8 SAR MEASURMENT RESULTS

8.1 CELL BAND

8.1.1 PANASONIC

	-	-1.		
-			2	
		-1-		
1XRTT		Massured SAP	Power Drift	Extranslated ¹⁾ SAD
1XRTT Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	-
Channel 1013 384 777	824.70 836.52 848.31	Measured SAR 1g (mW/g) 0.483	Power Drift (dB) -0.114	Extrapolated ¹⁾ SAR 1g (mW/g) 0.496
Channel 1013 384	824.70 836.52 848.31	1g (mW/g) 0.483	(dB) -0.114	1g (mW/g) 0.496
Channel 1013 384 777	824.70 836.52 848.31	1g (mW/g)	(dB)	1g (mW/g) 0.496
Channel 1013 384 777 EVDO - Relea Channel 1013 384	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52	1g (mW/g) 0.483 Measured SAR	(dB) -0.114 Power Drift	1g (mW/g) 0.496 Extrapolated ¹⁾ SAR
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777	824.70 836.52 848.31 se 0 f (MHz) 824.70 836.52 848.31	1g (mW/g) 0.483 Measured SAR 1g (mW/g)	(dB) -0.114 Power Drift (dB)	1g (mW/g) 0.496 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1013 384 777 EVDO - Relea Channel 1013 384	824.70 836.52 848.31 se 0 f (MHz) 824.70 836.52 848.31	1g (mW/g) 0.483 Measured SAR 1g (mW/g)	(dB) -0.114 Power Drift (dB)	1g (mW/g) 0.496 Extrapolated ¹⁾ SAR 1g (mW/g)

measurement process.
2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.1.2 PANASONIC – SIDE OPEN

A State of the		A c mm		
	-	6 mm		
		Y	Capital Contract	
		une Tak		
		A land		
		1 1 25		
	gener (
	and the second se			
	5/			
1XRTT				
		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
1XRTT Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
1013	824.70	1g (mW/g)	(dB)	1g (mW/g)
Channel 1013 384	824.70 836.52			-
Channel 1013 384 777	824.70 836.52 848.31	1g (mW/g)	(dB)	1g (mW/g)
Channel 1013 384	824.70 836.52 848.31	1g (mW/g) 0.513	(dB) -0.182	1g (mW/g) 0.535
Channel 1013 384 777	824.70 836.52 848.31	1g (mW/g) 0.513 Measured SAR	(dB) -0.182 Power Drift	1g (mW/g) 0.535 Extrapolated ¹⁾ SAR
Channel 1013 384 777 EVDO - Relea Channel	824.70 836.52 848.31 ase 0 f (MHz)	1g (mW/g) 0.513	(dB) -0.182	1g (mW/g) 0.535
Channel 1013 384 777 EVDO - Relea Channel 1013	824.70 836.52 848.31 ase 0 f (MHz) 824.70	1g (mW/g) 0.513 Measured SAR 1g (mW/g)	(dB) -0.182 Power Drift (dB)	1g (mW/g) 0.535 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1013 384 777 EVDO - Relea Channel 1013 384	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52	1g (mW/g) 0.513 Measured SAR	(dB) -0.182 Power Drift	1g (mW/g) 0.535 Extrapolated ¹⁾ SAR
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31	1g (mW/g) 0.513 Measured SAR 1g (mW/g)	(dB) -0.182 Power Drift (dB)	1g (mW/g) 0.535 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31	1g (mW/g) 0.513 Measured SAR 1g (mW/g) 0.469	(dB) -0.182 Power Drift (dB) -0.109	1g (mW/g) 0.535 Extrapolated ¹⁾ SAR 1g (mW/g) 0.481
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777 EVDO - Revis	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31 sion A	1g (mW/g) 0.513 Measured SAR 1g (mW/g)	(dB) -0.182 Power Drift (dB) -0.109	1g (mW/g) 0.535 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777 EVDO - Revis Channel	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31	1g (mW/g) 0.513 Measured SAR 1g (mW/g) 0.469	(dB) -0.182 Power Drift (dB) -0.109	1g (mW/g) 0.535 Extrapolated ¹⁾ SAR 1g (mW/g) 0.481
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777 EVDO - Revis	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31 sion A	1g (mW/g) 0.513 Measured SAR 1g (mW/g) 0.469 Measured SAR	(dB) -0.182 Power Drift (dB) -0.109	1g (mW/g) 0.535 Extrapolated ¹⁾ SAR 1g (mW/g) 0.481 Extrapolated ¹⁾ SAR
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777 EVDO - Revis Channel	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31 sion A f (MHz)	1g (mW/g) 0.513 Measured SAR 1g (mW/g) 0.469 Measured SAR	(dB) -0.182 Power Drift (dB) -0.109	1g (mW/g) 0.535 Extrapolated ¹⁾ SAR 1g (mW/g) 0.481 Extrapolated ¹⁾ SAR

