 7.496 7.779 7.779 7.779 7.779 7.779 7.779	eer: on: (dBm) (2498.5 MH -2.7 -6.6 -1.5 2.6 -3.7 -2.6	Chin Pang EUT WITH EX TX, QPSK_5 M Ant. Pol. (H/V) Iz) V V V H H H	AHz BW SG reading (dBm) 45.3 -51.1 47.2 -40.0 -48.2	CL (dB) 1.5 1.9 2.2 1.5 1.9	Gain (dBi) 10.4 12.4 13.5 10.4 12.4	(dBd) 8.2 10.3 11.3 8.2	(dBm) -36.5 -40.5 -35.9 -31.2	(dBm) -25.0 -25.0 -25.0	(dB) -11.5 -15.5 -10.9	Notes
Configuration Mode: f SA (GHz (c Low Channel (4.997 7.496 9.994 4.997 7.196 9.994 1.002	on: reading (dBm) (2498.5 MF -2.7 -6.6 -1.5 2.6 -3.7 -2.6	EUT WITH EX TX, QPSK_5 M Ant. Pol. (H/V) Iz) V V V H H	AHz BW SG reading (dBm) 45.3 -51.1 47.2 -40.0 -48.2	CL (dB) 1.5 1.9 2.2 1.5 1.9	Gain (dBi) 10.4 12.4 13.5 10.4 12.4	(dBd) 8.2 10.3 11.3 8.2	(dBm) -36.5 -40.5 -35.9 -31.2	(dBm) -25.0 -25.0 -25.0	(dB) -11.5 -15.5 -10.9	Notes
Mode: f SA I GHz (c Low Channel (4.997 7.496 9.994 4.997 7.496 9.994 9.994 4.997 7.496 9.994 6.000 9.994 6.000 Mid Channel (2 5.186 7.779 7.779	(dBm) (2498.5 MF -2.7 -6.6 -1.5 2.6 -3.7 -2.6	TX, QPSK_5 N Ant. Pol. (H/V) Iz) V V V H H	AHz BW SG reading (dBm) 45.3 -51.1 47.2 -40.0 -48.2	CL (dB) 1.5 1.9 2.2 1.5 1.9	Gain (dBi) 10.4 12.4 13.5 10.4 12.4	(dBd) 8.2 10.3 11.3 8.2	(dBm) -36.5 -40.5 -35.9 -31.2	(dBm) -25.0 -25.0 -25.0	(dB) -11.5 -15.5 -10.9	Notes
Mode: f SA I GHz (c Low Channel (4.997 7.496 9.994 4.997 7.496 9.994 9.994 4.997 7.496 9.994 6.000 9.994 6.000 Mid Channel (2 5.186 7.779 7.779	(dBm) (2498.5 MF -2.7 -6.6 -1.5 2.6 -3.7 -2.6	Ant. Pol. (H/V) iz) V V V H H	SG reading (dBm) -45.3 -51.1 -47.2 -40.0 -48.2	(dB) 1.5 1.9 2.2 1.5 1.9	(dBi) 10.4 12.4 13.5 10.4 12.4	(dBd) 8.2 10.3 11.3 8.2	(dBm) -36.5 -40.5 -35.9 -31.2	(dBm) -25.0 -25.0 -25.0	(dB) -11.5 -15.5 -10.9	Notes
GHz (c Low Channel (4.997 7.496 9.994 4.997 7.496 9.994 9.994 Mid Channel (2 5.186 7.779	(dBm) (2498.5 MF -2.7 -6.6 -1.5 2.6 -3.7 -2.6	(H/V) Iz) V V H H	(dBm) 45.3 51.1 47.2 40.0 48.2	(dB) 1.5 1.9 2.2 1.5 1.9	(dBi) 10.4 12.4 13.5 10.4 12.4	(dBd) 8.2 10.3 11.3 8.2	(dBm) -36.5 -40.5 -35.9 -31.2	(dBm) -25.0 -25.0 -25.0	(dB) -11.5 -15.5 -10.9	Notes
