

FCC OET BULLETIN 65 SUPPLEMENT C

SAR EVALUATION REPORT (WiFi Portion)

> For WiMAX + WiFi Router

MODEL NUMBER: W801

FCC ID: N7N-MHS801

REPORT NUMBER: 10U13330-2A

ISSUE DATE: August 6, 2010

Prepared for

SIERRA WIRELESS INC. 200 FARADAY AVENUE, SUITE 150 CARLSBAD, CA 92008

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	August 4, 2010	Initial Issue	
А	August 6, 2010	Fixed some typos	Sunny Shih

Page 2 of 22

TABLE OF CONTENTS

1.	A	ITESTATION OF TEST RESULTS	4
2.	TE	EST METHODOLOGY	5
3.	F	ACILITIES AND ACCREDITATION	5
4.	C	ALIBRATION AND UNCERTAINTY	5
4	4.1.	MEASURING INSTRUMENT CALIBRATION	5
4	4.2.	MEASUREMENT UNCERTAINTY	6
5.	S	STEM SPECIFICATIONS	7
6.	C	OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	8
7.	ΤI	SSUE DIELECTRIC PARAMETERS CHECK	9
	7.1.	TISSUE PARAMETERS CHECK RESULTS FOR 2450 MHZ1	0
8.	S	YSTEM VERIFICATION1	1
ä	3.1.	SYSTEM CHECK RESULTS FOR D2450V21	1
9.	0	UTPUT POWER VERIFICATION1	4
10		SUMMARY OF SAR TEST RESULTS1	5
11.		SAR TEST PLOTS1	6
12		KDB 648474 SIMULTANEOUS TRANSMISSION CONSIDERATION1	7
13		ATTACHMENTS1	8
14		ANTENNA TO USER SEPARATION DISTANCES1	9
15		TEST SETUP PHOTO2	0
16		HOST DEVICE PHOTOS2	1

Page 3 of 22

Pass

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	SIERRA WIRELESS INC.					
	200 Faraday Avenue, Suite	e 150				
	CARLSBAD, CA 92008					
EUT DESCRIPTION:	WiMAX + WiFi Router					
MODEL NUMBER:	W801					
DEVICE CATEGORY:	Portable	Portable				
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure					
DATE TESTED:	July 25, 2010					
FCC Rule Parts	Freq. Range [MHz]	The Highest 1g SAR mW/g)	Limit (mW/g)			
15.247	2412-2462	1.6				
Applicable Standards						

FCC OET Bulletin 65 Supplement C 01-01

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For CCS By:

Seenay Shih

SUNNY SHIH ENGINEERING TEAM LEADER COMPLIANCE CERTIFICATION SERVICES Tested By:

Charg

DEVIN CHANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 22

2. TEST METHODOLOGY

FCC OET Bulletin 65 Supplement C 01-01 and the following specific FCC test procedures:

- KDB 248227 SAR measurement procedures for 802.11a/b/g transmitters
- KDB 648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

4. CALIBRATION AND UNCERTAINTY

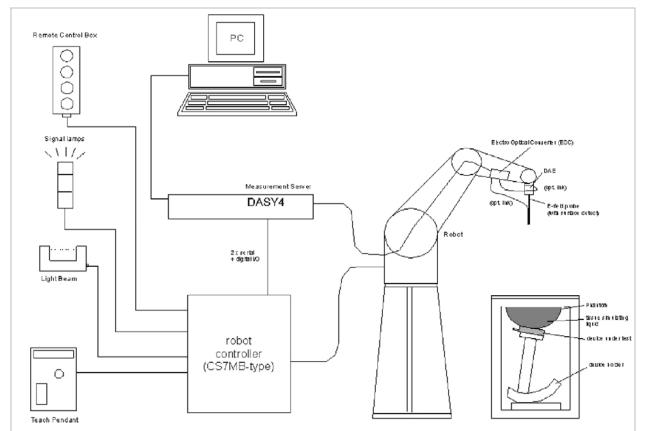
4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