measurement process.
2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.1.3 SONY VAIO - HORIZONTAL

	and the state of the second			
		1	8 mm	
HALL BOARD		DOF		Concession of the local division of the loca
		E E		
	1 2 3			
1XRTT			5-5	
1XRTT		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
1XRTT Channel	f (MHz)	Measured SAR 1q (mW/q)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
	f (MHz) 824.70	Measured SAR 1g (mW/g) 0.839	Power Drift (dB) -0.108	Extrapolated ¹⁾ SAR 1g (mW/g) 0.860
Channel		1g (mW/g)	(dB)	1g (mW/g)
Channel 1013	824.70 836.52	1g (mW/g) 0.839 0.858	(dB) -0.108 -0.158	1g (mW/g) 0.860 0.890
Channel 1013 384	824.70 836.52 848.31	1g (mW/g) 0.839	(dB) -0.108	1g (mW/g) 0.860
Channel 1013 384 777 EVDO - Relea	824.70 836.52 848.31 ase 0	1g (mW/g) 0.839 0.858	(dB) -0.108 -0.158	1g (mW/g) 0.860 0.890 0.841
Channel 1013 384 777	824.70 836.52 848.31	1g (mW/g) 0.839 0.858 0.807 Measured SAR	(dB) -0.108 -0.158 -0.179	1g (mW/g) 0.860 0.890 0.841 Extrapolated ¹⁾ SAR
Channel 1013 384 777 EVDO - Relea	824.70 836.52 848.31 ase 0	1g (mW/g) 0.839 0.858 0.807	(dB) -0.108 -0.158 -0.179 Power Drift	1g (mW/g) 0.860 0.890 0.841
Channel 1013 384 777 EVDO - Relea Channel	824.70 836.52 848.31 ase 0 f (MHz)	1g (mW/g) 0.839 0.858 0.807 Measured SAR 1g (mW/g)	(dB) -0.108 -0.158 -0.179 Power Drift (dB)	1g (mW/g) 0.860 0.890 0.841 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1013 384 777 EVDO - Relea Channel 1013 384	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52	1g (mW/g) 0.839 0.858 0.807 Measured SAR 1g (mW/g) 0.816 0.831	(dB) -0.108 -0.158 -0.179 Power Drift (dB) -0.093 -0.173	1g (mW/g) 0.860 0.890 0.841 Extrapolated ¹⁾ SAR 1g (mW/g) 0.834 0.865
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31	1g (mW/g) 0.839 0.858 0.807 Measured SAR 1g (mW/g) 0.816	(dB) -0.108 -0.158 -0.179 Power Drift (dB) -0.093	1g (mW/g) 0.860 0.890 0.841 Extrapolated ¹⁾ SAR 1g (mW/g) 0.834
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777 EVDO - Revis	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31 sion A	1g (mW/g) 0.839 0.858 0.807 Measured SAR 1g (mW/g) 0.816 0.831 0.817	(dB) -0.108 -0.158 -0.179 Power Drift (dB) -0.093 -0.173 -0.195	1g (mW/g) 0.860 0.890 0.841 Extrapolated ¹⁾ SAR 1g (mW/g) 0.834 0.865 0.855
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31	1g (mW/g) 0.839 0.858 0.807 Measured SAR 1g (mW/g) 0.816 0.831 0.817 Measured SAR	(dB) -0.108 -0.158 -0.179 Power Drift (dB) -0.093 -0.173 -0.195 Power Drift	1g (mW/g) 0.860 0.890 0.841 Extrapolated ¹⁾ SAR 1g (mW/g) 0.834 0.865 0.855 Extrapolated ¹⁾ SAR
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777 EVDO - Revis Channel	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31 sion A f (MHz)	1g (mW/g) 0.839 0.858 0.807 Measured SAR 1g (mW/g) 0.816 0.831 0.817 Measured SAR 1g (mW/g)	(dB) -0.108 -0.158 -0.179 Power Drift (dB) -0.093 -0.173 -0.195 Power Drift (dB)	1g (mW/g) 0.860 0.890 0.841 Extrapolated ¹⁾ SAR 1g (mW/g) 0.834 0.865 0.855 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777 EVDO - Revis Channel 1013	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31 sion A f (MHz) 824.70	1g (mW/g) 0.839 0.858 0.807 Measured SAR 1g (mW/g) 0.816 0.831 0.817 Measured SAR 1g (mW/g) 0.809	(dB) -0.108 -0.158 -0.179 Power Drift (dB) -0.093 -0.173 -0.195 Power Drift (dB) -0.195	1g (mW/g) 0.860 0.890 0.841 Extrapolated ¹⁾ SAR 1g (mW/g) 0.834 0.865 0.855 Extrapolated ¹⁾ SAR 1g (mW/g) 0.846
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777 EVDO - Revis Channel	824.70 836.52 848.31 ase 0 f (MHz) 824.70 836.52 848.31 sion A f (MHz)	1g (mW/g) 0.839 0.858 0.807 Measured SAR 1g (mW/g) 0.816 0.831 0.817 Measured SAR 1g (mW/g)	(dB) -0.108 -0.158 -0.179 Power Drift (dB) -0.093 -0.173 -0.195 Power Drift (dB)	1g (mW/g) 0.860 0.890 0.841 Extrapolated ¹⁾ SAR 1g (mW/g) 0.834 0.865 0.855 Extrapolated ¹⁾ SAR 1g (mW/g)

