

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

CDMA+ WIMAX + WIFI MOBILE HOT SPOT

MODEL NUMBER: AirCard W802S

FCC ID: N7N-MHS802

REPORT NUMBER: 10U13412-4, Revision A

ISSUE DATE: OCTOBER 04, 2010

Prepared for

SIERRA WIRELESS INC. 2290 COSMOS COURT, CARLSBAD CALIFORNIA 92011, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	10/04/10	Initial Issue	T. Chan
	01/12/11	Changed model name	A. Zaffar

TABLE OF CONTENTS

1. AT	TTESTATION OF TEST RESULTS	5
2. TE	EST METHODOLOGY	6
3. FA	ACILITIES AND ACCREDITATION	6
	ALIBRATION AND UNCERTAINTY	
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	
5. EC	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	
5.2.	MAXIMUM OUTPUT POWER	7
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.4.	SOFTWARE AND FIRMWARE	7
5.5.	WORST-CASE CONFIGURATION AND MODE	
5.6.	DESCRIPTION OF TEST SETUP	
6. TE	EST AND MEASUREMENT EQUIPMENT	10
7. AN	NTENNA PORT TEST RESULTS	11
7.1.		
7.	1.1. 6 dB BANDWIDTH	
	1.2. 99% BANDWIDTH	
	1.3. OUTPUT POWER	
	1.5. POWER SPECTRAL DENSITY	19
7.1	1.6. CONDUCTED SPURIOUS EMISSIONS	
7.2.		
	2.1. 6 dB BANDWIDTH	_
	2.3. OUTPUT POWER	
	2.4. AVERAGE POWER	
	2.5. POWER SPECTRAL DENSITY	
7.3.		
_	3.1. 6 dB BANDWIDTH	
	3.2. 99% BANDWIDTH	
	3.3. OUTPUT POWER	
	3.5. POWER SPECTRAL DENSITY	
	3.6. CONDUCTED SPURIOUS EMISSIONS	52
7.4.	802.11n HT40 SISO MODE IN THE 2.4 GHz BAND	56
7.4	4.1. 6 dB BANDWIDTH	
	Page 3 of 103	

REPORT NO: 1	INI 113/112-1Δ	DATE: JANUARY 12, 2011
	WIMAX + WIFI MOBILE HOT SPOT	
7.4.2.	99% BANDWIDTH	59
7.4.3.	OUTPUT POWER	
7.4.4.	AVERAGE POWER	63
7.4.5.	POWER SPECTRAL DENSITY	
7.4.6.	CONDUCTED SPURIOUS EMISSIONS	67
8. RADIATI	ED TEST RESULTS	71
8.1. LIM	ITS AND PROCEDURE	71
8.2. TRA	ANSMITTER ABOVE 1 GHz	
8.2.1.	802.11b MODE IN THE 2.4 GHz BAND	
8.2.2.	802.11g MODE IN THE 2.4 GHz BAND	77
8.2.3.	802.11n HT20 SISO MODE IN THE 2.4 GHz BAND	
8.2.4.	802.11n HT40 SISO MODE IN THE 2.4 GHz BAND	87
8.3. WO	RST-CASE BELOW 1 GHz	92
9. AC POW	ER LINE CONDUCTED EMISSIONS	94
10. MAXII	MUM PERMISSIBLE EXPOSURE	97
10.1. Lim	its	97
10.1.1.	FCC RULES	97
10.1.2.	IC RULES	98
10.1.3.	LIMITS APPLICABLE TO THE EUT	98
10.2. EQ	UATIONS	99
10.3. RES	SULTS	100
10.3.1.	SINGLE TRANSMITTER (WLAN)	100
11. SETU	P PHOTOS	101

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SIERRA WIRELESS INC.

2290 COSMOS COURT, CARLSBAD

CALIFORNIA 92011, USA

EUT DESCRIPTION: CDMA+ WIMAX + WIFI MOBILE HOT SPOT

MODEL: AirCard W802S

SERIAL NUMBER: Primary Unit #3

DATE TESTED: OCTOBER 1-4, 2010

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

THU CHAN
ENGINEERING MANAGER

UL CCS

CHIN PANG EMC ENGINEER UL CCS

Chin Pany

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a CDMA + WiMax + WiFi mobile Hot Spot router

The WiMax radio module is manufactured by Sierra Wireless

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	18.30	67.61
2412 - 2462	802.11g	21.20	131.83
2412 - 2462	802.11n, HT20 SISO	21.60	144.54
2422 - 2452	802.11n, HT40 SISO	19.40	87.10

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna, with a maximum gain of -1 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was Labtool, rev 1.0.1.13

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

The worst-case data rate for each mode is determined to be as follows, based on preliminary tests of the chipset utilized in this radio.

All final tests in the 802.11b mode were made at 1 Mb/s.

All final tests in the 802.11g mode were made at 6 Mb/s.

All final tests in the 802.11n HT20 mode were made at MCS 0.

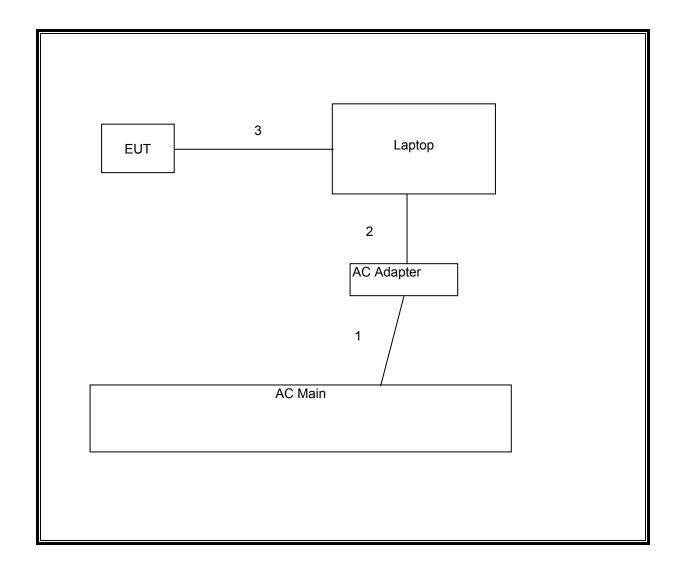
All final tests in the 802.11n HT40 mode were made at MCS 15

For radiated emissions below 1 GHz the worst-case configuration is determined to be the mode and channel with the highest output power.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description Manufacturer Model Serial Number FCC ID				FCC ID	
Laptop	HP	Compaq 6515b	CNU82518TY	DoC	
AC Adapter	HP	PA-1900-08H2	597920SLLUJOXZ	DoC	


I/O CABLES

	I/O CABLE LIST						
Cable	Port	# of	Connector	Cable	Cable	Remarks	
No.		Identica	Type	Type	Length		
		Ports					
1	AC	1	AC	Unshielded	1.8 m	N/A	
2	DC	1	DC	Unshielded	1.8 m	N/A	
3	USB	1	USB	Unshielded	1.2 m	N/A	

TEST SETUP

The EUT is connected to the host laptop computer via USB cable during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

DATE: JANUARY 12, 2011

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: JANUARY 12, 2011

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Asset	Cal Due
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/31/11
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	07/14/11
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00778	01/06/11
Antenna, Horn, 18 GHz	EMCO	3115	C00783	06/29/11
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/12/11
EM Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/06/10
Reject Filter, 2.4-2.5 GHz	Mcro-Tronics	BRM50702	N02685	CNR
Power Meter	Boonton	4541	C01186	03/01/11
Power Sensor, 18 GHz	Boonton	57006	C01203	02/24/11

7. ANTENNA PORT TEST RESULTS

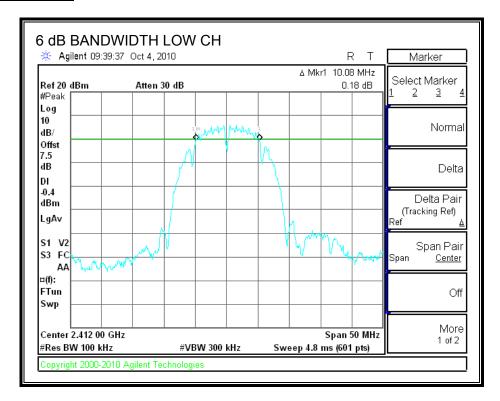
7.1. 802.11b MODE IN THE 2.4 GHz BAND

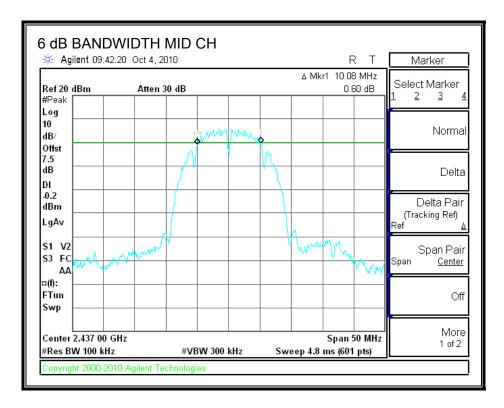
7.1.1. 6 dB BANDWIDTH

LIMITS

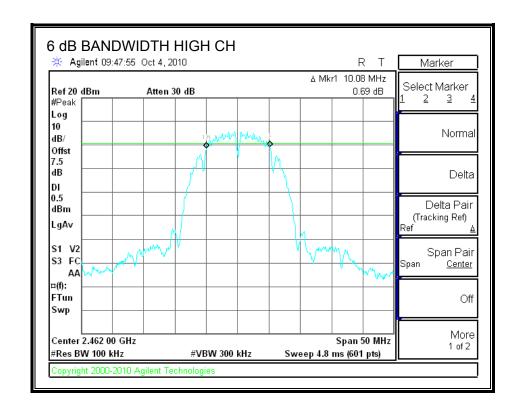
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

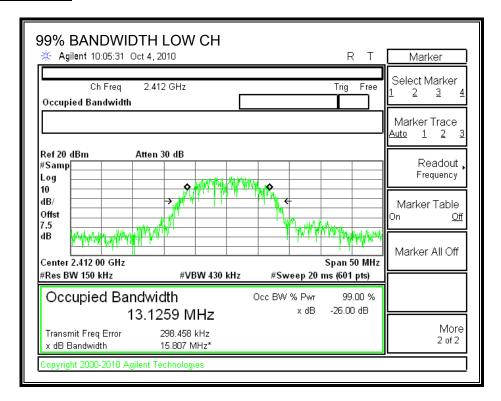

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	10.08	0.5
Middle	2437	10.08	0.5
High	2462	10.08	0.5

6 dB BANDWIDTH

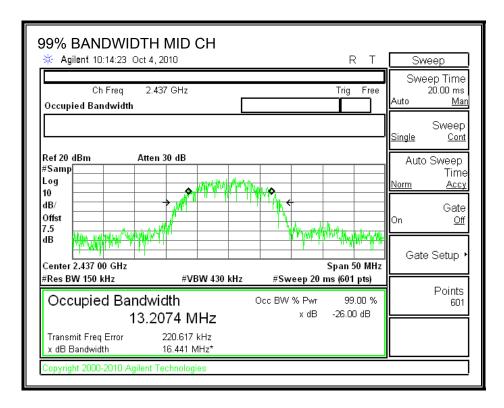
DATE: JANUARY 12, 2011

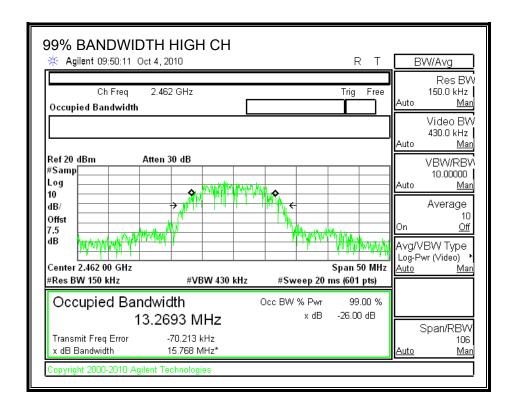
7.1.2. 99% BANDWIDTH

LIMITS


None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	13.1259
Middle	2437	13.2074
High	2462	13.2693

