

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC OET BULLETIN 65 SUPPLEMENT C IC RSS 102 ISSUE 2 : NOVERMBER 2005

FOR

T2010 TABLET COMPUTERS WITH WWAN MC5725 AND INTEL OR ATHEROS WLAN MODULES

MODEL: MC5725

FCC ID: N7N-MC5725-F

REPORT NUMBER: 08U11599-2

ISSUE DATE: MARCH 4, 2008

Prepared for

FUJITSU AUSTRALIA PTY LTD 1230 NEPENA HIGHWAY CHELTENHAM, VIC 3192

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET, FREMONT, CA 94538 USA

NVLAP LAB CODE 200065-0

REPORT	NO: 08U11599-2	DATE: March 4, 2008	FCC ID: N7N-MC5725-F
Revision I	History		
Rev.	Issued date	Revisions	Revised By
	March 4, 2008	Initial issue	Hsin Fu Shih

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

DATES OF TEST: February 8^{th} , 11^{th} , 12^{th} , and March 3^{th} 2008							
APPLICANT:	Fujitsu Australia PTY Ltd						
ADDRESS:	1230 Nepena Highway						
	Cheltenham, VIC 3192						
FCC ID:	N7N-MC5725-F						
MODEL:	MC5725						
DEVICE CATEGORY:	Portable Device						
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure						

T2010 Tablet computer with WWAN MC5725 and Intel or Atheros WLAN modules.									
Test Sample is a: Production unit									
Rule Parts	Frequency Range [MHz]	The Highest SAR Values [1g_mW/g]	The Highest Multi- Band SAR Values [1g_mW/g]						
FCC 22H	824 - 849	0.683	0.855						
FCC 24E	1850 - 1909	0.742	0.923						

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (Edition 01-01) and RSS 102.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin-Fr. Shih

Hsin Fu Shih Engineering Supervisor Compliance Certification Services

Tested By:

Jonathan King

Jonathan King EMC Engineer Compliance Certification Services

TABLE OF CONTENTS

1	DEVICE UNDER TEST (DUT) DESCRIPTION	5
2	FACILITIES AND ACCREDITATION	6
3	SYSTEM DESCRIPTION	7
	3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	8
4	SIMULATING LIQUID PARAMETERS CHECK	9
	4.1 SIMULATING LIQUID PARAMETER CHECK RESULT	10
5	SYSTEM PERFORMANCE CHECK	14
	5.1 SYSTEM PERFORMANCE CHECK RESULTS	15
6	SAR MEASURMENT PROCEDURE	16
	6.1 DASY4 SAR MEASURMENT PROCEDURE	17
	6.2 DASY4 MULTIBAND SAR MEASURMENT PROCEDURE	18
7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	19
8	SAR MEASURMENT RESULTS	28
	8.1 CELL BAND	28
	8.1.1 TABLET - SECONDARY PORTRAIT POSITION	
	8.1.2 TABLET - SECONDARY LANDSCAPE AND LAPHELD POSITIONS	29
	8.1.3 TABLET - PRIMARY PORTRAIT AND PRIMARY LANDSCAPE POSITION	30
	8.1.4 LAPTOP - NORMAL POSITION	31
	8.2 PCS BAND	32
	8.2.1 TABLET - SECONDARY PORTRAIT POSITION	32
	8.2.2 TABLET - SECONDARY LANDSCAPE AND LAPHELD POSITIONS	33
	8.2.3 LAPTOP - NORMAL POSITION	34
	8.3 MULTI-BAND EVALUATIONS	35
	8.3.1 WORST CASE CONFIUGURATIONS	35
	8.3.2 MULTI-BAND SAR RESULTS-CELL BAND	35
	8.3.3 MULTI-BAND SAR RESULTS-PCS BAND	
	8.3.4 MULTI-BAND SAR RESULTS-CELL BAND	
	8.3.5 MULTI-BAND SAR RESULTS-PCS BAND	
9	MEASURMENT UNCERTAINTY	
	9.1 MEASURMENT UNCERTAINTY FOR 300 MHZ – 3000 MHZ	
	9.2 MEASURMENT UNCERTAINTY 3 GHZ – 6 GHZ	40
10	EQUIPMENT LIST AND CALIBRATION	41
11	ATTACHMENTS	42
12	PHOTOS	43

1 DEVICE UNDER TEST (DUT) DESCRIPTION

T2010 Tablet computer with WWAN MC5725 and Intel or Atheros WLAN modules. The WWAN MC5725 module with CDMA2000 1xRTT, 1xEv-DO Rel 0 and Rev A									
Normal operation:	Lap-held position, and under	Lap-held position, and underarm position							
Duty cycle:	WWAN - Sierra Wireless CD	WWAN - Sierra Wireless CDMA2000 Module							
	1xRTT/Rel 0/Rev A: 100%								
	WLAN - Atheros 802.11 bg Module								
	802.11b mode:	100%							
	802.11g mode:	100%							
	WLAN – Intel 802.11abgn Mo	odule							
	802.11b mode:	98%							
	802.11g mode:	91%							
Host Device(s):	Fujitsu T2010 Tablet Laptop								
Power supply:	Power supplied through the la	aptop computer (host device).							