Low Channel (4.997 7.496 9.994 4.997 7.496 9.994 9.994 Mid Channel (2 5.186 7.779	(2498.5 MH -2.7 -6.6 -1.5 2.6 -3.7 -2.6	Iz) V V H H	45.3 -51.1 -47.2 -40.0 -48.2	1.5 1.9 2.2 1.5 1.9	10.4 12.4 13.5 10.4 12.4	8.2 10.3 11.3 8.2	-36.5 -40.5 -35.9 -31.2	-25.0 -25.0 -25.0	-11.5 -15.5 -10.9	
Low Channel (4.997 7.496 9.994 4.997 7.496 9.994 9.994 Mid Channel (2 5.186 7.779	(2498.5 MH -2.7 -6.6 -1.5 2.6 -3.7 -2.6	Iz) V V H H	45.3 -51.1 -47.2 -40.0 -48.2	1.5 1.9 2.2 1.5 1.9	12.4 13.5 10.4 12.4	8.2 10.3 11.3 8.2	-36.5 -40.5 -35.9 -31.2	-25.0 -25.0	-15.5 -10.9	
4.997 7.496 9.994 4.997 7.496 9.994 9.994 Mid Channel (2 5.186 7.779	-2.7 -6.6 -1.5 2.6 -3.7 -2.6	V V V H H	-51.1 47.2 40.0 48.2	1.9 2.2 1.5 1.9	12.4 13.5 10.4 12.4	10.3 11.3 8.2	40.5 -35.9 -31.2	-25.0 -25.0	-15.5 -10.9	
9.994 4.997 7.496 9.994 Mid Channel (2 5.186 7.779	-1.5 2.6 -3.7 -2.6	V H H	47.2 40.0 48.2	2.2 1.5 1.9	13.5 10.4 12.4	11.3 8.2	-35.9 -31.2	-25.0	-10.9	
4.997 7.496 9.994 Mid Channel (2 5.186 7.779	2.6 -3.7 -2.6	H H	-40.0 -48.2	1.5 1.9	10.4 12.4	8.2	-31.2			
7.496 9.994 Mid Channel (2 5.186 7.779	-3.7 -2.6	Н	-48.2	1.9	12.4			25.0	6.2	
9.994 Mid Channel (2 5.186 7.779	-2.6					10.3			-6.2	
Mid Channel (2 5.186 7.779		Н	48.3	2.2			-37.6	-25.0	-12.6	
5.186 7.779			7 7		13.5	11.3	-37.0	-25.0	-12.0	
5.186 7.779	(2593 MH7)		·			*	-			
7.779	-6.8	V	49.4	1.6	10.5	8.4	40.5	-25.0	-15.5	
	2.3	v	42.4	1.9	12.7	10.5	-31.7	-25.0	-6.7	
10.372	-3.5	V	-49.1	2.2	13.6	11.5	-37.7	-25.0	-12.7	
5.186	-6.3	Н	48.9	1.6	10.5	8.4	40.0	-25.0	-15.0	
7.779	7.1	Н	-37.6	1.9	12.7	10.5	-26.9	-25.0	-1.9	
10.372	-3.7	Н	49.3	2.2	13.6	11.5	-37.9	-25.0	-12.9	
Hi Channel (26	687 5 MH-1									
5.375	1.5	V	41.2	1.6	10.6	8.5	-32.2	-25.0	-7.2	
	4.6	v	49.6	1.9	12.9	10.8	-38.6	-25.0	-13.6	
10.750	4.8	v	-40.7	2.3	13.8	11.6	-29.2	-25.0	4.2	
5.375	4.0	H	-38.7	1.6	10.6	8.5	-29.7	-25.0	4.7	
	-3.0	Н	-48.0	1.9	12.9	10.8	-37.0	-25.0	-12.0	
10.750	-1.6	Н	47.1	2.3	13.8	11.6	-35.6	-25.0	-10.6	
					Ļ	Ļ	ý.			
			·	,	-	ļ,	y			
			.I		1	<u> </u>			I	