99% BANDWIDTH

DATE: JANUARY 12, 2011

REPORT NO: 10U13412-4A EUT: CDMA+ WIMAX + WIFI MOBILE HOT SPOT

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802

Channel	Frequency	Output	Limit	Margin
		Power		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	18.40	30	-11.60
Middle	2437	18.30	30	-11.70
High	2462	18.30	30	-11.70

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 16.8 dB (including 10 dB pad and 6.8 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	15.6
Middle	2437	15.5
High	2462	15.5

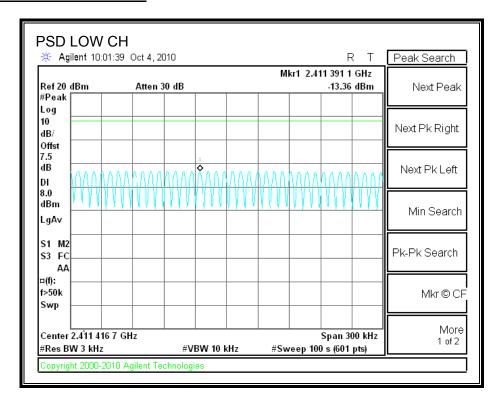
7.1.5. POWER SPECTRAL DENSITY

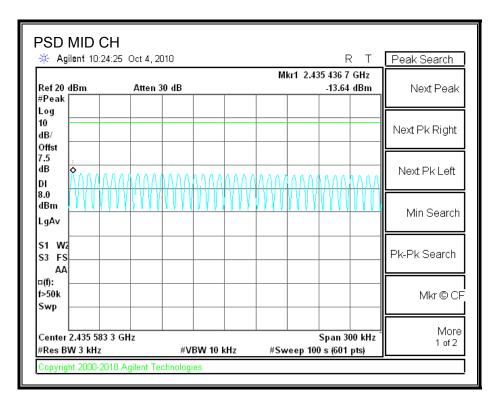
LIMITS

FCC §15.247 (e)

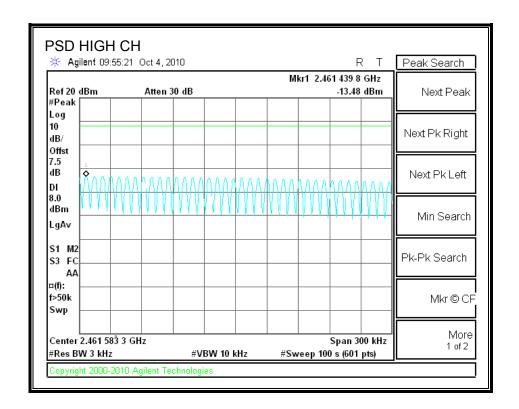
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


DATE: JANUARY 12, 2011


FCC ID: N7N-MHS802

TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-13.36	8	-21.36
Middle	2437	-13.64	8	-21.64
High	2462	-13.48	8	-21.48

DATE: JANUARY 12, 2011

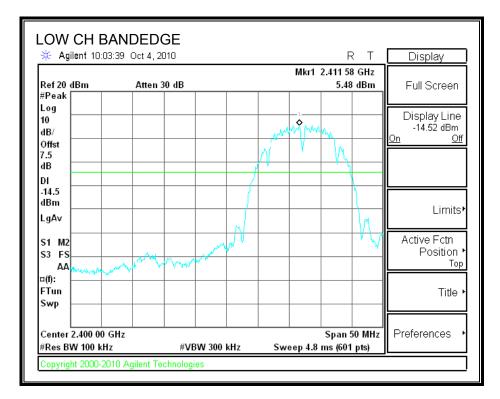
7.1.6. CONDUCTED SPURIOUS EMISSIONS

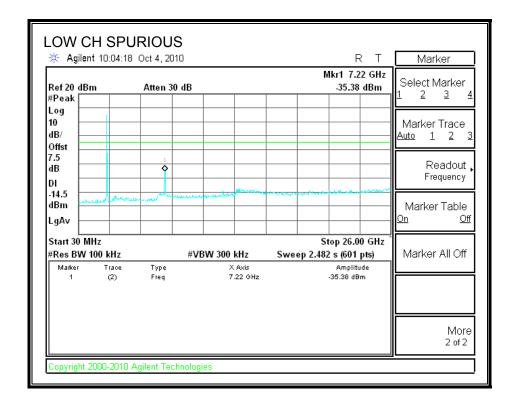
LIMITS

FCC §15.247 (d)

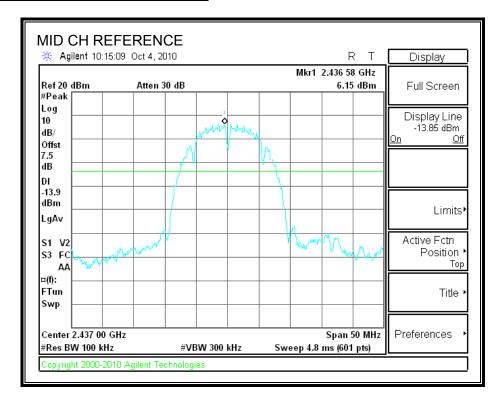
IC RSS-210 A8.5

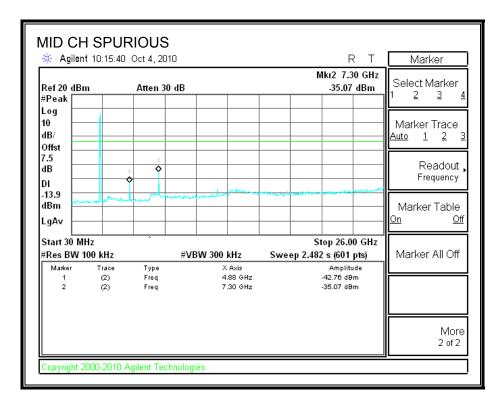
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

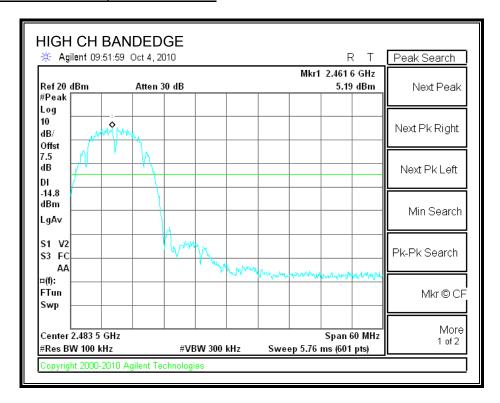

TEST PROCEDURE

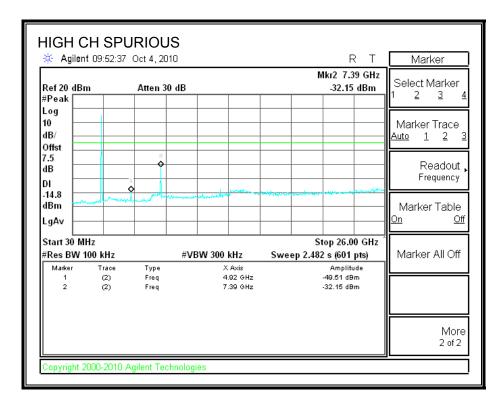

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

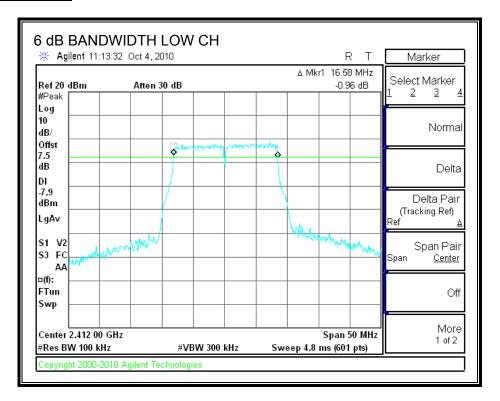
7.2. 802.11g MODE IN THE 2.4 GHz BAND

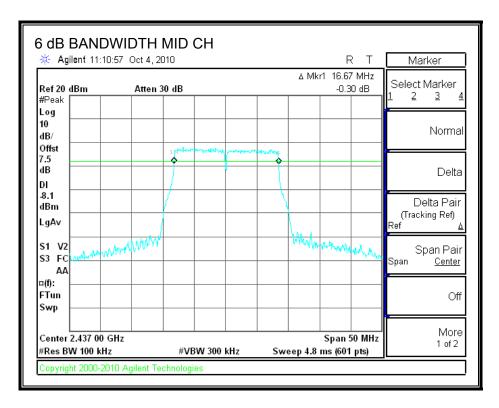
7.2.1. 6 dB BANDWIDTH

LIMITS

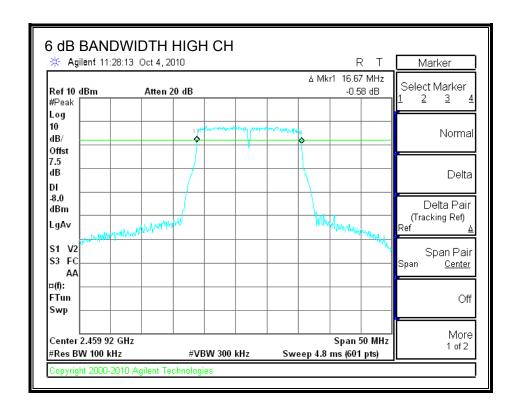
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	16.58	0.5
Middle	2437	16.67	0.5
High	2462	16.67	0.5

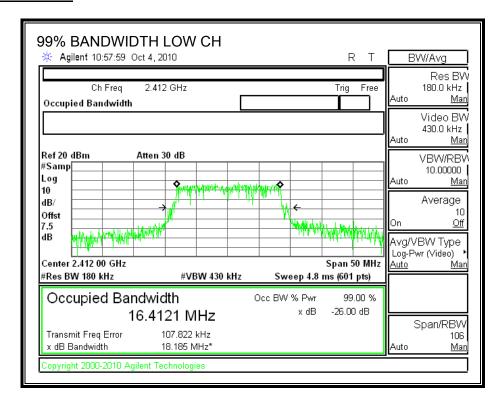
6 dB BANDWIDTH

DATE: JANUARY 12, 2011

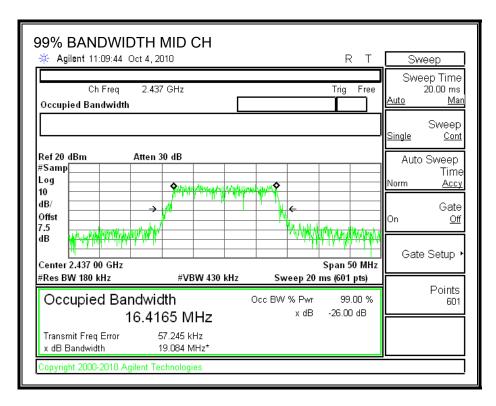
7.2.2. 99% BANDWIDTH

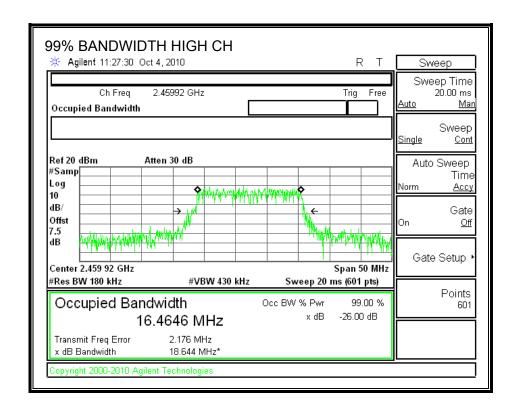
LIMITS

None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.4121
Middle	2437	16.4165
High	2462	16.4646


EUT: CDMA+ WIMAX + WIFT MOBILE HOT SPOT

99% BANDWIDTH

DATE: JANUARY 12, 2011

REPORT NO: 10U13412-4A EUT: CDMA+ WIMAX + WIFI MOBILE HOT SPOT

7.2.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802

Channel	Frequency	Output	Limit	Margin
		Power		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	20.80	30	-9.20
Middle	2437	20.90	30	-9.10
High	2462	21.20	30	-8.80

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.9 dB (including 10 dB pad and 0.9 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	12
Middle	2437	12.1
High	2462	12.2