2 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, CA 94538 USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

NVLAP LAB CODE 200065-0

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

3 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)										
(% by weight)	4	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

4 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Body		
raiget i requency (Miriz)	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameters Check Result @ Muscle 835 MHz

Room Ambient Temperature = 23°C; Relative humidity = 45%

	Simulating Liquid					Parameters	Measured	Target	Deviation (%)	Limit (%)
	f(MHz)	Temp. (°C)	Depth (cm)			T di di licito i	Wedsured		Deviation (70)	Lin i (70)
	835	22	15	e'	54.5633	Relative Permittivity (ε_r):	54.5633	55.2	-1.15	± 5
	000	22	10	e"	20.5761	Conductivity (σ):	0.95580	0.97	-1.46	± 5
Lia	uid Che	ck								
Am	bient te	mperatur	re: 23 dea	. C	: Liauid	temperature: 22 deg	. C			
Fel	bruarv 0	8. 2008 ⁻	10:31 AM		,					
Fre	quency	-,	e'			e"				
800	000000).	54.8	895	50	20.6890				
805	5000000).	54.8	852	21	20.6675				
810	000000).	54.8	806	69	20.6527				
815	5000000).	54.	754	16	20.6461				
820	000000).	54.	718	33	20.6339				
825	5000000).	54.0	654	43	20.6042				
830	000000).	54.	587	70	20.5926				
835	5000000).	54.	563	33	20.5761				
840	000000).	54.	504	13	20.5510				
843	5000000).	54.4	450	00	20.5353				
850	000000).	54.3	364	46	20.5207				
855	5000000).	54.3	332	27	20.5295				
860	000000).	54.2	289	97	20.4778				
865	5000000).	54.2	213	36	20.4500				
870	000000).	54.	149	94	20.4501				
875	5000000).	54.0	4.0977 20.4243						
880	000000).	54.0	0393 20.4331						
885	5000000).	54.0	002	23	20.4127	20.4127			
890	000000).	53.9	967	78	20.4229				
895	5000000).	53.9	929	90	20.3929				
900	000000).	53.8	87 <i>′</i>	11	20.3654	4			
905	5000000).	53.8	840)1	20.3640				
910	000000).	53.	776	60	20.3810				
915	5000000).	53.	754	17	20.3345				
920	000000).	53.0	690)7	20.2951				
925	5000000).	53.0	663	30	20.2928				
930	000000).	53.0	615	58	20.2779				
935	5000000).	53.	539	98	20.2649				
940	000000).	53.	505	51	20.2757				
945	5000000).	53.4	44 <i>°</i>	19	20.2882				
950	000000).	53.3	396	69	20.2933				
The	e Condu	ctivity (o) can be g	ive	n as:					
σ	= ωε ₀ e	"= 2 π f	έε ₀ e″							
wh	ere f=	target f	* 10 ⁶							
	E 0 =	8.854 *	10 ⁻¹²							
	-0		-							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 45%

Simulating Liquid			quid			Paramotors	Massurad	Target	Doviation $(\%)$	Limit (%)	Ī
	f(MHz)	Temp. (°C)	Depth (cm)			Faianciers	weasureu			LIIII (70)	
	1900	22	15	e'	51.3876	Relative Permittivity (ε_r):	51.3876	53.3	-3.59	± 5]
	1000		10	e"	14.1743	Conductivity (σ):	1.49822	1.52	-1.43	± 5	
Liq	uid Che	ck									
Am	nbient te	mperatur	re: 23 deg	. C	; Liquid	temperature: 22 deg	. C				
February 11, 2008 10:04 AM											
Fre	quency		e'			e"					
17	1000000	0.	52.1	175	57	13.5834					
17	2000000	0.	52.1	127	78	13.6188					
17	3000000	0.	52.0	082	26	13.6593					
174	4000000	0.	52.0	043	32	13.6775					
17	5000000	0.	52.0	00	13	13.7301					
17	6000000	0.	51.9	966	68	13.7626					
17	7000000	0.	51.9	936	61	13.7886					
17	8000000	0.	51.8	887	79	13.8256					
17	9000000	0.	51.8	51.8474		13.8564					
18	000000	0.	51.	795	53	13.9009					
18	1000000	0.	51.	756	63	13.9203					
18	2000000	0.	51.0	683	32	13.9476					
18	3000000	0.	51.0	6362 13 9							
18	4000000	0.	51.5	584	13	14.0133					
18	5000000	0.	51.	556	50	14.0570					
18	6000000	0.	51.4	497	71	14.0670					
18	7000000	0.	51.4	474	14	14.0921					
18	8000000	0.	51.4	44()7	14.1270					
18	9000000	0.	51.4	407	77	14,1403					
19	0000000	0	51 3	387	76	14 1743					
19	1000000	0.	51.3	346	61	14.2099					
Th	e Condu	ctivity (ơ) can be g	ive	n as:						
σ	= ωε ₀ e	"= 2 π f	έ ₀ e″								
wh	where $f = target f * 10^{6}$										
	ε ₀ =	8.854 *	10 ⁻¹²								

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 45%

Simulating Liquid						Parameters	Measured	Target	Deviation (%)	Limit (%)
f	(MHz)	Temp. (°C)	Depth (cm)			Faianeleis	weasureu			LIIII (70)
	2450	22	15	e'	50.6424	Relative Permittivity (ε_r):	50.6424	52.7	-3.90	± 5
				e"	14.6165	Conductivity (o):	1.99218	1.95	2.16	± 5
Liquio	d Cheo	ck								
Ambi	ient ter	mperatur	e: 23 deg	. C	; Liquid	temperature: 22 deg	. C			
February 12, 2008 11:16 AM										
Frequ	uency		e'			e"				
2400	00000	0.	50.8	867	79	14.4258				
24050	00000	0.	50.8	84 <i>°</i>	18	14.4527				
2410	00000	0.	50.8	826	60	14.4637				
2415	00000	0.	50.8	822	24	14.4784				
24200	00000	0.	50.7	787	75	14.4910				
24250	00000	0.	50.7	760)2	14.5127				
2430	00000	0.	50.7	748	34	14.5378				
24350	00000	0.	50.7	71	57	14.5483				
2440	00000	0.	50.7	70	14	14.5767				
24450	00000	0.	50.6	670)1	14.5968				
2450	00000	0.	50.6	642	24	14.6165				
24550	00000	0.	50.6	6326 14.632						
2460	00000	0.	50.6	612	25	14.6579				
24650	00000	0.	50.6	605	56	14.6818				
2470	00000	0.	50.8	558	37	14.6966				
2475	00000	0.	50.8	54	58	14.7209				
2480	00000	0.	50.8	528	38	14.7504				
24850	00000	0.	50.8	513	39	14.7813				
24900	00000	0.	50.4	499	99	14.8038				
24950	00000	0.	50.4	482	26	14.8380				
2500	00000	0.	50.4	478	38	14.8591				
The c	Conduc	ctivity (o) can be g	ive	n as:					
$\sigma = c$	ωε ₀ e'	"= 2 π f	ε ₀ e"							
where	e f=	target f *	* 10 ⁶							
	ε ₀ =	8.854 *	10 ⁻¹²							