measurement process.
2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.1.4 SONY VAIO – VERTICAL

1xEvDO Rel 0 and 1xEVDO Rev A are skipped since SAR values are too low.

			14 mm		
<i>1XRTT</i> Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	f (MHz) 824.70 836.52 848.31	Measured SAR 1g (mW/g) 0.061	Power Drift (dB) -0.098	Extrapolated ¹⁾ SAR 1g (mW/g) 0.063	

8.1.5 TOSHIBA - HORIZONTAL

			8 mm	
1XRTT			4	
1XRTT Channel	f (MHz)	Measured SAR 1q (mW/q)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1q (mW/q)
Channel 1013	824.70	1g (mW/g)	(dB)	1g (mW/g)
Channel				-
Channel 1013 384 777	824.70 836.52 848.31	1g (mW/g)	(dB)	1g (mW/g)
Channel 1013 384	824.70 836.52 848.31	1g (mW/g) 0.708	(dB) -0.101	1g (mW/g) 0.725
Channel 1013 384 777	824.70 836.52 848.31	1g (mW/g) 0.708 Measured SAR	(dB) -0.101 Power Drift	1g (mW/g) 0.725 Extrapolated ¹⁾ SAR
Channel 1013 384 777 EVDO - Relea	824.70 836.52 848.31 se 0	1g (mW/g) 0.708	(dB) -0.101	1g (mW/g) 0.725
Channel 1013 384 777 EVDO - Relea Channel	824.70 836.52 848.31 se 0 f (MHz)	1g (mW/g) 0.708 Measured SAR	(dB) -0.101 Power Drift	1g (mW/g) 0.725 Extrapolated ¹⁾ SAR
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777	824.70 836.52 848.31 se 0 f (MHz) 824.70 836.52 848.31	1g (mW/g) 0.708 Measured SAR 1g (mW/g)	(dB) -0.101 Power Drift (dB)	1g (mW/g) 0.725 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1013 384 777 EVDO - Relea Channel 1013 384	824.70 836.52 848.31 se 0 f (MHz) 824.70 836.52 848.31	1g (mW/g) 0.708 Measured SAR 1g (mW/g) 0.664	(dB) -0.101 Power Drift (dB) -0.159	1g (mW/g) 0.725 Extrapolated ¹⁾ SAR 1g (mW/g) 0.689
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777	824.70 836.52 848.31 se 0 f (MHz) 824.70 836.52 848.31	1g (mW/g) 0.708 Measured SAR 1g (mW/g)	(dB) -0.101 Power Drift (dB) -0.159	1g (mW/g) 0.725 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777 EVDO - Revis	824.70 836.52 848.31 se 0 f (MHz) 824.70 836.52 848.31 sion A	1g (mW/g) 0.708 Measured SAR 1g (mW/g) 0.664 Measured SAR	(dB) -0.101 Power Drift (dB) -0.159	1g (mW/g) 0.725 Extrapolated ¹⁾ SAR 1g (mW/g) 0.689 Extrapolated ¹⁾ SAR
Channel 1013 384 777 EVDO - Relea Channel 1013 384 777 EVDO - Revis Channel	824.70 836.52 848.31 se 0 f (MHz) 824.70 836.52 848.31 sion A f (MHz)	1g (mW/g) 0.708 Measured SAR 1g (mW/g) 0.664 Measured SAR	(dB) -0.101 Power Drift (dB) -0.159	1g (mW/g) 0.725 Extrapolated ¹⁾ SAR 1g (mW/g) 0.689 Extrapolated ¹⁾ SAR