7.2.5. POWER SPECTRAL DENSITY

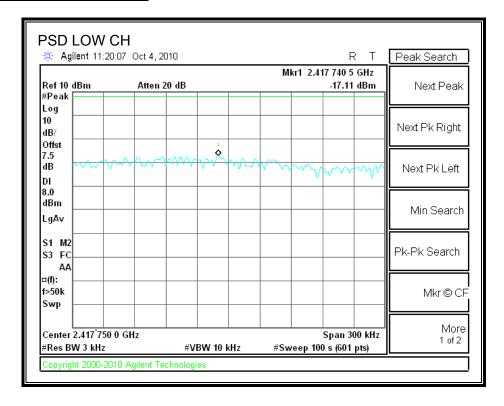
LIMITS

FCC §15.247 (e)

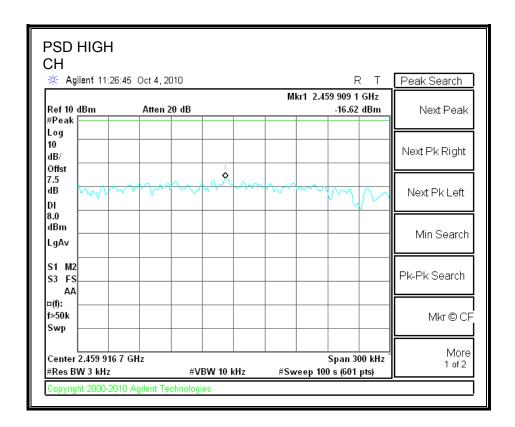
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: JANUARY 12, 2011


FCC ID: N7N-MHS802

TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-17.11	8	-25.11
Middle	2437	-18.16	8	-26.16
High	2462	-16.62	8	-24.62

POWER SPECTRAL DENSITY

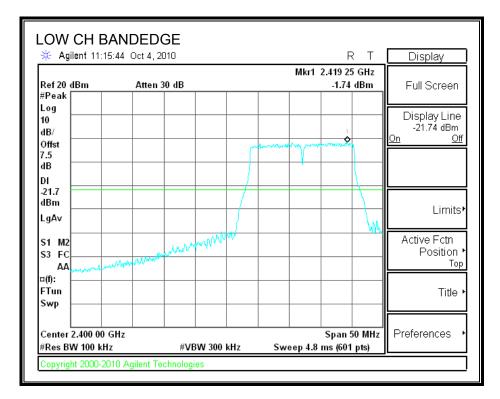
7.2.6. CONDUCTED SPURIOUS EMISSIONS

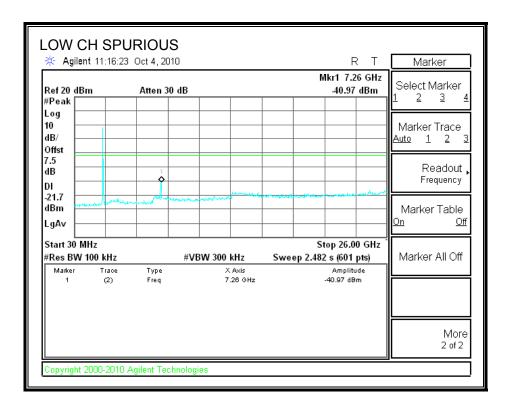
LIMITS

FCC §15.247 (d)

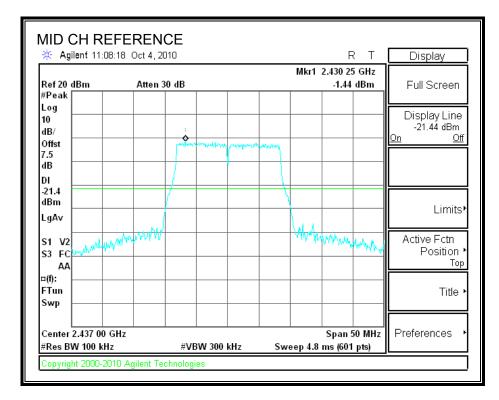
IC RSS-210 A8.5

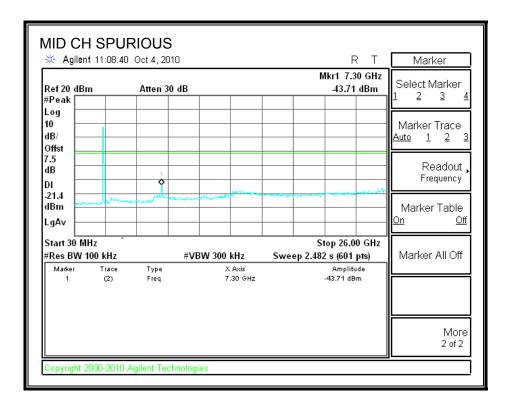
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

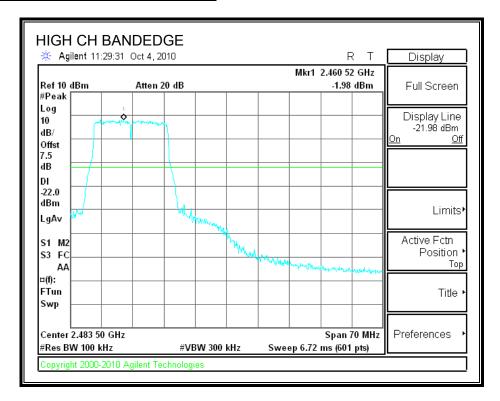

TEST PROCEDURE

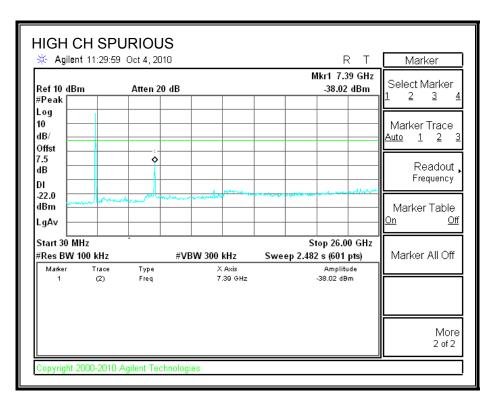

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

REPORT NO: 10U13412-4A DATE: JANUARY 12, 2011 EUT: CDMA+ WIMAX + WIFI MOBILE HOT SPOT FCC ID: N7N-MHS802

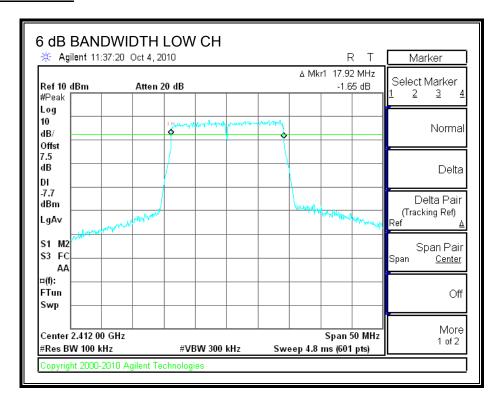
7.3. 802.11n HT20 SISO MODE IN THE 2.4 GHz BAND

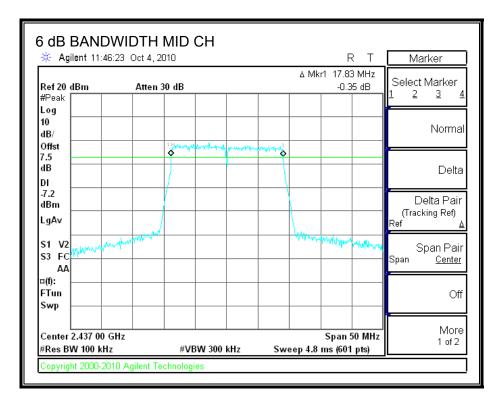
7.3.1. 6 dB BANDWIDTH

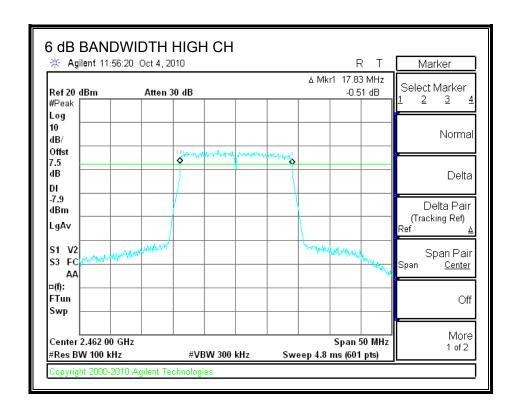
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

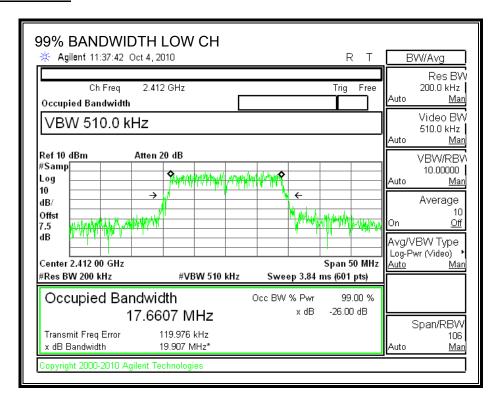
Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	17.92	0.5
Middle	2437	17.83	0.5
High	2462	17.83	0.5

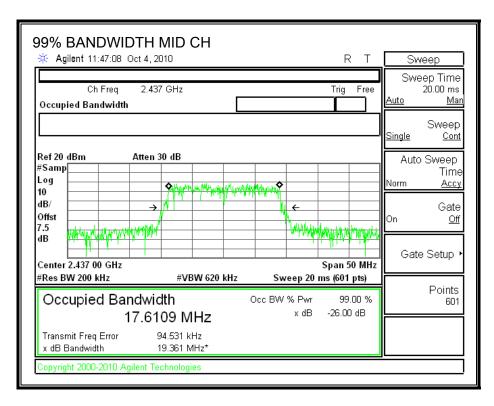
6 dB BANDWIDTH

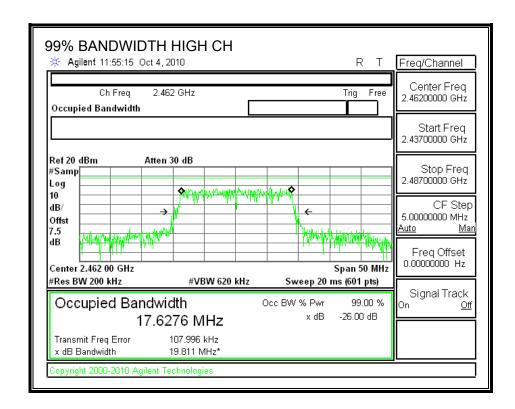
7.3.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	17.6607
Middle	2437	17.6109
High	2462	17.6276

A DATE: JANUARY 12, 2011 FI MOBILE HOT SPOT FCC ID: N7N-MHS802

99% BANDWIDTH

REPORT NO: 10U13412-4A EUT: CDMA+ WIMAX + WIFI MOBILE HOT SPOT

7.3.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802

Channel	Frequency	Output	Limit	Margin
		Power		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	21.00	30	-9.00
Middle	2437	21.20	30	-8.80
High	2462	21.60	30	-8.40

7.3.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.9dB (including 10 dB pad and 0.9 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	11.8
Middle	2437	12
High	2462	12

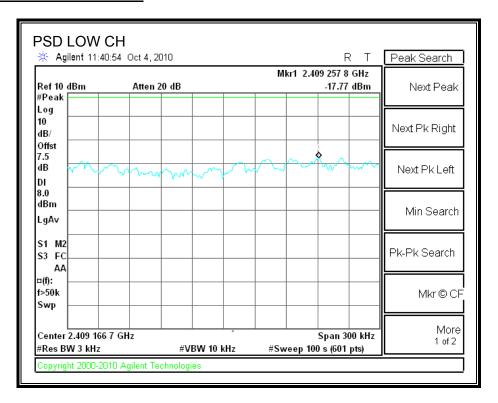
7.3.5. POWER SPECTRAL DENSITY

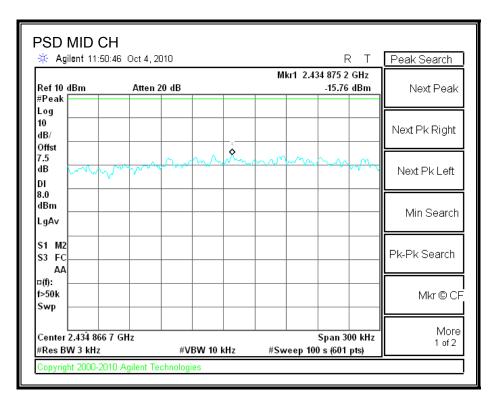
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