Simulating Liquid Parameter Check Result @ Muscle 5GHz

Room Ambient Temperature = 24°C; Relative humidity = 45%

Simu	ulating Lic	quid			Descenters	Manageral	Target			
f(MHz) Ter	mp. (°C)	Depth (cm)			Parameters	Measured		Deviation (%)	Limit (%)	
5800	23	15	e'	45.264	Relative Permittivity (ε_r):	45.2640	48.2	-6.09	± 10	
0000	20	10	e"	19.4757	Conductivity (σ):	6.28406	6.00	4.73	± 5	
Liquid Check										
Ambient temp	beratur	e: 24 deg	. C	; Liquid	temperature: 23 deg	. C				
March 03, 2008 8:30 AM										
Frequency		e'			e"					
4600000000.		47.5	536	64	17.8111					
4650000000.		47.9	949	6	17.7986					
4700000000.		47.1	188	31	17.8274					
4750000000.		47.8	312	22	18.1470					
4800000000.		47.2	227	6	17.8964					
4850000000.		47.3	321	3	18.3169					
4900000000.		47.4	192	22	18.1001					
4950000000.		46.7	763	57	18.2412					
5000000000.		47.4	103	8	18.4561					
5050000000.		46.6	569	9	18.2532					
5100000000.		47.0)20	13	18.6467					
5150000000.		46.7	0.00	8	18.3776					
5200000000		40.3	598 004	0	10./310					
52500000000		40.8	99 I) E E	2	10.0009					
53000000000		40.0	720 720	94 20	10.0000	10.0000				
53500000000		40.7	124	1	18 6165					
54500000000		40.	129	1 1	10.0105					
5500000000		-0. 46 /	118	86	18 7016	18 7016				
55500000000			587	'8	18 9851	1				
5600000000		46.0	287	0 '6	19 1268					
5650000000		45.4	165	5	18 8829					
5700000000		45.7	796	8	19.3581					
5750000000		45.6	512	9	18,9903					
5800000000.		45.2	264	0	19.4757					
5850000000.		45.7	796	3	19.2637					
5900000000.		44.8	370)4	19.3433					
5950000000.		45.5	520	201 19.6520						
600000000.		44.9	971	3	19.3095					
The conductiv	vity (ơ)) can be gi	ive	n as:						
$\sigma = \omega \varepsilon_0 e'' =$	2 π f	ε ₀ e"								
where $f = tar$	rget f * 854 * ·	⁻ 10 ⁶ 10 ⁻¹²								

5 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3554 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm).
- Distance between probe sensors and phantom surface was set to 4 mm.
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

f (MHz)	Head	Tissue	Body Tissue			
	SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	SAR _{Peak}	
5000	72.9	20.7	68.1	19.2	260.3	
5100	74.6	21.1	78.8	19.6	272.3	
5200	76.5	21.6	71.8	20.1	284.7	
5500	83.3	23.4	79.1	22.0	326.3	
5800	78.0	21.9	74.1	20.5	324.7	

Note: All SAR values normalized to 1 W forward power.

5.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D835V2 SN:4d002

Date: February 8, 2008

Ambient Temperature = 23°C; Relative humidity = 45%

Body Simulating Liquid Normalized Deviation Limit SAR (mW/g) Target to 1 W (%) (%) f (MHz) Temp. (°C) Depth (cm) -0.72 1g 2.41 9.64 9.71 ± 10 835 22 15 10g 1.59 6.36 6.38 -0.31 ± 10

System Validation Dipole: D1900V2 SN:5d043

Date: February 11, 2008

Ambient Temperature = 23°C; Relative humidity = 45%

Body Simulating Liquid Normalized Deviation Limit SAR (mW/g) Target to 1 W (%) (%) f (MHz) Temp. (°C) Depth (cm) 9.96 39.84 39.8 0.10 1g ± 10 1900 22 15 5.13 20.52 20.8 -1.35 10g ± 10

System Validation Dipole: D2450V2 SN: 706

Date: February 12, 2008

Ambient Temperature = 23°C; Relative humidity = 45%

Body Simulating Liquid		SAR	(m)M/(a)	Normalized	Target	Deviation	Limit	
f (MHz)	Temp. (°C)	Depth (cm)	SAR (mw/g)		to 1 W	Taiyet	(%)	(%)
2450	22	15	1g	13.20	52.8	51.2	3.12	± 10
	22	22 15		5.96	23.84	23.7	0.59	± 10

System Validation Dipole: D5GHzV2 SN 1003

Date: March 3, 2008

Ambient Temperature = 24° C; Relative humidity = 45°

Measured by: Jonathan King

Measured by: Jonathan King

Body Simulating Liquid			SAE	P(m)M(a)	Normalized	Target	Deviation	Limit
f (MHz)	Temp. (°C)	Depth (cm)	SAR (mw/g)		to 1 W	raiget	(%)	(%)
5800	23	15	1g	19.10	76.4	74.1	3.10	± 10
	23	15	10g	5.4	21.6	20.5	5.37	± 10

Measured by: Jonathan King

6 SAR MEASURMENT PROCEDURE

A summary of the procedure follows:

a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.