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.1.6 TOSHIBA – VERTICAL

1xEvDO Rel 0 and 1xEVDO Rev A are skipped since SAR values are too low.

				15 mm		
	1XRTT Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	1013 384 777	824.70 836.52 848.31	0.045	0.000	0.045	
Notes: 1)	process by the DASY measurement proces	'4 system can b s.	be scaled up by the Pow	wer drift to determi	R reported at the end of the n ne the SAR at the beginning o B lower (0.8 mW/g) than SAR	of the

8.2 PCS BAND

8.2.1 PANASONIC

		Samo A Milling		
1XRTT			Power Drift	
1XRTT Channel	f (MHz)	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
	f (MHz) 1851.25	Measured SAR 1g (mW/g) 0.933	Power Drift (dB) -0.116	Extrapolated ¹⁾ SAR 1g (mW/g) 0.958
Channel		1g (mW/g)	(dB)	1g (mW/g)
Channel 25 600 1175	1851.25 1880.00 1908.75	1g (mW/g) 0.933	(dB) -0.116	1g (mW/g) 0.958
Channel 25 600	1851.25 1880.00 1908.75	1g (mW/g) 0.933 0.858 0.644	(dB) -0.116 -0.117 -0.134	1g (mW/g) 0.958 0.881 0.664
Channel 25 600 1175 <i>EVDO - Relea</i> Channel	1851.25 1880.00 1908.75 ase 0 f (MHz)	1g (mW/g) 0.933 0.858 0.644 Measured SAR 1g (mW/g)	(dB) -0.116 -0.117 -0.134 Power Drift (dB)	1g (mW/g) 0.958 0.881 0.664 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 25 600 1175 EVDO - Relea Channel 25	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25	1g (mW/g) 0.933 0.858 0.644 Measured SAR 1g (mW/g) 0.834	(dB) -0.116 -0.117 -0.134 Power Drift (dB) -0.140	1g (mW/g) 0.958 0.881 0.664 Extrapolated ¹⁾ SAR 1g (mW/g) 0.861
Channel 25 600 1175 EVDO - Relea Channel 25 600	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00	1g (mW/g) 0.933 0.858 0.644 Measured SAR 1g (mW/g) 0.834 1.240	(dB) -0.116 -0.117 -0.134 Power Drift (dB) -0.140 0.000	1g (mW/g) 0.958 0.881 0.664 Extrapolated ¹⁾ SAR 1g (mW/g) 0.861 1.240
Channel 25 600 1175 EVDO - Relea Channel 25 600 1175	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.933 0.858 0.644 Measured SAR 1g (mW/g) 0.834	(dB) -0.116 -0.117 -0.134 Power Drift (dB) -0.140	1g (mW/g) 0.958 0.881 0.664 Extrapolated ¹⁾ SAR 1g (mW/g) 0.861
Channel 25 600 1175 EVDO - Relea Channel 25 600	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.933 0.858 0.644 Measured SAR 1g (mW/g) 0.834 1.240 0.827	(dB) -0.116 -0.117 -0.134 Power Drift (dB) -0.140 0.000 -0.129	1g (mW/g) 0.958 0.881 0.664 Extrapolated ¹⁾ SAR 1g (mW/g) 0.861 1.240 0.852
Channel 25 600 1175 EVDO - Relea Channel 25 600 1175	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.933 0.858 0.644 Measured SAR 1g (mW/g) 0.834 1.240	(dB) -0.116 -0.117 -0.134 Power Drift (dB) -0.140 0.000 -0.129 Power Drift (dB)	1g (mW/g) 0.958 0.881 0.664 Extrapolated ¹⁾ SAR 1g (mW/g) 0.861 1.240
Channel 25 600 1175 EVDO - Relea Channel 25 600 1175 EVDO - Revis	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75 sion A	1g (mW/g) 0.933 0.858 0.644 Measured SAR 1g (mW/g) 0.834 1.240 0.827	(dB) -0.116 -0.117 -0.134 Power Drift (dB) -0.140 0.000 -0.129 Power Drift	1g (mW/g) 0.958 0.881 0.664 Extrapolated ¹⁾ SAR 1g (mW/g) 0.861 1.240 0.852 Extrapolated ¹⁾ SAR
Channel 25 600 1175 EVDO - Relea Channel 25 600 1175 EVDO - Revis Channel	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75 sion A f (MHz)	1g (mW/g) 0.933 0.858 0.644 Measured SAR 1g (mW/g) 0.834 1.240 0.827 Measured SAR 1g (mW/g)	(dB) -0.116 -0.117 -0.134 Power Drift (dB) -0.140 0.000 -0.129 Power Drift (dB)	1g (mW/g) 0.958 0.881 0.664 Extrapolated ¹⁾ SAR 1g (mW/g) 0.861 1.240 0.852 Extrapolated ¹⁾ SAR 1g (mW/g)