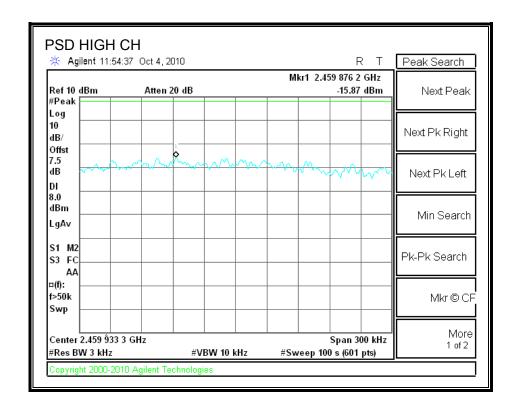

DATE: JANUARY 12, 2011


FCC ID: N7N-MHS802

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-17.77	8	-25.77
Middle	2437	-15.76	8	-23.76
High	2462	-15.87	8	-23.87



DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

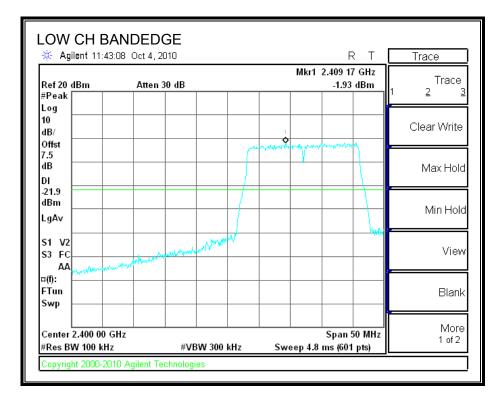
7.3.6. CONDUCTED SPURIOUS EMISSIONS

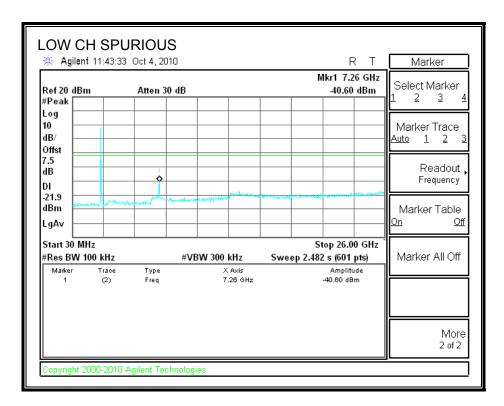
LIMITS

FCC §15.247 (d)

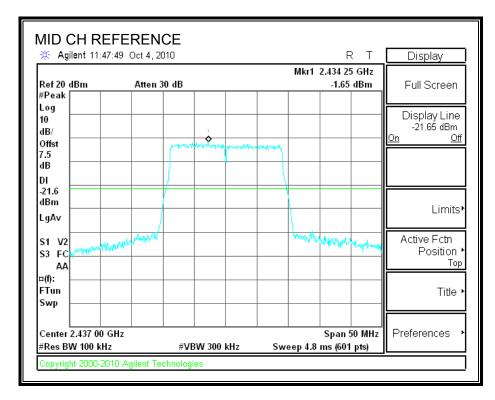
IC RSS-210 A8.5

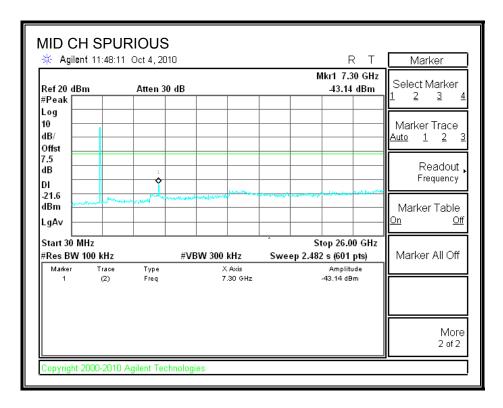
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

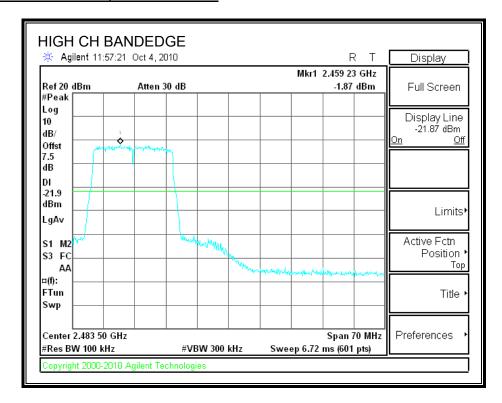

TEST PROCEDURE

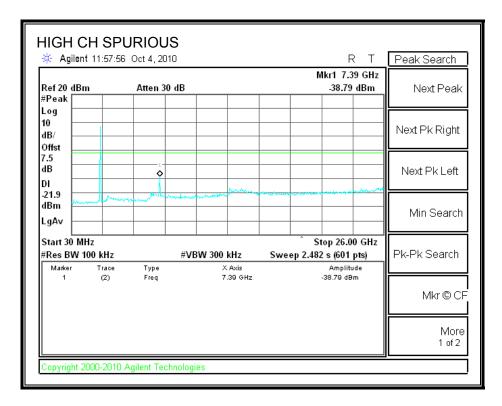

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

REPORT NO: 10U13412-4A DATE: JANUARY 12, 2011 EUT: CDMA+ WIMAX + WIFI MOBILE HOT SPOT FCC ID: N7N-MHS802

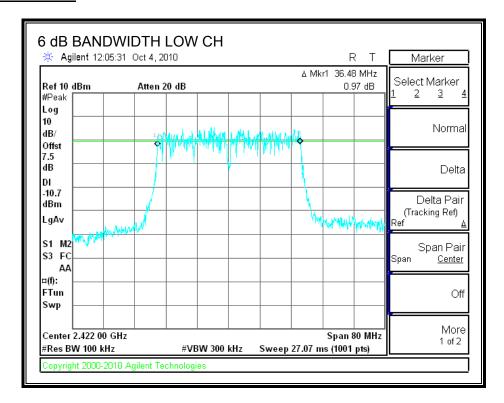
7.4. 802.11n HT40 SISO MODE IN THE 2.4 GHz BAND

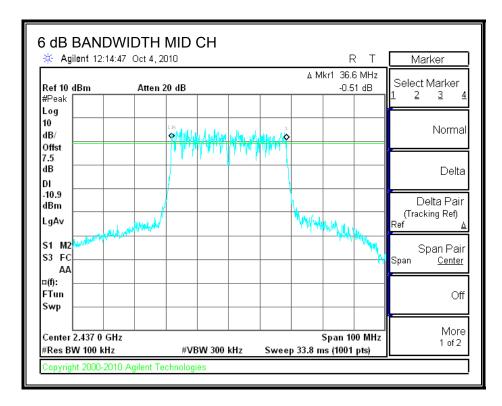
7.4.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

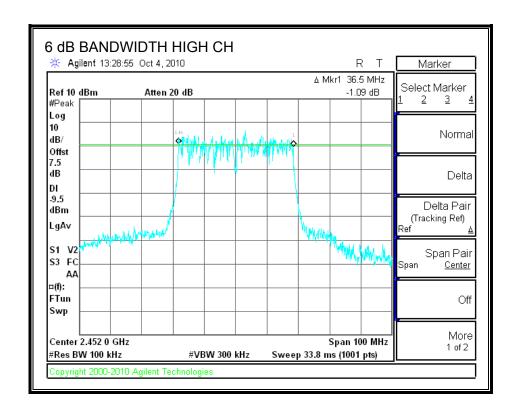
IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2422	36.48	0.5
Middle	2437	36.6	0.5
High	2452	36.5	0.5

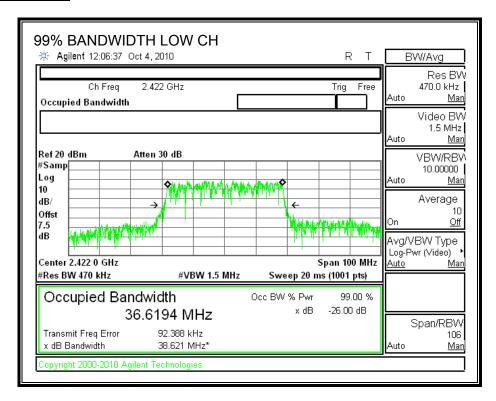

6 dB BANDWIDTH

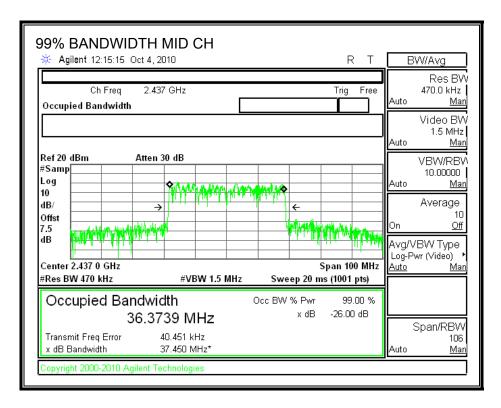
DATE: JANUARY 12, 2011

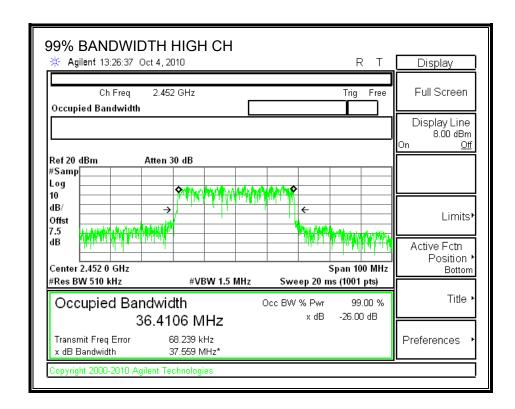
FCC ID: N7N-MHS802

7.4.2. 99% BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2422	36.6194
Middle	2437	36.3739
High	2452	36.4106

99% BANDWIDTH

REPORT NO: 10U13412-4A EUT: CDMA+ WIMAX + WIFI MOBILE HOT SPOT

7.4.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2422	19.00	30	-11.00
Middle	2437	19.40	30	-10.60
High	2452	19.20	30	-10.80

7.4.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.9 dB (including 10 dB pad and 0.9 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2422	11.10
Middle	2437	11.00
High	2452	11.00

REPORT NO: 10U13412-4A EUT: CDMA+ WIMAX + WIFI MOBILE HOT SPOT

7.4.5. POWER SPECTRAL DENSITY

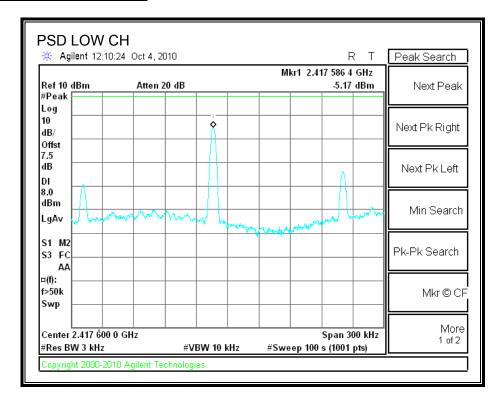
LIMITS

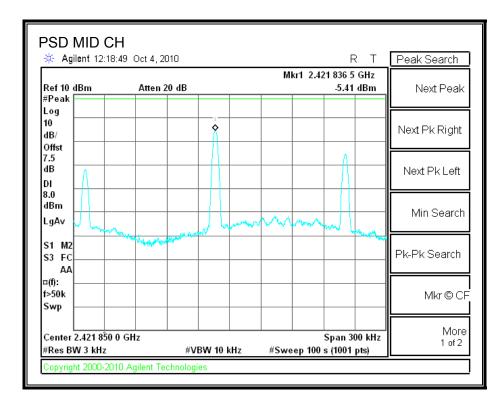
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