The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

- b) Around this point, a volume of X=Y= 30 and Z=21 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:
 - (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
 - (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
 - (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
 - (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

6.1 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 5 x 5 x 7 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

6.2 DASY4 MULTIBAND SAR MEASURMENT PROCEDURE

STEP 1: POWER REFERENCE MEASUREMENT

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

STEP 2: VOLUME SCAN JOB

Volume Scans are used to assess peak SAR and averaged SAR measurement in largely extended 3deimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location. The steps in horizontal and vertical directions are 15mm for both below 4.5 GHz and above 4.5 GHz.

STEP 3: POWER DRIFT MEASUREMENT

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

STEP 5: Z-SCAN

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

STEP 5: MULTIBAND DATA EXTRACTIONS

After SAR measurements in each liquid, SEMCAD tool is used to evaluate the combined SAR from different bands.

7 PROCEDURE USED TO ESTABLISH TEST SIGNAL

3G-CDMA2000 1xRTT

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

Application	Rev, License
CDMA2000 Mobil Test	B.10.11, L

<u>1xRTT</u>

- Call Setup > Shift & Preset
- Protocol Rev > 6 (IS-2000-0)
- Radio Config (RC) > RC3 (Fwd3, Rvs3)
- FCH Service Option (SO) Setup > 32 (+ F-SCH)
- Traffic Data Rate > Full
- TDSO SCH Info > F-SCH Parameters > F-SCH Data Rate > 153.6 kbps
 - > R-SCH Parameters > R-SCH Data Rate > 153.6 kbps
- Cell Info > Cell Parameters > System ID (SID) > 8
 - > Network ID (NID) > 65535

Once "Active Cell" show "Connected " then change "Rvs Power Ctrl" from "Active bits" to "All Up bits" to get the maximum power.

Worst-case Measurement Result @ Low, Middle and High Channel

Cellular Band

Radio Configuration (RC)	Service Option (SO)	Channel	Frequency	Output Power (dBm) Average
RC3 (Fwd3, Rvs3)		1013	824.70	24.80
	SO32 (+F-SCH)	384	836.52	24.90
		777	848.31	24.95

PCS Band

Radio	Service Option	Channel	Frequency	Output Power (dBm)
RC3 (Fwd3, Rvs3)		25	1851.25	24.90
	SO32 (+F-SCH)	600	1880.00	24.80
		1175	1908.75	24.80

3G-CDMA2000 1xEV-DO Release 0 (Rel 0)

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

Application	Rev, License
1xEV-DO Terminal Test	A.06.06, L

<u>FTAP</u>

- Call Setup > Shift & Preset
- Protocol Rev > 0 (1xEV-DO)
- Application Config > Enhanced Test Application Protocol > FTAP
- FTAP Rate > 307.2 kbps (2 Slot, QPSK)
- Access Network Info > Cell Parameters > Sector ID > 00000000 > Subnet Mask > 0
- Generator Info > Termination Parameters > Max Forward Packet Duration > 16 Slots
- Rvs Power Ctrl > All Up bits (to get the maximum power)

<u>RTAP</u>

- Call Setup > Shift & Preset
- Protocol Rev > 0 (1xEV-DO)
- Application Config > Enhanced Test Application Protocol > RTAP
- RTAP Rate > 153.6 kbps
- Access Network Info > Cell Parameters > Sector ID > 00000000 > Subnet Mask > 0
- Generator Info > Termination Parameters > Max Forward Packet Duration > 16 Slots
- Rvs Power Ctrl > All Up bits (to get the maximum power)

Worst-cas	Norst-case Measurement Result @ Low, Middle and High Channel									
Cellular Ba	ind - RTAP			Cellular Ba	nd - FTAP					
		RTAP	Conducted power (dBm)			ΕΤΔΡ	Conducted p (dBm)			

		RTAP	(dBm)			FTAP	(dBm)
Channel	f (MHz)	Rate	Average	Channel	f (MHz)	Rate	Average
1013	824.70		24.80	1013	824.70	307.2	24.45
384	836.52	153.6	24.92	384	836.52	kbps (2 slot	24.50
777	848.31		24.86	777	848.31	QPSK)	24.43

PCS Band	- RTAP			PCS Band	- FTAP		
		RTAP	Conducted power (dBm)			FTAP	Conducted power (dBm)
Channel	f (MHz)	Rate	Average	Channel	f (MHz)	Rate	Average
25	1851.25		24.80	25	1851.25	307.2	24.65
600	1880.00	153.6	24.84	600	1880.00	kbps (2 slot	24.56
1175	1908.75		24.80	1175	1908.75	QPSK)	24.50

Preliminary Measurement Results @ Middle cha	annel

Cellular Band - RTAP					Cellular Ba	nd - FTAP			
		RTAP	Conducted power (dBm)				FTAP	Conducted power (dBm)	
Channel	f (MHz)	Rate	Average	Peak	Channel	f (MHz)	Rate	Average	Peak
		9.6	24.66	29.85				24.60	29.53
		19.2	24.72	29.87			307.2		
384	836.52	38.4	24.75	29.90	384	836.52	kbps (2 slot		
		76.8	24.78	30.00			QPSK)		
		153.6	24.92	30.01					

PCS Band - RTAP				PCS Band - FTAP					
		RTAP	Conducte (dBr	d power n)			FTAP	Conduct (dE	ed power 3m)
Channel	f (MHz)	Rate	Average	Peak	Channel	f (MHz)	Rate	Average	Peak
		9.6	24.63	29.01				24.63	29.09
		19.2	24.64	29.03			307.2		
600	1880.00	38.4	24.70	29.11	600	1880.00	KDPS (2 slot.		
		76.8	24.75	29.28			QPSK)		
		153.6	24.84	29.30					