 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.2.2 PANASONIC – SIDE OPEN

1XRTT				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
25 600	1851.25 1880.00	Measured SAR 1g (mW/g) 0.511	Power Drift (dB) -0.128	Extrapolated ¹⁾ SAR 1g (mW/g) 0.526
25	1851.25 1880.00 1908.75	1g (mW/g)	(dB)	1g (mW/g)
25 600 1175	1851.25 1880.00 1908.75	1g (mW/g) 0.511 Measured SAR	(dB) -0.128 Power Drift	1g (mW/g) 0.526 Extrapolated ¹⁾ SAR
25 600 1175 EVDO - Relea	1851.25 1880.00 1908.75 ase 0	1g (mW/g) 0.511	(dB) -0.128	1g (mW/g) 0.526
25 600 1175 EVDO - Relea Channel 25 600	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.511 Measured SAR 1g (mW/g)	(dB) -0.128 Power Drift (dB)	1g (mW/g) 0.526 Extrapolated ¹⁾ SAR 1g (mW/g) 0.541
25 600 1175 EVDO - Relea Channel 25 600 1175	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.511 Measured SAR 1g (mW/g)	(dB) -0.128 Power Drift (dB) -0.198	1g (mW/g) 0.526 Extrapolated ¹⁾ SAR 1g (mW/g)

measurement process.
The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6

mW/g), thus testing at low & high channel is optional.Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.2.3 SONY VAIO - HORIZONTAL

13 70/00			8 mm	
6		PLOF		CONTRACTOR DATA AND INCOME.
		- Horaco		
		The second se		
1XRTT	and a second			
Channel 25	f (MHz) 1851.25	Measured SAR 1g (mW/g) 0.701	Power Drift (dB) -0.125	Extrapolated ¹⁾ SAR 1g (mW/g) 0.721
Channel 25 600	1851.25 1880.00	1g (mW/g) 0.701 1.030	(dB) -0.125 -0.157	1g (mW/g) 0.721 1.068
Channel 25	1851.25 1880.00 1908.75	1g (mW/g) 0.701	(dB) -0.125	1g (mW/g) 0.721
Channel 25 600 1175	1851.25 1880.00 1908.75	1g (mW/g) 0.701 1.030	(dB) -0.125 -0.157	1g (mW/g) 0.721 1.068
Channel 25 600 1175 EVDO - Rele Channel 25 600 1175	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.701 1.030 0.731	(dB) -0.125 -0.157 -0.102 Power Drift	1g (mW/g) 0.721 1.068 0.748 Extrapolated ¹⁾ SAR
Channel 25 600 1175 EVDO - Rele Channel 25 600	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.701 1.030 0.731 Measured SAR 1g (mW/g) 0.658 0.823	(dB) -0.125 -0.157 -0.102 Power Drift (dB) -0.157 -0.156	1g (mW/g) 0.721 1.068 0.748 Extrapolated ¹⁾ SAR 1g (mW/g) 0.682 0.853

measurement process.
The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.2.4 SONY VAIO - VERTICAL