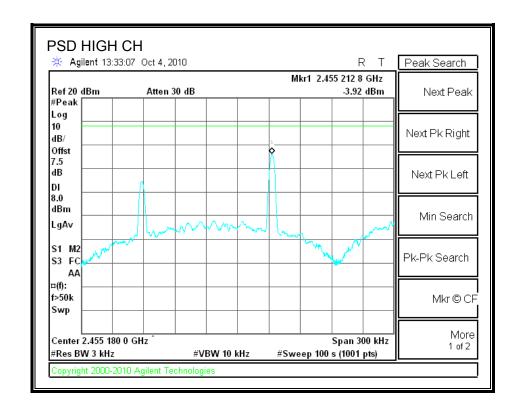
DATE: JANUARY 12, 2011


FCC ID: N7N-MHS802


TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2422	-5.17	8	-13.17
Middle	2437	-5.41	8	-13.41
High	2452	-3.92	8	-11.92


POWER SPECTRAL DENSITY

DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802

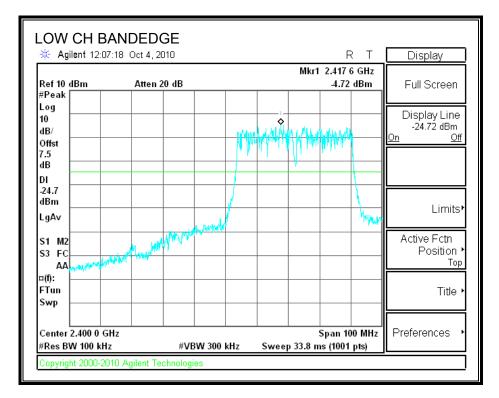
7.4.6. CONDUCTED SPURIOUS EMISSIONS

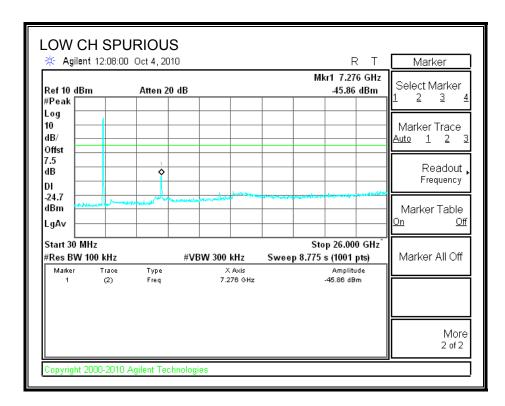
LIMITS

FCC §15.247 (d)

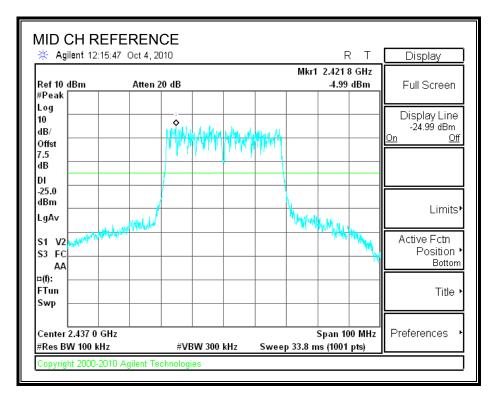
IC RSS-210 A8.5

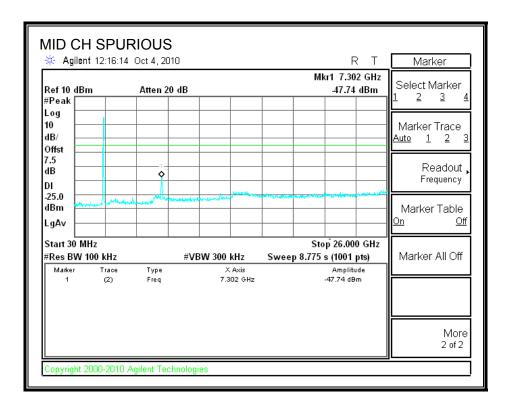
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

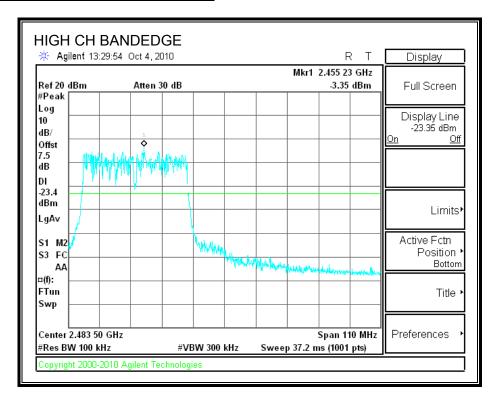

TEST PROCEDURE

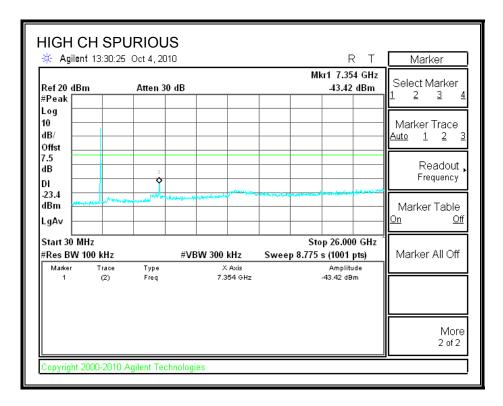

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

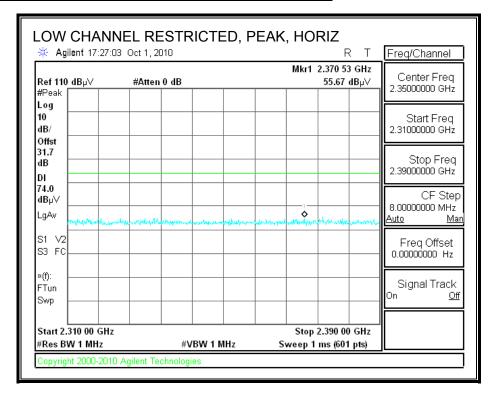
DATE: JANUARY 12, 2011

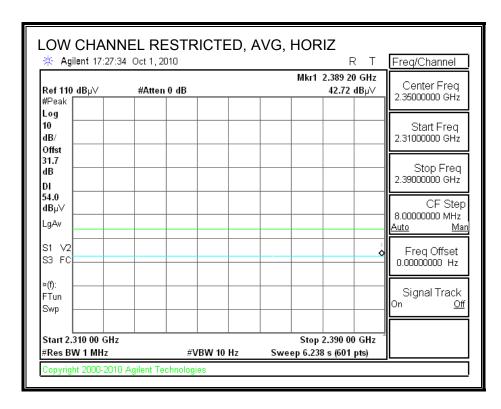
FCC ID: N7N-MHS802

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

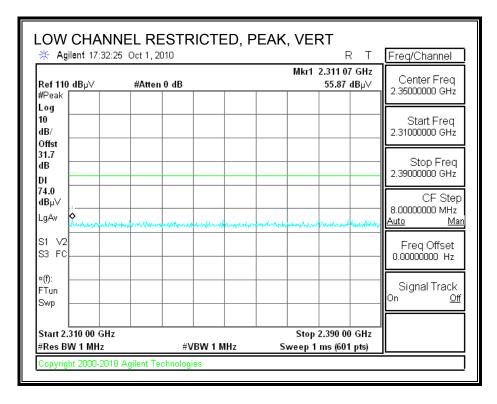

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each appplicable band.

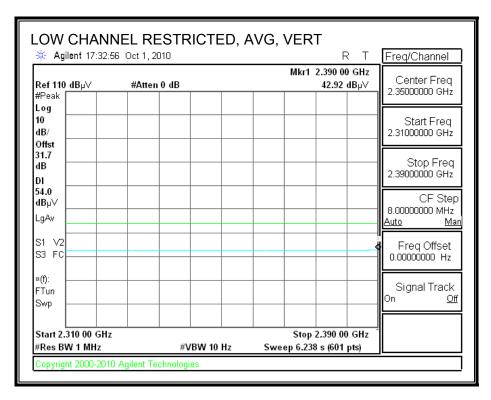

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2.TRANSMITTER ABOVE 1 GHz

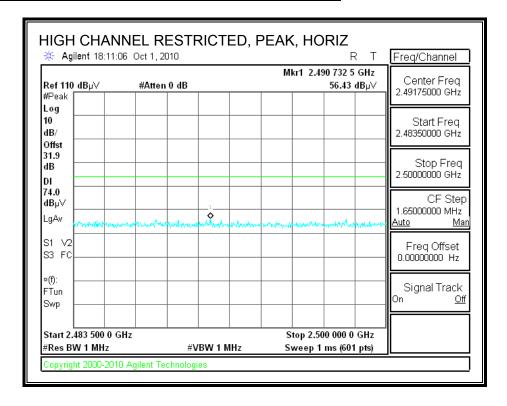
8.2.1. 802.11b MODE IN THE 2.4 GHz BAND

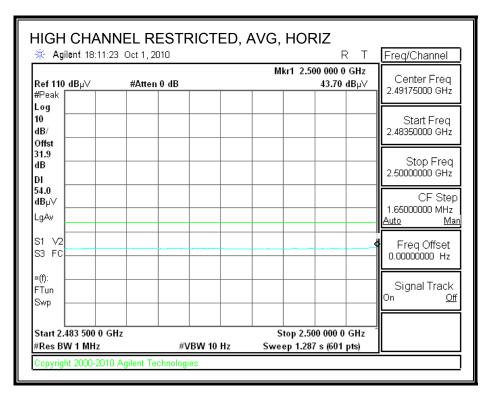
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

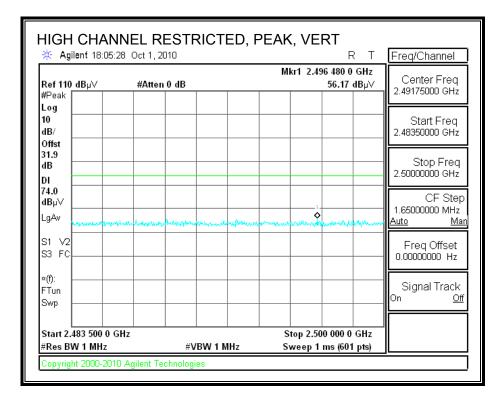


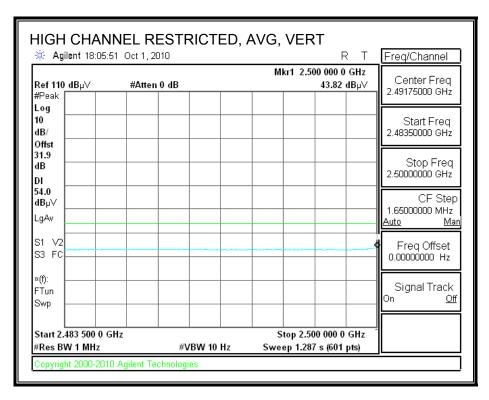

DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802


TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

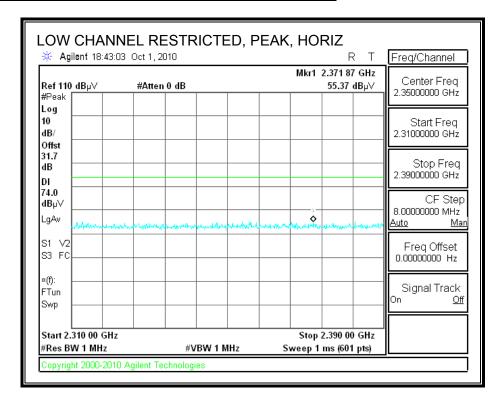
Chin Pang Test Engr: 10/02/10 Date: 10U13412 Project #:

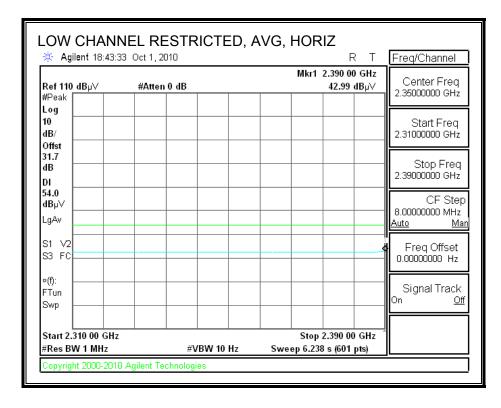
Sierra Wireless Inc. Company:

FCc 15.247 Test Target: Mode Oper: TX, b mode

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

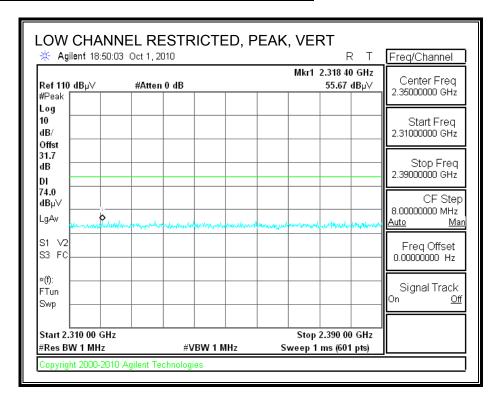
DATE: JANUARY 12, 2011

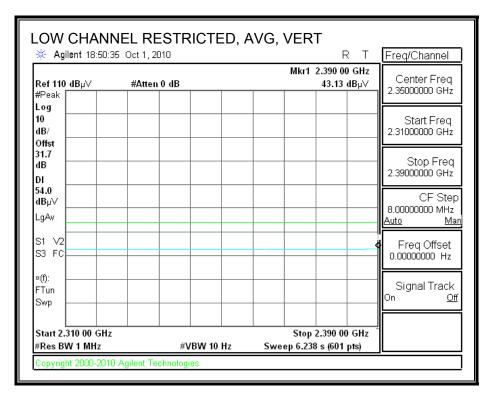

FCC ID: N7N-MHS802

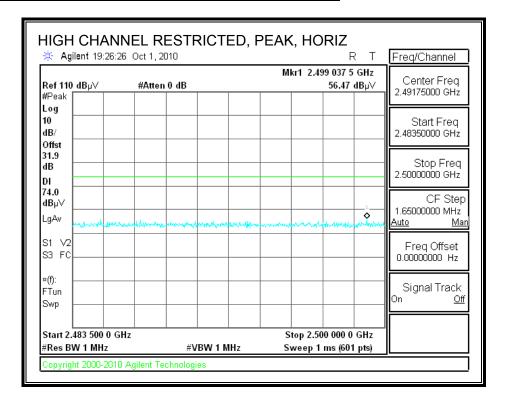

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det.	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
Low Ch, 2	2412MHz	E											
4.824	3.0	40.6	32.8	5.8	-34.8	0.0	0.0	44.3	74.0	-29.7	Н	P	
4.824	3.0	33.3	32.8	5.8	-34.8	0.0	0.0	37.0	54.0	-17.0	H	A	
4.824	3.0	42.4	32.8	5.8	-34.8	0.0	0.0	46.1	74.0	-27.9	V	P	
4.824	3.0	37.7	32.8	5.8	-34.8	0.0	0.0	41.4	54.0	-12.6	V	A	
Mid Ch, 2	437MHz	 !											
4.874	3.0	41.1	32.8	5.8	-34.9	0.0	0.0	44.9	74.0	-29.1	V	P	
4.874	3.0	35.6	32.8	5.8	-34.9	0.0	0.0	39.3	54.0	-14.7	V	A	
7.311	3.0	37.0	35.2	7.3	-34.7	0.0	0.0	44.8	74.0	-29.2	V	P	
7.311	3.0	24.9	35.2	7.3	-34.7	0.0	0.0	32.7	54.0	-21.3	V	A	
4.874	3.0	39.5	32.8	5.8	-34.9	0.0	0.0	43.3	74.0	-30.7	H	P	
4.874	3.0	30.3	32.8	5.8	-34.9	0.0	0.0	34.1	54.0	-19.9	Н	A	
7.311	3.0	37.2	35.2	7.3	-34.7	0.0	0.0	45.0	74.0	-29.0	Н	P	
7.311	3.0	24.9	35.2	7.3	-34.7	0.0	0.0	32.7	54.0	- 21. 3	Н	A	
High Ch,	2462MH	ĺz											
4.924	3.0	38.6	32.8	5.9	-34.9	0.0	0.0	42.4	74.0	-31.6	H	P	
4.924	3.0	27.2	32.8	5.9	-34.9	0.0	0.0	31.1	54.0	-22.9	H	A	
7.386	3.0	37.0	35.3	7.3	-34.6	0.0	0.0	45.0	74.0	-29.0	Н	P	
7.386	3.0	24.7	35.3	7.3	-34.6	0.0	0.0	32.6	54.0	-21.4	Н	A	
4.924	3.0	39.0	32.8	5.9	-34.9	0.0	0.0	42.9	74.0	-31.1	V	P	
4.924	3.0	29.6	32.8	5.9	-34.9	0.0	0.0	33.4	54.0	-20.6	V	A	
7.386	3.0	38.5	35.3	7.3	-34.6	0.0	0.0	46.4	74.0	-27.6	V	P	
7.386	3.0	24.6	35.3	7.3	-34.6	0.0	0.0	32.6	54.0	-21.5	V	A	

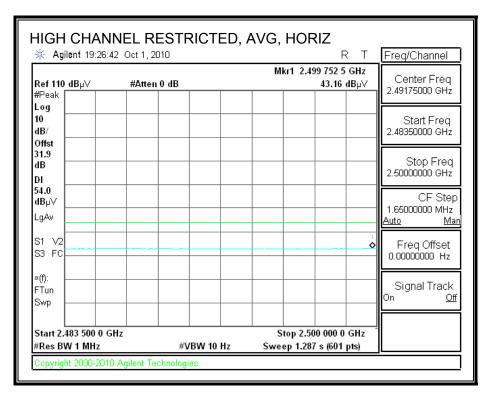
Rev. 4.1.2.7

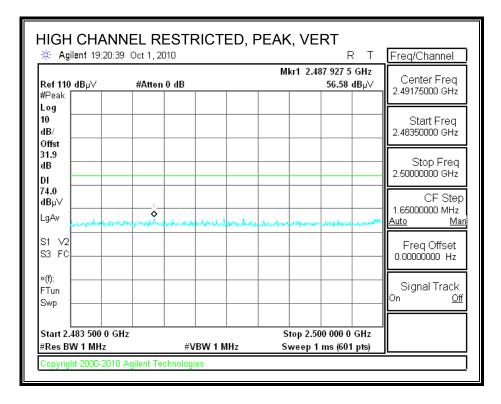
Note: No other emissions were detected above the system noise floor.

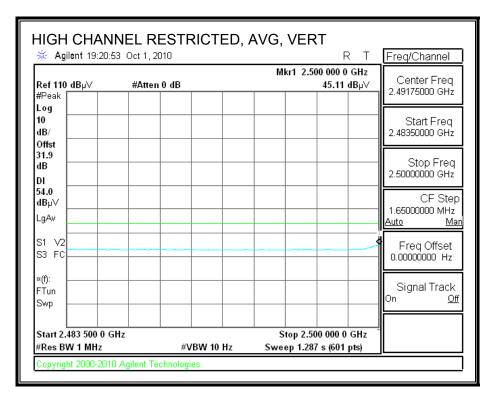

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




DATE: JANUARY 12, 2011


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: JANUARY 12, 2011 FCC ID: N7N-MHS802

HARMONICS AND SPURIOUS EMISSIONS

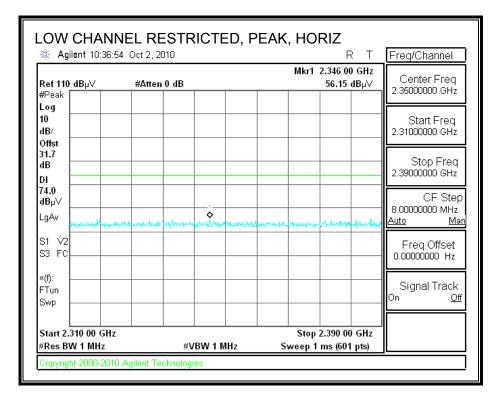
High Frequency Measurement

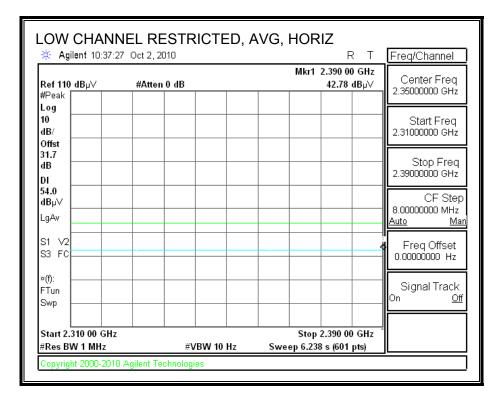
Compliance Certification Services, Fremont 5m Chamber

Test Engr: Chin Pang Date: 10/02/10 10U13412 Project #:

Sierra Wireless, Inc. Company:

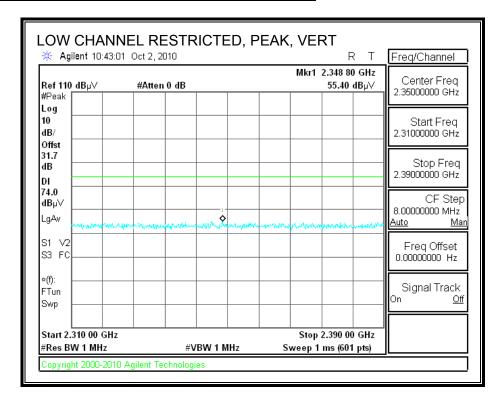
Test Target: FCC 15.247 Mode Oper: TX, g mode

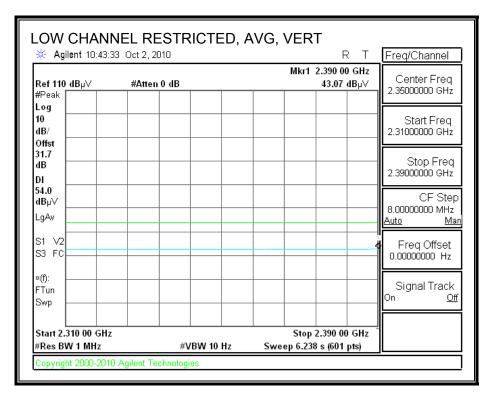

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters
> Read Analyzer Reading Avg Average Field Strength @ 3 m
> AF Antenna Factor Peak Calculated Peak Field Strength
> CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit Margin vs. Peak Limit