3G-CDMA2000 1xEV-DO Revision A (Rev A)

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

Application	Rev, License
1xEV-DO Terminal Test	A.06.06, L

<u>FETAP</u>

- Call Setup > Shift & Preset
- Protocol Rev > A (1xEV-DO-A)
- Application Config > Enhanced Test Application Protocol > FETAP
- FTAP Rate > 307.2 kbps (2 Slot, QPSK)
- Protocol Subtype Config > Release A Physical Layer Subtype > Subtype 0
- Access Network Info > Cell Parameters > Sector ID > 00000000 > Subnet Mask > 0
- Generator Info > Termination Parameters > Max Forward Packet Duration >16 Slots
- Rvs Power Ctrl > All Up bits (to get the maximum power)

<u>RETAP</u>

- Call Setup > Shift & Preset
- Protocol Rev > A (1xEV-DO-A)
- Application Config > Enhanced Test Application Protocol > RETAP
- F-Traffic Format > 4 (1024, 2,128) Canonical (307.2k, QPSK)
- R-Data Pkt Size > 4096 (for PCS band), 12288 (for Cellular band)
- Protocol Subtype Config > Release A Physical Layer Subtype > Subtype 2
 - > PL Subtype 2 Access Channel MAC Subtype > Default (Subtype 0)
- Access Network Info > Cell Parameters > Sector ID > 00000000 > Subnet Mask > 0
- Generator Info > Termination Parameters > Max Forward Packet Duration >16 Slots
- > ACK R-Data After > Subpacket 0 (All ACK)
- Rvs Power Ctrl > All Up bits (to get the maximum power)

Worst-case Measurement Result @ Low, Middle and High Channel

Cellular Band - RETAP			Cellular Band - FETAP				
		R-Data	Conducted power (dBm)			FTAP	Conducted power (dBm)
Channel	f (MHz)	Pkt Size	Average	Channel	f (MHz)	Rate	Average
1013	824.70		24.85	1013	824.70	0.07.0	24.45
384	836.52	4096	24.95	384	836.52	307.2 (2 slot)	24.46
777	848.31		24.79	777	848.31	(= 5101)	24.40

PCS Band - RETAP				PCS Band - FETAP			
		R-Data	Conducted power (dBm)			FTAP	Conducted power (dBm)
Channel	f (MHz)	Pkt Size	Average	Channel	f (MHz)	Rate	Average
25	1851.25		24.95	25	1851.25	007.0	24.45
600	1880.00	4096	24.92	600	1880.00	307.2 (2 slot)	24.44
1175	1908.75		24.90	1175	1908.75	(2 5101)	24.42

Preliminary Measurement Results @ Middle channel

Cellular Band - RETAP					Cellular Band - FETAP				
		R-Data	Conducte (dB	d power m)			FTAP	Conducte (dE	ed power sm)
Channel	f (MHz)	Pkt Size	Average	Peak	Channel	f (MHz)	Rate	Average	Peak
		128	23.90	30.14			307.2 (2 slot)	24.40	
		256	24	30.21			307.2 (4 slot)	24.37	
		512	24.10	30.28					
		768	24.27	30.33					
		1024	24.28	30.14					
384	836.52	1536	24.32	30.35	384	836.52			
		2048	24.40	30.14					
		3072	24.70	30.56					
		4096	24.95	30.66					
		6144	23.60	30.37					
		8192	23.60	30.40					
		12288	23.70	30.38					

PCS Band – RETAP				PCS Band - FETAP					
		R-Data	Conducte (dB	d power m)			FTAP	Conducte (dE	ed power Bm)
Channel	f (MHz)	Pkt Size	Average	Peak	Channel	f (MHz)	Rate	Average	Peak
		128	24.10	28.91			307.2 (2 slot)	24.40	
		256	24.16	29.20			307.2 (4 slot)	24.38	
		512	24.32	28.90					
		768	24.35	28.77					
		1024	24.50	28.76					
600	1880.00	1536	24.58	28.83	600	1880			
		2048	24.60	28.86					
		3072	24.75	29.13					
		4096	24.92	29.29					
		6144	24.64	29.26					
		8192	24.68	29.24					
		12288	24.70	29.27					

The following procedures had been used to prepare the Atheros WLAN module for the SAR co-location testing.

The client provided a special driver and program, Art, which enables a user to control the frequency and output power of the module.

The cable assembly insertion loss of 20dB was entered as an offset in the power meter to allow for direct reading of power.

802.11b		
Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	17.0
Middle	2437	17.0
High	2462	17.0

Channel	Frequency (MHz)	Power (dBm)
Low	2412	17.0
Middle	2437	17.0
High	2462	17.0

802.11a

Channel	Frequency (MHz)	Power (dBm)
Low	5180	16.0
Middle	5260	16.0
High	5320	16.0

Channel	Frequency (MHz)	Power (dBm)
Low	5500	16.0
Middle	5600	16.0
High	5700	16.0

Channel	Frequency (MHz)	Power (dBm)		
Low	5745	16.0		
Middle	5785	16.0		
High	5825	16.0		

The following procedures had been used to prepare the Intel WLAN module for the SAR co-location testing.

The client provided a special driver and program, CRTU, which enables a user to control the frequency and output power of the module.