			14 mm	
	1		1	-
<i>1XRTT</i> Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 25 600	1851.25 1880.00	Measured SAR 1g (mW/g) 0.478	Power Drift (dB) -0.139	Extrapolated ¹⁾ SAR 1g (mW/g) 0.494
Channel 25 600 1175	1851.25 1880.00 1908.75	1g (mW/g)	(dB)	1g (mW/g)
Channel 25 600	1851.25 1880.00 1908.75	1g (mW/g) 0.478 Measured SAR	(dB) -0.139 Power Drift	1g (mW/g) 0.494 Extrapolated ¹⁾ SAR
Channel 25 600 1175 EVDO - Relea	1851.25 1880.00 1908.75 se 0	1g (mW/g) 0.478	(dB) -0.139	1g (mW/g) 0.494
Channel 25 600 1175 EVDO - Relea Channel 25 600	1851.25 1880.00 1908.75 se 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.478 Measured SAR 1g (mW/g)	(dB) -0.139 Power Drift (dB)	1g (mW/g) 0.494 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 25 600 1175 EVDO - Relea Channel 25 600 1175	1851.25 1880.00 1908.75 se 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.478 Measured SAR 1g (mW/g)	(dB) -0.139 Power Drift (dB) 0.000	1g (mW/g) 0.494 Extrapolated ¹⁾ SAR 1g (mW/g)

measurement process.
2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.2.5 TOSHIBA - HORIZONTAL

			8 mm	
1XRTT		Manager of SAR	Power Drift	Future clote d ¹⁾ CAD
1XRTT Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 25	1851.25	1g (mW/g) 0.639	(dB) -0.175	1g (mW/g) 0.665
Channel 25 600	1851.25 1880.00	1g (mW/g) 0.639 0.926	(dB) -0.175 -0.157	1g (mW/g) 0.665 0.960
Channel 25 600 1175	1851.25 1880.00 1908.75	1g (mW/g) 0.639	(dB) -0.175	1g (mW/g) 0.665
Channel 25 600	1851.25 1880.00 1908.75	1g (mW/g) 0.639 0.926 0.589	(dB) -0.175 -0.157 -0.200	1g (mW/g) 0.665 0.960 0.617
Channel 25 600 1175	1851.25 1880.00 1908.75	1g (mW/g) 0.639 0.926 0.589 Measured SAR	(dB) -0.175 -0.157 -0.200 Power Drift	1g (mW/g) 0.665 0.960 0.617 Extrapolated ¹⁾ SAR
Channel 25 600 1175 EVDO - Relea Channel	1851.25 1880.00 1908.75 ase 0 f (MHz)	1g (mW/g) 0.639 0.926 0.589 Measured SAR 1g (mW/g)	(dB) -0.175 -0.157 -0.200 Power Drift (dB)	1g (mW/g) 0.665 0.960 0.617 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 25 600 1175 <i>EVDO - Relea</i> Channel 25	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25	1g (mW/g) 0.639 0.926 0.589 Measured SAR 1g (mW/g) 0.650	(dB) -0.175 -0.157 -0.200 Power Drift (dB) -0.101	1g (mW/g) 0.665 0.960 0.617 Extrapolated ¹⁾ SAR 1g (mW/g) 0.665
Channel 25 600 1175 EVDO - Relea Channel	1851.25 1880.00 1908.75 ase 0 f (MHz)	1g (mW/g) 0.639 0.926 0.589 Measured SAR 1g (mW/g)	(dB) -0.175 -0.157 -0.200 Power Drift (dB)	1g (mW/g) 0.665 0.960 0.617 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 25 600 1175 EVDO - Relea Channel 25 600	1851.25 1880.00 1908.75 ise 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.639 0.926 0.589 Measured SAR 1g (mW/g) 0.650 0.923	(dB) -0.175 -0.157 -0.200 Power Drift (dB) -0.101 -0.173	1g (mW/g) 0.665 0.960 0.617 Extrapolated ¹⁾ SAR 1g (mW/g) 0.665 0.961
Channel 25 600 1175 EVDO - Relea Channel 25 600 1175 EVDO - Revis	1851.25 1880.00 1908.75 ise 0 f (MHz) 1851.25 1880.00 1908.75 ison A	1g (mW/g) 0.639 0.926 0.589 Measured SAR 1g (mW/g) 0.650 0.923 0.619	(dB) -0.175 -0.200 Power Drift (dB) -0.101 -0.173 -0.107	1g (mW/g) 0.665 0.960 0.617 Extrapolated ¹⁾ SAR 1g (mW/g) 0.665 0.961 0.634
Channel 25 600 1175 EVDO - Relea Channel 25 600 1175	1851.25 1880.00 1908.75 ise 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.639 0.926 0.589 Measured SAR 1g (mW/g) 0.650 0.923 0.619 Measured SAR	(dB) -0.175 -0.200 Power Drift (dB) -0.101 -0.173 -0.107	1g (mW/g) 0.665 0.960 0.617 Extrapolated ¹⁾ SAR 1g (mW/g) 0.665 0.961 0.634 Extrapolated ¹⁾ SAR
Channel 25 600 1175 EVDO - Relea Channel 25 600 1175 EVDO - Revis	1851.25 1880.00 1908.75 ise 0 f (MHz) 1851.25 1880.00 1908.75 ison A	1g (mW/g) 0.639 0.926 0.589 Measured SAR 1g (mW/g) 0.650 0.923 0.619	(dB) -0.175 -0.157 -0.200 Power Drift (dB) -0.101 -0.173 -0.107 Power Drift	1g (mW/g) 0.665 0.960 0.617 Extrapolated ¹⁾ SAR 1g (mW/g) 0.665 0.961 0.634
Channel 25 600 1175 EVDO - Relea Channel 25 600 1175 EVDO - Relea EVDO - Relea GOO 1175 EVDO - Revis Channel Channel	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75 sion A f (MHz)	1g (mW/g) 0.639 0.926 0.589 Measured SAR 1g (mW/g) 0.650 0.923 0.619 Measured SAR 1g (mW/g)	(dB) -0.175 -0.157 -0.200 Power Drift (dB) -0.101 -0.173 -0.107 Power Drift (dB)	1g (mW/g) 0.665 0.960 0.617 Extrapolated ¹⁾ SAR 1g (mW/g) 0.665 0.961 0.634 Extrapolated ¹⁾ SAR 1g (mW/g)