None of Emilian out	Manufactures	Tome (Mandal	Quriel No.	Cal. Due date			
Name of Equipment	Manufacturer Type/Model		Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003	N/A		N/A	
Electronic Probe kit	HP	85070C	N/A			N/A	
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010	
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010	
E-Field Probe	SPEAG	EX3DV3	3531	2	23	2011	
System Validation Dipole	SPEAG	D2450V2	706	4	18	2013	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3	13	2012	
Amplifier	Mini-Circuits	ZVE-8G	90606			N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A	
Simulating Liquid	SPAEG	M2450	N/A	Withi	ז 24 h	rs of first test	

Note: Per KDB 450824 D02 requirements for dipole calibration, CCS has adopted three years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in CCS)
- 4. Impedance is within 5 Ω of calibrated measurement (test data on file in CCS)


Page 5 of 22

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ Body 2450 MHz	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy		Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time		Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections		Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom		Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60		1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	-0.69	Normal	1	0.64	-0.44
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement	0.63	Normal	1	0.6	0.38
Combined Standard Uncertainty Uc(y) = 9.4					
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 18.92 %					
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 1.50 dB					

5. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Page 7 of 22

6. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients					Fre	equency (MHz)				
(% by weight)	450		835		915		1900		2450		2600
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	0.05
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	27.2
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	2.16

Salt: 99+% Pure Sodium Chloride Water: De-ionized, 16 MQ+ resistivity

Sugar: 98+% Pure Sucrose

HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Page 8 of 22

7. TISSUE DIELECTRIC PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Body (for 300 – 3000 MHz and 5800 MHz)

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body (Supple	ment C 01-01)
Target Trequency (IMTZ)	ε _r	σ (S/m)
300	58.20	0.92
450	56.70	0.94
835	55.20	0.97
900	55.00	1.05
915	55.00	1.06
1450	54.00	1.30
1610	53.80	1.40
1800 – 2000	53.30	1.52
2450	52.70	1.95
3000	52.00	2.73
5800	48.20	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 9 of 22

7.1. TISSUE PARAMETERS CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameter Check Result @ Body 2450 MHz Room Ambient Temperature = 24°C; Relative humidity = 38% Measured by: Devin Chang

			y = 30 % Measured by. Devin Chang				
f (MHz)	Liquid Parameters		Measured	Target	Delta (%)	Limit (%)	
2450	e'	53.03	Relative Permittivity (ε_r):	53.032	52.7	0.63	± 5
2430	e"	14.21	Conductivity (σ):	1.937	1.95	-0.69	± 5
Liquid Check							
Ambient temper	ature: 24	4 deg. C; L	iquid temperature: 23 de	g. C			
July 25, 2010 9:		0		0			
Frequency		e'	e"				
240000000		53.12801	13.96142	2			
2405000000		53.11591	14.03482	2			
2410000000		53.10131	14.10002	2			
2415000000		53.09771	14.14352	2			
2420000000		53.08381	14.16972	2			
2425000000		53.07921	14.18792	2			
2430000000		53.08491	14.18122	2			
2435000000		53.06911	14.18732	2			
2440000000		53.06471	14.20182	2			
2445000000		53.03571	14.22952	2			
2450000000		53.03181	14.20862	2			
2455000000		52.96281	14.18522	2			
2460000000		52.92671	14.15712	2			
2465000000		52.86291	14.11992	2			
2470000000		52.84751	14.07232	2			
2475000000		52.83241	14.04812	2			
2480000000		52.84021	14.05522	2			
2485000000		52.83341	14.07432	2			
2490000000		52.83581	14.13162	2			
2495000000		52.83771	14.20542	2			
2500000000		52.83281	14.30832	2			
The conductivity (σ) can be given as:							
$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$							
where $f = target f * 10^6$							
$\boldsymbol{\varepsilon}_{0} = 8.854 * 10^{-12}$							

Page 10 of 22

8. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input powers (forward power) were 100 mW.
- The results are normalized to 1 W input power.