2.4GHz Band

802.11g

Channel	Frequency	Average Power	Average Power
	(MHz)	Chain A	Chain B
		(авш)	(авш)
Low	2412	16.7	16.5
Middle	2437	17.6	17.6
High	2462	16.6	16.8

802.11n 20M

Channel	Frequency (MHz)	Average Power Chain A (dBm)	Average Power Chain B (dBm)
Low	2412	15.6	15.6
Middle	2437	15.6	15.6
High	2462	15.6	15.6

802.11n MIMO 20M

Channel	Frequency (MHz)	Average Power Chain A (dBm)	Average Power Chain B (dBm)
Low	2422	14.7	14.4
Middle	2437	14.6	14.4
High	2452	14.6	14.4

5.2GHz Band

Channel	Frequency	Average Power	Average Power
	(MHz)	Chain A	Chain B
		(dBm)	(dBm)
Low	5180	16.5	16.4
Middle	5260	17.5	17.6
High	5320	16.5	16.5

802.11n 20M

Channel	Frequency	Average Power	Average Power
	(MHz)	Chain A	Chain B
		(dBm)	(dBm)
Low	5180	17.5	17.5
Middle	5260	17.5	17.5
High	5320	16.6	16.5

802.11n 40M

Channel	Frequency (MHz)	Average Power Chain A (dBm)	Average Power Chain B (dBm)
Low	5190	15.4	15.4
Middle	5270	17.4	17.5
High	5310	15.4	15.5

802.11n MIMO 20M

Channel	Frequency (MHz)	Average Power Chain A (dBm)	Average Power Chain B (dBm)
Low	5180	12.6	12.5
Middle	5260	14.7	14.6
High	5320	14.6	14.4

802.11n MIMO 40M

Channel	Frequency (MHz)	Average Power Chain A (dBm)	Average Power Chain B (dBm)
Low	5190	12.7	12.8
Middle	5270	14.6	14.7
High	5310	14.6	14.7

5.8GHz Band

802.11a

Channel	Frequency	Average Power	Average Power
	(MHz)	Chain A (dBm)	Chain B (dBm)
Low	5745	17.6	17.5
Middle	5785	17.6	17.6
High	5825	17.6	17.6

802.11n 20M

Channel	Frequency	Average Power	Average Power
	(MHz)	Chain A	Chain B
		(dBm)	(dBm)
Low	5745	17.6	17.5
Middle	5785	17.4	17.5
High	5825	17.5	17.5

802.11n 40M

Channel	Frequency (MHz)	Average Power Chain A (dBm)	Average Power Chain B (dBm)
Low	5755	17.3	17.4
High	5795	17.6	17.5

802.11n 20M

Channel	Frequency (MHz)	Average Power Chain A (dBm)	Average Power Chain B (dBm)
Low	5745	14.5	14.4
Middle	5785	14.5	14.5
High	5825	14.5	14.6

802.11n 40M

Channel	Frequency (MHz)	Average Power Chain A (dBm)	Average Power Chain B (dBm)
Low	5755	14.6	14.7
High	5795	14.6	14.6

8 SAR MEASURMENT RESULTS

8.1 CELL BAND

8.1.1 TABLET - SECONDARY PORTRAIT POSITION

NOTE:

- 1) THE EUT WAS TESTED WITH THE WWAN MAIN ANTENNA TRANSMITTING
- 2) THIS POSITION WAS TESTED FOR CO-LOCATION DUE TO THE CLOSE PROXIMITY BETWEEN THE WWAN MAIN AND WLAN MAIN ANTENNAE. THE RESULTING SAR VALUE IS EVALUATED IN THE MULTI-BAND SECTION

WL	AN MAIN				
WI	AN AUX				
Test Position	AN AUX	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Test Position CDMA 1xRTT	AN AUX	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Test Position CDMA 1xRTT	AN AUX	f (MHz) 824.70	Measured SAR 1g (mW/g) 0.535	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Test Position CDMA 1xRTT Secondary Portrait	AN AUX Channel 1013 384 777	f (MHz) 824.70 836.52	Measured SAR 1g (mW/g) 0.535 0.683 0.653	Power Drift (dB) -0.178 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.557 0.683 0.50
Test Position CDMA 1xRTT Secondary Portrait CDMA 1xEV DO Po	Channel 1013 384 777	f (MHz) 824.70 836.52 848.31	Measured SAR 1g (mW/g) 0.535 0.683 0.650	Power Drift (dB) -0.178 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.557 0.683 0.650
Test Position CDMA 1xRTT Secondary Portrait CDMA 1xEV-DO Re Secondary Portrait	AN AUX Channel 1013 384 777 5/ 0	f (MHz) 824.70 836.52 848.31	Measured SAR 1g (mW/g) 0.535 0.683 0.650	Power Drift (dB) -0.178 0.000 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.557 0.683 0.650
Test Position CDMA 1xRTT Secondary Portrait CDMA 1xEV-DO Reserver Secondary Portrait CDMA 1xEV-DO Reserver Secondary Portrait	AN AUX	f (MHz) 824.70 836.52 848.31 836.52	Measured SAR 1g (mW/g) 0.535 0.683 0.650	Power Drift (dB) -0.178 0.000 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.557 0.683 0.650 0.630
Test Position CDMA 1xRTT Secondary Portrait CDMA 1xEV-DO Regentrait Secondary Portrait CDMA 1xEV-DO Regentrait Secondary Portrait CDMA 1xEV-DO Regentrait Secondary Portrait	AN AUX Channel 1013 384 777 70 384 277 384 277 384 384	f (MHz) 824.70 836.52 848.31 836.52	Measured SAR 1g (mW/g) 0.535 0.683 0.650 0.630	Power Drift (dB) -0.178 0.000 0.000 -0.115	Extrapolated ¹⁾ SAR 1g (mW/g) 0.557 0.683 0.650 0.630

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.
 4) The battery was fully charged in accordance with manufacture's instructions prior to SAR measurements.