measurement process.
2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.2.6 TOSHIBA - VERTICAL

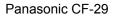
			15 mm	
11/10				
1XRTT Channel	f (MHz)	Measured SAR	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
1XRTT Channel 25 600	1851.25 1880.00	Measured SAR 1g (mW/g) 0.220	Power Drift (dB) 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.220
1XRTT Channel 25	1851.25 1880.00 1908.75	1g (mW/g)	(dB)	1g (mW/g)
1XRTT Channel 25 600 1175	1851.25 1880.00 1908.75	1g (mW/g) 0.220 Measured SAR	(dB) 0.000 Power Drift	1g (mW/g) 0.220 Extrapolated ¹⁾ SAR
1XRTT Channel 25 600 1175 EVDO - Relea	1851.25 1880.00 1908.75 ase 0	1g (mW/g) 0.220	(dB) 0.000	1g (mW/g) 0.220
1XRTT Channel 25 600 1175 EVDO - Relea Channel 25 600	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.220 Measured SAR 1g (mW/g)	(dB) 0.000 Power Drift (dB)	1g (mW/g) 0.220 Extrapolated ¹⁾ SAR 1g (mW/g)
1XRTT Channel 25 600 1175 EVDO - Relea Channel 25 600 1175	1851.25 1880.00 1908.75 ase 0 f (MHz) 1851.25 1880.00 1908.75	1g (mW/g) 0.220 Measured SAR 1g (mW/g)	(dB) 0.000 Power Drift (dB)	1g (mW/g) 0.220 Extrapolated ¹⁾ SAR 1g (mW/g)

 The exact method of extrapolation is Measured SAR x 10[^](-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

11 PHOTOS

DUT - AC595U



DUT - AC595U

Sony Vaio VGN-C140G

Toshiba Satellite P10

12 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	8
2-1	SAR Test Plots – Cell Band	21
2-2	SAR Test Plots – PCS Band	37
3	Certificate of E-Field Probe - EXDV4SN3552	9
4	Certificate of System Validation Dipole - D835V2 SN:4d002	9
5	Certificate of System Validation Dipole - D1900V2 SN:5d043	9

END OF REPORT