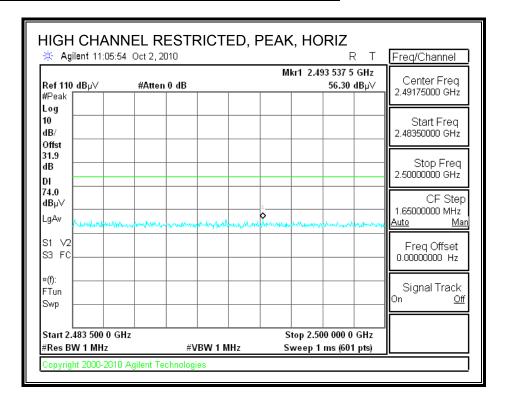

f	Dist	Read	AF	CL	Amp	D Corr		Corr.			Ant Pol	Det	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dB	dВ	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch, 2	2412MHz	E.											
4.824	3.0	41.6	32.8	5.8	-34.8	0.0	0.0	45.3	74.0	-28.7	V	P	
4.824	3.0	29.3	32.8	5.8	-34.8	0.0	0.0	33.0	54.0	-21.0	V	A	
4.824	3.0	38.8	32.8	5.8	-34.8	0.0	0.0	42.5	74.0	-31.5	H	P	
4.824	3.0	27.0	32.8	5.8	-34.8	0.0	0.0	30.7	54.0	- 23.3	Н	A	
Mid Ch, 2	437MHz	 !											
4.874	3.0	38.0	32.8	5.8	-34.9	0.0	0.0	41.8	74.0	-32.2	V	P	
4.874	3.0	25.3	32.8	5.8	-34.9	0.0	0.0	29.1	54.0	-24.9	V	A	
7.311	3.0	36.8	35.2	7.3	-34.7	0.0	0.0	44.6	74.0	-29.4	V	P	
7.311	3.0	24.7	35.2	7.3	-34.7	0.0	0.0	32.5	54.0	-21.5	V	A	
4.874	3.0	38.2	32.8	5.8	-34.9	0.0	0.0	42.0	74.0	-32.0	H	P	
4.874	3.0	25.3	32.8	5.8	-34.9	0.0	0.0	29.1	54.0	-24.9	H	A	
7.311	3.0	37.7	35.2	7.3	-34.7	0.0	0.0	45.5	74.0	-28.5	H	P	
7.311	3.0	24.8	35.2	7.3	-34.7	0.0	0.0	32.6	54.0	-21.4	Н	A	
High Ch,	2462MH	[z											
4.924	3.0	38.0	32.8	5.9	-34.9	0.0	0.0	41.9	74.0	-32.1	V	P	
4.924	3.0	25.6	32.8	5.9	-34.9	0.0	0.0	29.4	54.0	-24.6	V	A	
7.386	3.0	36.7	35.3	7.3	-34.6	0.0	0.0	44.6	74.0	-29.4	V	P	
7.386	3.0	24.5	35.3	7.3	-34.6	0.0	0.0	32.5	54.0	-21.5	V	A	
4.924	3.0	38.2	32.8	5.9	-34.9	0.0	0.0	42.1	74.0	-31.9	H	P	
4.924	3.0	25.5	32.8	5.9	-34.9	0.0	0.0	29.4	54.0	-24.6	H	A	
7.386	3.0	37.2	35.3	7.3	-34.6	0.0	0.0	45.2	74.0	-28.8	Н	P	
7.386	3.0	24.5	35.3	7.3	-34.6	0.0	0.0	32.5	54.0	-21.5	H	A	

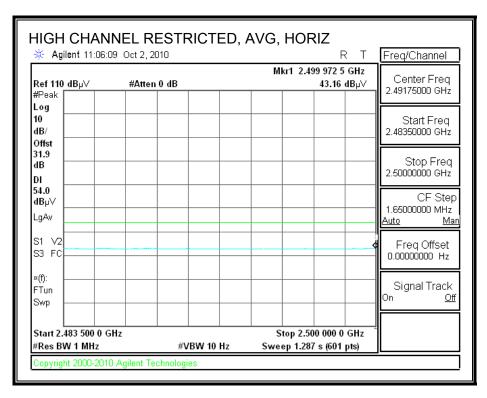
Note: No other emissions were detected above the system noise floor.

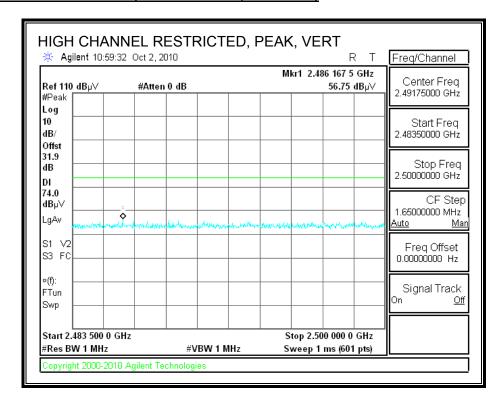
8.2.3. 802.11n HT20 SISO MODE IN THE 2.4 GHz BAND

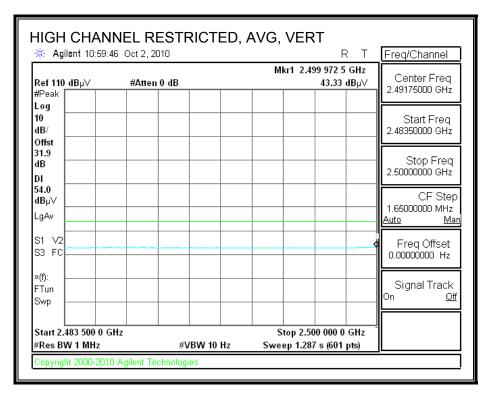

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




DATE: JANUARY 12, 2011


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: JANUARY 12, 2011 FCC ID: N7N-MHS802

HARMONICS AND SPURIOUS EMISSIONS

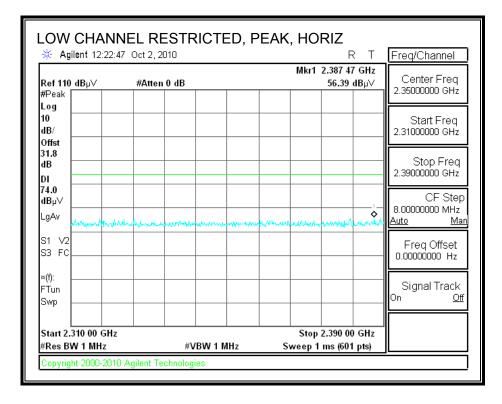
High Frequency Measurement

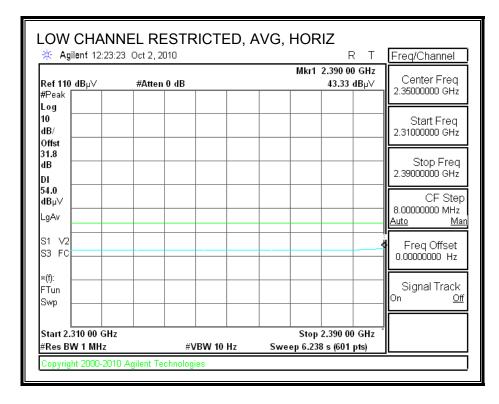
Compliance Certification Services, Fremont 5m Chamber

Test Engr: Chin Pang Date: 10/02/10 10U13412 Project #:

Sierra Wireless, Inc. Company: Test Target: FCC 15.247 TX, 802.11n, HT20 Mode Oper:

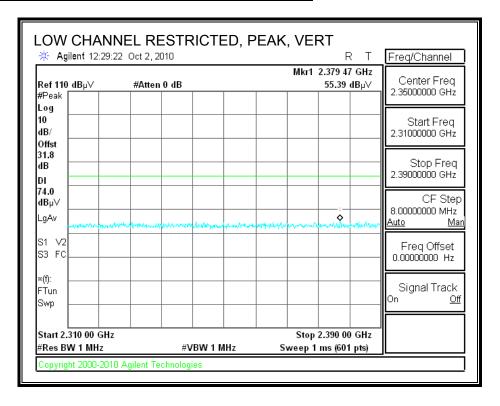
> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters
> Read Analyzer Reading Avg Average Field Strength @ 3 m
> AF Antenna Factor Peak Calculated Peak Field Strength
> CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit Margin vs. Peak Limit

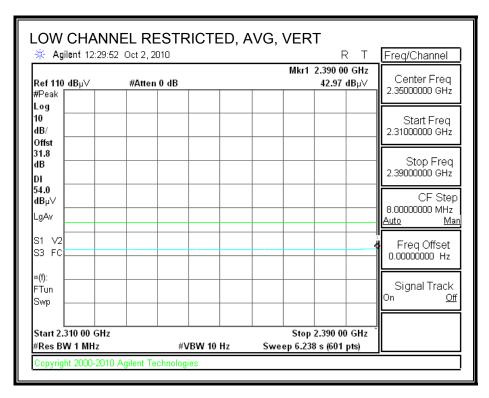

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		: :	Limit dBuV/m		Ant. Pol. V/H	Det. P/A/OP	Notes
Low Ch. 2	. 52 ;		ub;m					100000	ab a mar		****	1112 Q1	
1.824	3.0	38.1	32.8	5.8	-34.8	0.0	0.0	41.8	74.0	-32.2	н	P	
1.824	3.0	25.6	32.8	5.8	-34.8	0.0	0.0	29.4	54.0	-24.6	H	A	
1.824	3.0	38.1	32.8	5.8	-34.8	0.0	0.0	41.9	74.0	-32.1	V	P	
4.824	3.0	25.6	32.8	5.8	-34.8	0.0	0.0	29.3	54.0	-24.7	v	A	
Mid Ch, 2	437MHz												
4.874	3.0	39.0	32.8	5.8	-34.9	0.0	0.0	42.8	74.0	-31.2	Н	P	
4.874	3.0	25.3	32.8	5.8	-34.9	0.0	0.0	29.1	54.0	-24.9	Н	A	
7.311	3.0	36.9	35.2	7.3	-34.7	0.0	0.0	44.7	74.0	- 29. 3	Н	P	
7.311	3.0	24.7	35.2	7.3	-34.7	0.0	0.0	32.5	54.0	-21.5	Н	A	
4.874	3.0	37.5	32.8	5.8	-34.9	0.0	0.0	41.3	74.0	-32.7	V	P	
4.874	3.0	25.3	32.8	5.8	-34.9	0.0	0.0	29.0	54.0	-25.0	V	A	
7.311	3.0	37.0	35.2	7.3	-34.7	0.0	0.0	44.8	74.0	-29.2	V	P	
7.311	3.0	24.7	35.2	7.3	-34.7	0.0	0.0	32.5	54.0	-21.5	V	A	
High Ch,	2462MH	īz											
4.924	3.0	38.3	32.8	5.9	-34.9	0.0	0.0	42.2	74.0	-31.8	H	P	
4.924	3.0	25.5	32.8	5.9	-34.9	0.0	0.0	29.4	54.0	-24.6	Н	A	
7.386	3.0	37.0	35.3	7.3	-34.6	0.0	0.0	45.0	74.0	-29.0	Н	P	
7.386	3.0	24.5	35.3	7.3	-34.6	0.0	0.0	32.4	54.0	-21.6	H	A	
1.924	3.0	38.1	32.8	5.9	-34.9	0.0	0.0	42.0	74.0	-32.0	V	P	
1.924	3.0	25.5	32.8	5.9	-34.9	0.0	0.0	29.4	54.0	-24.6	V	A	
7.386	3.0	36.8	35.3	7.3	-34.6	0.0	0.0	44.8	74.0	-29.2	V	P	
7.386	3.0	24.5	35.3	7.3	-34.6	0.0	0.0	32.4	54.0	-21.6	V	A	

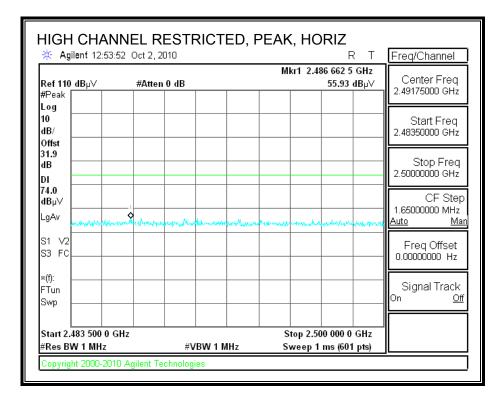

Rev. 4.1.2.7

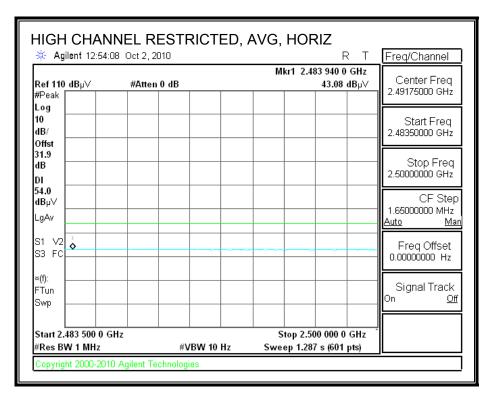
Note: No other emissions were detected above the system noise floor.