8.1.2 TABLET - SECONDARY LANDSCAPE AND LAPHELD POSITIONS

NOTE:

- 1) 1XEV-DO REL 0 AND REV A TESTING WAS SKIPPED DUE TO LOWER SAR VALUES FROM THE SECONDARY PORTRAIT RESULTS.
- 2) THE SECONDARY LANDSCAPE POSITION WAS TESTED FOR CO-LOCATION DUE TO THE CLOSE PROXIMITY BETWEEN THE WWAN MAIN AND WLAN MAIN ANTENNAE. THE RESULTING SAR VALUE IS EVALUATED IN THE MULTI-BAND SECTION

CDMA 1xRTT					
Test Position	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Secondary Landscape	1013 384 777	824.70 836.52 848.31	0.184	0.000	0.184
Lapheld	1013 384 777	824.70 836.52 848.31	0.381	0.000	0.381

Notes:

 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

4) The battery was fully charged in accordance with manufacture's instructions prior to SAR measurements.

8.1.3 TABLET - PRIMARY PORTRAIT AND PRIMARY LANDSCAPE POSITION

THE BELOW POSITIONS WERE SKIPPED DUE TO LOW SAR VALUES AND LARGE DISTANCE BETWEEN THE ANTENNA AND THE PHANTOM.

8.1.4 LAPTOP - NORMAL POSITION

1XEV-DO REL 0 AND REV A TESTING WAS SKIPPED DUE TO LOWER SAR VALUES FROM THE SECONDARY PORTRAIT RESULTS.

8.2 PCS BAND

8.2.1 TABLET - SECONDARY PORTRAIT POSITION

NOTE:

- 1) THE EUT WAS TESTED WITH THE WWAN MAIN ANTENNA TRANSMITTING
- 2) THIS POSITION WAS TESTED FOR CO-LOCATION DUE TO THE CLOSE PROXIMITY BETWEEN THE WWAN MAIN AND WLAN MAIN ANTENNAE. THE RESULTING SAR VALUE IS EVALUATED IN THE MULTI-BAND SECTION

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

4) The battery was fully charged in accordance with manufacture's instructions prior to SAR measurements.

8.2.2 TABLET - SECONDARY LANDSCAPE AND LAPHELD POSITIONS

NOTE:

- 1) 1XEV-DO REL 0 AND REV A TESTING WAS SKIPPED DUE TO LOWER SAR VALUES FROM THE SECONDARY PORTRAIT RESULTS.
- 2) THE SECONDARY LANDSCAPE POSITION WAS TESTED FOR CO-LOCATION DUE TO THE CLOSE PROXIMITY BETWEEN THE WWAN MAIN AND WLAN MAIN ANTENNAE. THE RESULTING SAR VALUE IS EVALUATED IN THE MULTI-BAND SECTION

CDMA 1xRTT					
Test Position	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Secondary Landscape	25 600 1175	1851.25 1880.00 1908.75	0.272	0.000	0.272
Lapheld	25 600 1175	1851.25 1880.00 1908.75	0.141	0.000	0.141

Notes:

- The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.
- 2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.
- 3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.
- 4) The battery was fully charged in accordance with manufacture's instructions prior to SAR measurements.

8.2.3 LAPTOP - NORMAL POSITION

1XEV-DO REL 0 AND REV A TESTING WAS SKIPPED DUE TO LOWER SAR VALUES FROM THE SECONDARY PORTRAIT RESULTS

4) The battery was fully charged in accordance with manufacture's instructions prior to SAR measurements.

8.3 MULTI-BAND EVALUATIONS

8.3.1 WORST CASE CONFIUGURATIONS

The following SAR results are from the previous zoom scans in order to determine the worst case:

Frequency Band	Test Position	Ch	f (MHz)	Zoom Scan SAR 1g (mW/g)
CDMA2000 1xRTT (Part 22 Cell Band)	Secondary Landscape	384	836.52	0.184
CDMA2000 1xRTT (Part 22 Cell Band)	Secondary Portrait	384	836.52	0.683
CDMA2000 1xRTT (Part 24 PCS Band)	Secondary Landscape	600	1880.00	0.272
CDMA2000 1xRTT (Part 24 PCS Band)	Secondary Portrait	600	1880.00	0.742

The following SAR values are evaluated in the same frequency & position in two different liquids using Dasy4 Multi-Band method in order to use SEMCAD tool to evaluate the combined SAR.

Note: The Bluetooth module was not included in the multi-band calculations due to lower output power and the large distance between the Bluetooth antenna and the WWAN main antenna.

8.3.2 MULTI-BAND SAR RESULTS-CELL BAND

CDMA2000 Cell Band with 2.4 GHz WLAN

Wireless	Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Landscape	836.5	0.176
WLAN - Atheros	Secondary Landscape	2437	0.810
Combined 1g SAR Value:			0.855

CDMA2000 Cell Band with 2.4 GHz WLAN

Wireless	Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Portrait	836.5	0.576
WLAN - Atheros	Secondary Portrait	2437	0.077
	0.662		

CDMA2000 Cell Band with 2.4 GHz WLAN

Wireless	Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Landscape	836.5	0.176
WLAN - Intel	Secondary Landscape	2437	0.192
	0.375		

CDMA2000 Cell Band with 2.4 GHz WLAN

Wireless	Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Portrait	836.5	0.576
WLAN - Intel	Secondary Portrait	2437	0.092
	0.611		

8.3.3 MULTI-BAND SAR RESULTS-PCS BAND

Wireless	Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Landscape	1880	0.359
WLAN - Atheros	Secondary Landscape	2437	0.810
Combined 1g SAR Value:			0.923

CDMA2000 PCS Band with 2.4 GHz WLAN

CDMA2000 PCS Band with 2.4 GHz WLAN

Wireless	Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Portrait	1880	0.600
WLAN - Atheros	Secondary Portrait	2437	0.077
	0.680		

CDMA2000 PCS Band with 2.4 GHz WLAN

Wireless	ess Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Landscape	1880	0.359
WLAN - Intel	Secondary Landscape	2437	0.192
Combined 1g SAR Value:			0.419

CDMA2000 PCS Band with 2.4 GHz WLAN

Wireless	reless Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Portrait	1880	0.600
WLAN - Intel	NLAN - Intel Secondary Portrait 2		0.092
	0.635		