SAR Avg (mW/g) Cal. System Cal. certificate # validation dipole due date Head Tissue: Body 51.6 52.4 SAR_{1a}: D2450V2-706 Apr10 04/18/13 D2450V2 24.4 24.5 SAR_{10g}:

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

8.1. SYSTEM CHECK RESULTS FOR D2450V2

Α	mbient Temperat	ure = 24°C; R	Measured	l by: Devin C	hang		
	System	Date Tested	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance
	validation dipole	Dale Tesleu	Tissue:	Body	Taiyei		(%)
	D2450V2	07/25/10	SAR _{1g} :	52	52.4	-0.76	±10
	D2450V2	07/25/10	SAR _{10g} :	24.6	24.5	0.41	ΞIŪ

Page 11 of 22

SYSTEM CHECK PLOT

Date/Time: 7/25/2010 10:45:26 AM

Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.94 mho/m; ϵ_r = 53; ρ = 1000 kg/m³

Phantom section: Flat Section

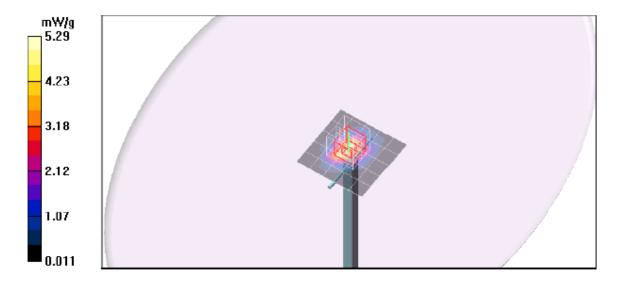
Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010

- Sensor-Surface: 3mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn500; Calibrated: 9/15/2009

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

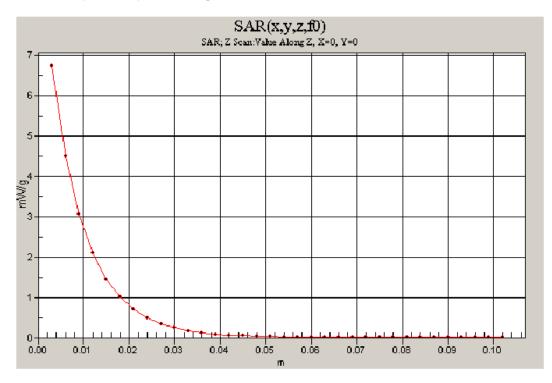
d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.29 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.6 V/m; Power Drift = -0.061 dB Peak SAR (extrapolated) = 10.4 W/kg SAR(1 g) = 5.2 mW/g; SAR(10 g) = 2.46 mW/g Maximum value of SAR (measured) = 6.75 mW/g

Page 12 of 22

SYSTEM CHECK – Z Plot

Date/Time: 7/25/2010 11:01:20 AM


Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 6.74 mW/g

Page 13 of 22

9. OUTPUT POWER VERIFICATION

<u>Results</u>

Mode	Channel	Freq. (MHz)	Average Output Power (dBm)
	1	2412	15.6
802.11b	6	2437	16.4
	11	2462	17.4
	1	2412	14.6
802.11g	6	2437	15.2
	11	2462	15.6

Note: KDB 248227 - SAR is not required for 802.11g channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Page 14 of 22

10. SUMMARY OF SAR TEST RESULTS

Top Mode

Mada	Channel	f (M/LI→)	Results (mW/g)		
Mode	Channel	f (MHz)	1g-SAR	10g-SAR	
	1	2412			
802.11b	6	2437			
	11	2462	0.581	0.287	

Notes:

1. KDB 248227 - SAR is not required for 802.11g channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

2. Baseed on the power measured results in section 9, channel 11 was selected for SAR test due do the maximun average output power is higher than that measured on channel 6.