Page 15 of 20

Above 1GHz at 10MHz Bandwidth (Worst Case)

			High Frequ Complia	•	stitution M fication Se		nt					
Company	<i>ı</i> :	SIERRA WIRE	LESS									
Project #	:	11U13729										
Date:		2011-4-7										
Test Eng	ineer:	Chin Pang										
Configuration: EUT WITH EX			TERNAL ANTENN	ERNAL ANTENNAL AND LAPTOP								
Mode:		TX, QPSK_10	MHz BW									
f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	EIRP	Limit	Margin	Notes		
GHz	(dBm)	(H/∨)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)			
Low Char	nel (2501 MH		1					. ,				
5.002	-6.7	v	-49.7	1.5	10.7	8.6	40.5	-25.0	-15.5			
7.503	-7.8	V	-52.5	1.9	12.6	10.5	41.7	-25.0	-16.7			
10.004	-7.5	V	-53.0	2.2	13.4	11.2	41.9	-25.0	-16.9			
5.002	3.5	H	-39.5	1.5	10.7	8.6	-30.3	-25.0	-5.3			
7.503 10.004	_4.7 _6.8	H	-49.4 -52.3	1.9 2.2	12.6 13.4	10.5 11.2	-38.6 -41.2	-25.0 -25.0	-13.6 -16.2			
10.004	-0.0	п	-32.3	2.2	15.4	11.2	41.Z	-23.0	-10.2			
Mid Chan	nel (2593 MH:	z)	*			Y	Y					
5.186	-6.4	ν v	-49.4	1.6	10.9	8.7	40.1	-25.0	-15.1			
7.779	-6.3	V	-51.2	1.9	12.8	10.6	40.3	-25.0	-15.3			
10.372	-6.6	V	-52.1	2.2	13.5	11.4	_40.8	-25.0	-15.8			
5.186	3.3	Н	-39.7	1.6	10.9	8.7	-30.4	-25.0	-5.4			
7.779	-6.9	H	-51.8	1.9	12.8	10.6	40.9	-25.0	-15.9			
10.372	-7.7	Н	-53.2	2.2	13.5	11.4	41.9	-25.0	-16.9			
Hi Channa	el (2685 MHz)						Y					
5.370	-5.6	v	48.8	1.6	11.1	8.9	-39.3	-25.0	-14.3			
8.055	-6.7	v	-51.7	1.9	12.9	10.8	40.7	-25.0	-15.7			
10.740	4.6	V	-50.0	2.3	13.7	11.5	-38.6	-25.0	-13.6			
5.370	3.6	H	-39.6	1.6	11.1	8.9	-30.1	-25.0	-5.1			
8.055	-7.8	H	-52.8	1.9	12.9	10.8	41.8	-25.0	-16.8			
10.740	4.2	H	49.6	2.3	13.7	11.5	-38.2	-25.0	-13.2			
			y		,	,	,		,			
		<u>_</u>	l.		I				ll.			

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4031B TEL: (510) 771-1000 FAX: (510) 661-0888

Page 16 of 20

8. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)					
(A) Limits for Occupational/Controlled Exposures									
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6					
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure						
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30					

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500-100,000			1.0	30

f = frequency in MHz

f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure.

exposure or can not exercise control over their exposure.

Page 17 of 20

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m² EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m²

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

	Mode	Separation	Output Power	Antenna	FCC Power
Bandwidth Modulation		Distance		Gain	Density
wodulation		(m)	(dBm)	(dBi)	(mW/cm^2)
5MHz QPSK	WiMAX	0.20	25.58	6.00	0.286
5MHz 16QAM	WiMAX	0.20	25.62	6.00	0.289
10MHz QPSK	WiMAX	0.20	25.45	6.00	0.278
10MHz 16QAM	WiMAX	0.20	25.26	6.00	0.266