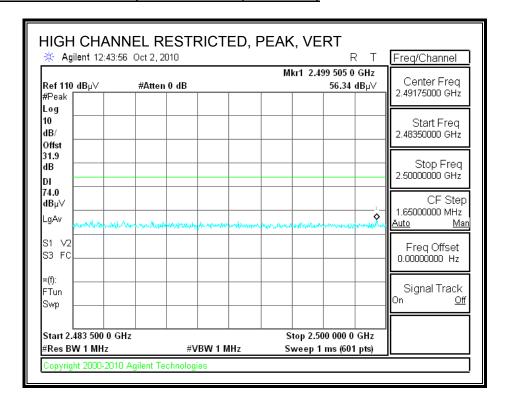
8.2.4. 802.11n HT40 SISO MODE IN THE 2.4 GHz BAND

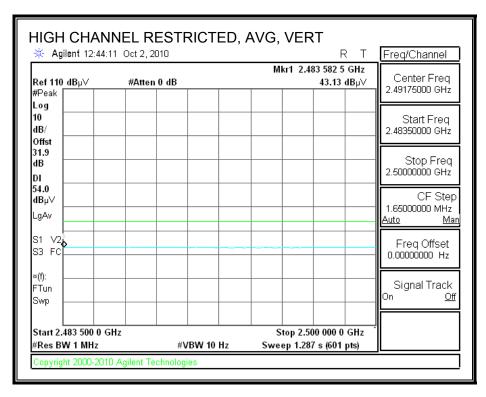

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




DATE: JANUARY 12, 2011


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: JANUARY 12, 2011 FCC ID: N7N-MHS802

HARMONICS AND SPURIOUS EMISSIONS

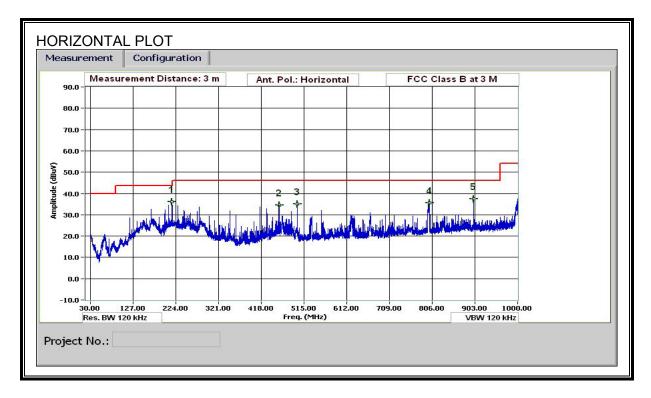
High Frequency Measurement

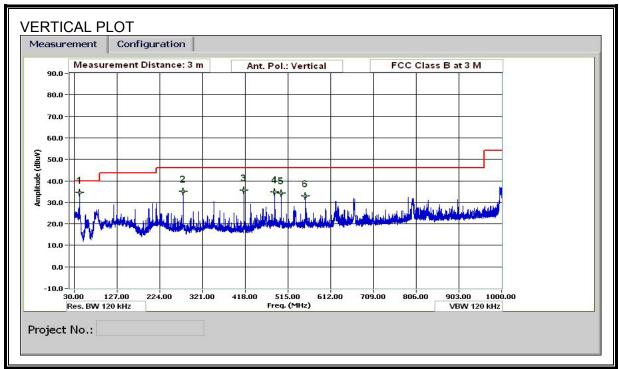
Compliance Certification Services, Fremont 5m Chamber

Test Engr: Chin Pang Date: 10/02/10 10U13412 Project #:

Sierra Wireless, Inc. Company: Test Target: FCC 15.247 TX, 802.11n, 40MHz Mode Oper:

> f Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters
> Read Analyzer Reading Avg Average Field Strength @ 3 m
> AF Antenna Factor Peak Calculated Peak Field Strength
> CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit Margin vs. Peak Limit


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dB	dВ	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch, 2	2422MH:	ž.											
4.844	3.0	37.4	32.8	5.8	-34.8	0.0	0.0	41.1	74.0	-32.9	V	P	
4.844	3.0	25.5	32.8	5.8	-34.8	0.0	0.0	29.3	54.0	-24.7	V	A	
4.844	3.0	38.0	32.8	5.8	-34.8	0.0	0.0	41.8	74.0	-32.2	H	P	
4.844	3.0	25.3	32.8	5.8	-34.8	0.0	0.0	29.1	54.0	-24.9	Н	A	
Mid Ch, 2	437MH	<u> </u>											
4.874	3.0	37.8	32.8	5.8	-34.9	0.0	0.0	41.6	74.0	-32.4	V	P	
4.874	3.0	25.3	32.8	5.8	-34.9	0.0	0.0	29.1	54.0	-24.9	V	A	
7.311	3.0	37.5	35.2	7.3	-34.7	0.0	0.0	45.3	74.0	-28.7	V	P	
7.311	3.0	24.8	35.2	7.3	-34.7	0.0	0.0	32.6	54.0	-21.4	V	A	
4.874	3.0	38.3	32.8	5.8	-34.9	0.0	0.0	42.1	74.0	-31.9	H	P	
4.874	3.0	25.3	32.8	5.8	-34.9	0.0	0.0	29.1	54.0	-24.9	H	A	
7.311	3.0	38.4	35.2	7.3	-34.7	0.0	0.0	46.2	74.0	-27.8	H	P	
7.311	3.0	24.8	35.2	7.3	-34.7	0.0	0.0	32.6	54.0	-21.4	Н	A	
High Ch,	2452MH	lz											
4.904	3.0	38.3	32.8	5.9	-34.9	0.0	0.0	42.1	74.0	-31.9	v	P	
4.904	3.0	25.5	32.8	5.9	-34.9	0.0	0.0	29.4	54.0	-24.6	V	A	
7.356	3.0	37.5	35.3	7.3	-34.6	0.0	0.0	45.4	74.0	-28.6	V	P	
7.356	3.0	24.5	35.3	7.3	-34.6	0.0	0.0	32.4	54.0	-21.6	V	A	
4.904	3.0	38.2	32.8	5.9	-34.9	0.0	0.0	42.0	74.0	-32.0	Н	P	
4.904	3.0	25.5	32.8	5.9	-34.9	0.0	0.0	29.3	54.0	-24.7	Н	A	
7.356	3.0	37.2	35.3	7.3	-34.6	0.0	0.0	45.1	74.0	-28.9	Н	P	
7.356	3.0	24.4	35.3	7.3	-34.6	0.0	0.0	32.3	54.0	-21.7	H	A	


Note: No other emissions were detected above the system noise floor.

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

DATE: JANUARY 12, 2011

DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Chin Pang
Date: 10/04/10
Project #: 10U13412

Company: Sierra Wireless, Inc.
Test Target: FCC 15.247
Mode Oper: TX (Worst Case)

f Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

f Measurement Frequency
Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit

f	Dist	Read	AF	CL	Amp	D Corr	Pad	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
MHz	(m)	dBuV	dBuV dB/m	dВ	dB	dB dB	dB	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
214.808	3.0	51.6	11.9	1.3	28.9	0.0	0.0	36.0	43.5	-7.5	н	P	
458.178	3.0	45.9	16.1	2.0	29.6	0.0	0.0	34.5	46.0	-11.5	Н	P	
499.939	3.0	45.9	16.8	2.1	29.7	0.0	0.0	35.2	46.0	-10.8	Н	P	
799.592	3.0	41.0	21.0	2.8	29.2	0.0	0.0	35.7	46.0	-10.3	Н	P	
900.036	3.0	41.5	21.5	3.0	28.6	0.0	0.0	37.4	46.0	-8.6	H	P	
41.64	3.0	50.4	13.1	0.6	29.6	0.0	0.0	34.4	40.0	-5.6	V	P	
277.09	3.0	49.6	12.6	1.5	28.8	0.0	0.0	35.0	46.0	-11.0	V	P	
415.576	3.0	47.6	15.3	1.9	29.4	0.0	0.0	35.5	46.0	-10.5	V	P	
484.819	3.0	45.9	16.5	2.1	29.7	0.0	0.0	34.9	46.0	-11.1	V	P	
499.939	3.0	45.1	16.8	2.1	29.7	0.0	0.0	34.3	46.0	-11.7	V	P	
554.062	3.0	42.7	17.6	2.3	29.7	0.0	0.0	32.9	46.0	-13.1	v	P	

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 °	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

RESULTS

6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)											
Freq.		Reading		Closs	Limit	EN_B	Margin		Remark			
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2			
0.17	54.05		42.02	0.00	64.86	54.86	-10.81	-12.84	L1			
0.35	44.60		37.02	0.00	58.96	48.96	-14.36	-11.94	L1			
3.53	44.30		31.99	0.00	56.00	46.00	-11.70	-14.01	L1			
0.28	55.63		36.48	0.00	60.85	50.85	-5.22	-14.37	L2			
0.95	48.64		31.43	0.00	56.00	46.00	-7.36	-14.57	L2			
3.78	42.61		31.90	0.00	56.00	46.00	-13.39	-14.10	L2			
6 Worst I	 Data 											

DATE: JANUARY 12, 2011

LINE 1 RESULTS

Compliance Certification Service 47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888 Data#: 7 File#: 10U13412_LC.EMI Date: 09-28-2010 Time: 15:53:46 Level (dBuV) CISPR CLASS-B AVERAGE ·1 0.15 0.2 30 Frequency (MHz) Trace: 5 Ref Trace: Condition: CISPR CLASS-B Test Operator:: Chin Pang Project #: : 10U13412 Company: : Sierra Wireless Inc. Configuration:: EUT / Laptop Mode: : TX (Worst Case) : FCC Class B : 115VAC / 60Hz Target: Voltage: : L1: (Peak: Blue, Average:Green)

DATE: JANUARY 12, 2011

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888 Data#: 14 File#: 10U13412 LC.EMI Date: 09-28-2010 Time: 15:59:13 Level (dBuV) CISPR CLASS-B AVERAGE 45 ·1 0.15 0.2 0.5 2 10

Trace: 12 Ref Trace:

Frequency (MHz)

Condition: CISPR CLASS-B Test Operator:: Chin Pang

Project #: : 10U13412 Company: : Sierra Wireless Inc.

Configuration:: EUT / Laptop Mode : : TX (Worst Case) : FCC Class B Target: Voltage: : 115VAC / 60Hz

: L2: (Peak: Blue, Average:Green)

DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

MAXIMUM PERMISSIBLE EXPOSURE

10.1. Limits

10.1.1. **FCC RULES**

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	/Controlled Exposu	res	
0.3-3.0 3.0-30 30-300 300-1500 1500-100,000	614 1842/f 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

10.1.2. IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/f		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 $f^{0.5}$	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- A power density of 10 W/m² is equivalent to 1 mW/cm².
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

10.1.3. LIMITS APPLICABLE TO THE EUT

For mobile radio equipment operating in the cellular phone band, the lowest power density limit is calculated using the lowest frequency, as $824 \text{ MHz} / 1500 = 0.55 \text{ mW/cm}^2$ (FCC) and $824 \text{ MHz} / 150 = 5.5 \text{ W/m}^2$ (IC).

For operation in the PCS band, the 2.4 GHz band and the 5 GHz bands, from FCC §1.1310 Table 1 (B), the maximum value of $S = 1.0 \text{ mW/cm}^2$ and from IC Safety Code 6, Section 2.2 Table 5 Column 4, $S = 10 \text{ W/m}^2$.

10.2. EQUATIONS

Power density is given by:

where

S = Power density in W/m^2

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

DATE: JANUARY 12, 2011

FCC ID: N7N-MHS802

Total EIRP =
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply, either the lowest limit applicable to the operating frequency ranges of the co-located transmitters can be applied or a fraction of the exposure limit is established for each band, such that the sum of the fractions is less than or equal to one.

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

REPORT NO: 10U13412-4A DATE: JANUARY 12, 2011 EUT: CDMA+ WIMAX + WIFI MOBILE HOT SPOT FCC ID: N7N-MHS802

10.3. RESULTS

10.3.1. SINGLE TRANSMITTER (WLAN)

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz - b mode	WLAN	0.20	18.30	-1.00	0.11	0.011
2.4 GHz - g mode	WLAN	0.20	21.20	-1.00	0.21	0.021
2.4 GHz - HT20 mode	WLAN	0.20	21.60	-1.00	0.23	0.023
2.4 GHz - HT40 mode	WLAN	0.20	19.40	-1.00	0.14	0.014

Each Power Density is less than 10 W/m^2 or 1 mW/cm^2, which is the limit for these operating frequency ranges.