Page 15 of 22

11. SAR TEST PLOTS

Date/Time: 7/25/2010 1:36:58 PM

Test Laboratory: Compliance Certification Services

WiFI_Top mode

DUT: Sierra Wireless; Type: NA; Serial: NA

Communication System: 802.11bg; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.92 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010

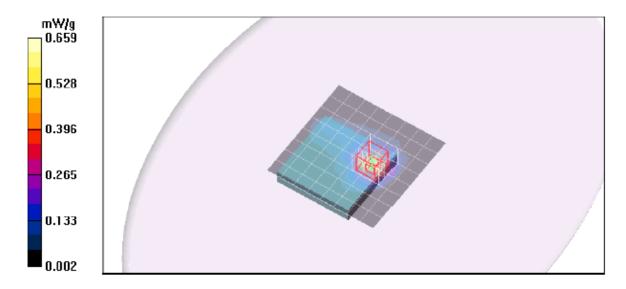
- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn500; Calibrated: 9/15/2009

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.659 mW/g

802.11b M-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 18.6 V/m; Power Drift = -0.121 dB

Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.581 mW/g; SAR(10 g) = 0.287 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.741 mW/g

Page 16 of 22

12. KDB 648474 SIMULTANEOUS TRANSMISSION CONSIDERATION

SUMMARY OF SAR EVALUATION FOR HANDSET DEVICE WITH MULTIPLE TRANSMITTERS:

Individual Transmitter	Stand-alone SAR
WiFi	Yes
WiMAX	Yes

SIMULTANEOUS TRANSMISSION:

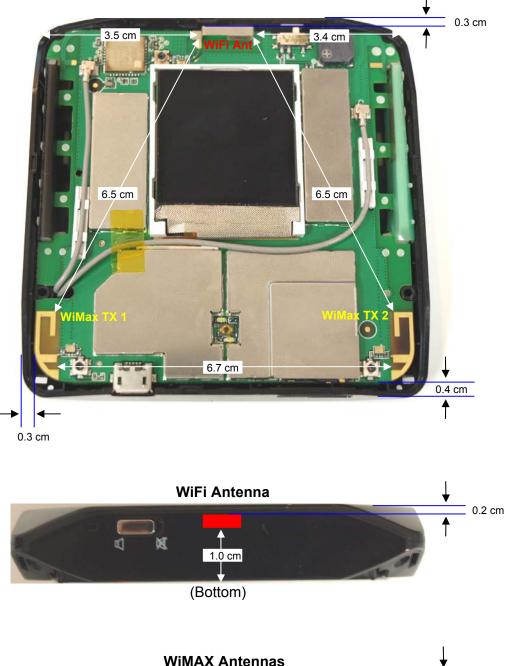
• WiFi can transmit simultaneously with WiMAX (CCS project # 10U13330-1)

Highest SAR value and the sum of the 1-g SAR for WiMAX & WiFi

Highest 1-g SAR (W/kg)		$\Sigma 1 \approx SAD (M/ka)$	
WiMAX	WiFi	Σ 1-g SAR (W/kg)	
0.462	0.581	1.043	

CONCLUSION:

<u>Simultaneous transmission</u> WiMAX & WiFi Require for Simultaneous Transmission SAR with Volume Scans No (Sum of the 1-g SAR is < 1.6 W/kg)

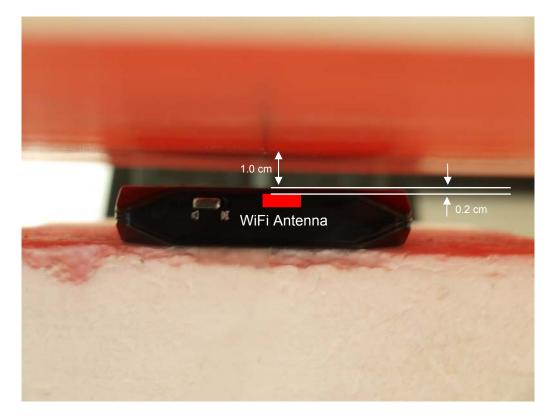

Page 17 of 22

13. ATTACHMENTS

<u>No.</u>	Contents	No. of page (s)
1	Certificate of E-Field Probe - EX3DV3 SN 3531	11
2	Certificate of System Validation Dipole - D2450 SN:706	9

Page 18 of 22

ANTENNA TO USER SEPARATION DISTANCES 14.



(Bottom)

Page 19 of 22

15. TEST SETUP PHOTO

Setup photo with 1.0 cm separation distance from top of the EUT to the Phantom

Page 20 of 22

16. HOST DEVICE PHOTOS

Bottom / Back

Page 21 of 22

Bottom / Back

END OF REPORT

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 22 of 22