8.3.4 MULTI-BAND SAR RESULTS-CELL BAND

Wireless	Wireless Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Landscape	836.5	0.176
WLAN - Atheros	Secondary Landscape	5825	0.403
Combined 1g SAR Value:			0.562

CDMA2000 Cell Band with 5.8 GHz WLAN

CDMA2000 Cell Band with 5.8 GHz WLAN

Wireless	Wireless Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Portrait	836.5	0.576
WLAN - Atheros	Secondary Portrait	5825	0.007
	0.471		

CDMA2000 Cell Band with 5.8 GHz WLAN

Wireless	less Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Landscape	836.5	0.176
WLAN - Intel	Secondary Landscape	5785	0.185
	Combined 1g SAR Value:		

CDMA2000 Cell Band with 5.8 GHz WLAN

Wireless	reless Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Portrait	836.5	0.576
WLAN - Intel	Secondary Portrait	5785	0.003
	Combined 1g SAR Value:		

8.3.5 MULTI-BAND SAR RESULTS-PCS BAND

Wireless Test			Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Landscape	1880	0.189
WLAN - Atheros	WLAN - Atheros Secondary Landscape		0.403
Combined 1g SAR Value:			0.438

CDMA2000 PCS Band with 5.8 GHz WLAN

CDMA2000 PCS Band with 5.8 GHz WLAN

Wireless	Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Portrait	1880	0.605
WLAN - Atheros	Secondary Portrait	5825	0.007
Combined 1g SAR Value:			0.608

CDMA2000 PCS Band with 5.8 GHz WLAN

Wireless	Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Landscape	1880	0.189
WLAN - Intel	Secondary Landscape	5785	0.185
Combined 1g SAR Value:			0.350

CDMA2000 PCS Band with 5.8 GHz WLAN

Wireless	Test		Volume scan
Transmitter	Position	f (MHz)	1g SAR (mW/kg)
CDMA2000	Secondary Portrait	1880	0.605
WLAN - Intel	Secondary Portrait	5785	0.003
	0.609		

9 MEASURMENT UNCERTAINTY

9.1 MEASURMENT UNCERTAINTY FOR 300 MHz - 3000 MHz

	Tel (+0/)	Probe	Dist	$O(1/4\pi)$	C: (40 m)	Std. Unc.(±%)	
Uncertainty component	10I. (±%)	Dist.	DIV.	CI (1g)	CI (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table							
1. Tol tolerance in influence quaitity							
2. N - Nomal							
3. R - Rectangular							
4. Div Divisor used to obtain standard uncertainty							

5. Ci - is te sensitivity coefficient

9.2 MEASURMENT UNCERTAINTY 3 GHz – 6 GHz

Uncertainty component	Tel (+9/)	Probe	Div	$Ci(4\pi)$		Std. Unc.(±%)	
Uncertainty component	TOI. (±%)	Dist.	DIV.	Ci (ig)	CI (TUG)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.66	10.73
Expanded Uncertainty (95% Confidence Interval)	dence Interval) K=2 23.32			21.46			
Notesfor table 1. Tol tolerance in influence quaitity							

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

10 EQUIPMENT LIST AND CALIBRATION

Name of Equipment	Manufacturer		Serial Number	Cal. Due date		
	Manufacturer	i ype/wodei		MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A
Electronic Probe kit	HP	85070C	N/A			N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	US39173569	11	14	2008
E-Field Probe	SPEAG	EX3DV4	3554	4	24	2008
Thermometer	ERTCO	639-1S	1718	8	30	2008
Data Acquisition Electronics	SPEAG	DAE3 V1	500	11	16	2008
System Validation Dipole	SPEAG	D835V2	4d002	6	22	2009
System Validation Dipole	SPEAG	D1900V2	5d043	1	29	2010
System Validation Dipole	SPEAG	D2450V2	706	4	27	2008
System Validation Dipole	SPEAG	D5GHzV2	1003	11	21	2009
Signal Generator	R&S	SMP 04	DE34210	2	16	2009
Power Meter	Giga-tronics	8651A	8651404	4	3	2008
Power Sensor	Giga-tronics	80701A	1834588	4	17	2008
Amplifier	Mini-Circuits	ZVE-8G	360			N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A
Radio Communication Tester	Agilent	E5515C	GB46160222	6	29	2008
Simulating Liquid	CCS	M835	N/A	Withi	n 24 h	rs of first test
Simulating Liquid	CCS	M1900	N/A	Withi	n 24 h	rs of first test
Simulating Liquid	CCS	M2450	N/A	Withi	n 24 h	rs of first test
Simulating Liquid	SPEAG	M5200-5800	N/A	Withi	n 24 h	rs of first test

11 ATTACHMENTS

No.	Contents	No. Of Pages	
1	System Performance Check Plots	8	
2-1	SAR Test Plots – Cell Band	9	
2-2	SAR Test Plots – PCS Band	9	
2-3	SAR Test Plots – Multi Band – 2.4 GHz Band	16	
2-4	SAR Test Plots – Multi Band – 5.8 GHz Band	16	
3	Certificate of E-Field Probe - EX3DV4SN3554	10	
4	Certificate of System Validation Dipole - D835V2 SN:4d002	9	
5	Certificate of System Validation Dipole - D1900V2 SN:5d043	9	
6	Certificate of System Validation Dipole - D2450 SN:706	9	
7	Certificate of System Validation Dipole - D5GHzV2 SN:1003	15	

12 PHOTOS

Host Device - Fujitsu T2010 Tablet computer

Antenna locations

EUT Location

Sierra Wireless WWAN Module FCC ID: N7N-MC5725-F

Atheros Module FCC ID: PPD-AR5BXB6-M

Intel Module FCC ID: PD94965AGN

END OF REPORT