

FCC OET BULLETIN 65 SUPPLEMENT C IC RSS-102 ISSUE 2

SAR EVALUATION REPORT

FOR

T5010 TABLET COMPUTERS WITH WWAN MC5727 AND INTEL OR ATHEROS WLAN MODULES

MODEL: MC5727

FCC ID: N7N-MC5725-F

REPORT NUMBER: 08U12094-2A

ISSUE DATE: OCTOBER 21, 2008

Prepared for

FUJITSU AUSTRALIA LTD 1230 NEPEAN HIGHWAY CHELTENHAM, VIC 3192

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA

R

NVLAP LAB CODE 200065-0

REPORT	NO: 08U12094-2A	DATE: October 21, 2008	FCC ID: N7N-MC5725-F
Revision			
Rev.	Issue Date	Revisions	Revised By
	October 16, 2008	Initial issue	
A	October 21, 2008	Updated description in Section 7	Sunny Shih

TABLE OF CONTENTS

1	ATT	ESTATION OF TEST RESULTS	4
2	TES	ST METHODOLOGY	5
3	FAC	CILITIES AND ACCREDITATION	5
4	CAL	IBRATION AND UNCERTAINTY	5
	4.1	MEASURING INSTRUMENT CALIBRATION	5
5	MEA	ASUREMENT UNCERTAINTY	5
6	TES	ST EQUIPMENT LIST	7
7	DE∖	/ICE UNDER TEST (DUT) DESCRIPTION	8
8	SYS	STEM DESCRIPTION	9
	8.1	COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
9	SIM	ULATING LIQUID PARAMETERS CHECK	11
	9.1	SIMULATING LIQUID PARAMETER CHECK RESULT	12
10	SYS	STEM PERFORMANCE CHECK	15
	10.1	SYSTEM PERFORMANCE CHECK RESULTS	16
11	OUT	TPUT POWER VERIFICATION	17
12	KDE	3 447498 RF EXPOSURE ASSESSMENT	21
13	SAF	R TEST RESULTS	22
	13.1	SAR TEST RESULT FOR CELL BAND	22
	13.2	SAR TEST RESULT FOR PCS BAND	24
14	ATT	ACHMENTS	26
15	SET		27

1 ATTESTATION OF TEST RESULTS

COMPANY NAME:	FUJITSU AUSTRALIA LTD	FUJITSU AUSTRALIA LTD						
	1230 NEPEAN HIGHWAY							
	CHELTENHAM, VIC 3192	CHELTENHAM, VIC 3192						
EUT DESCRIPTION:	T5010 TABLET COMPUTERS WITH WWAN MC5727 AND INTEL OR ATHEROS WLAN MODULES							
	The host tablet PC system h	as following FCC Grants:						
	T5010 tablet PC with Intel W	/LAN: FCC ID: EJE-WB0058						
	T5010 tablet PC with Atherc	s WLAN: FCC ID: EJE-WB0059						
FCC ID:	N7N-MC5725-F							
MODEL:	MC5727							
DEVICE CATEGORY:	Portable							
EXPOSURE CATEGORY:	General Population/Uncontr	olled Exposure						
DATE TESTED:	October 3, 6 and 7, 2008							
THE HIGHEST SAR VALUES:	See Table below							
FCC / IC Rule Parts	Frequency Range [MHz]	The Highest SAR Values (1g_mW/g)	Limit (mW/g)					
22H (Cell Band)/ RSS-102	824 - 849 0.344 (Lapheld) 1.6							
24E (PCS Band) / RSS-102	1850 - 1909	0.438 (Primary Portrait)	1.6					

APPLICABLE STANDARDS								
STANDARD TEST RESULTS								
FCC OET BULLETIN 65 SUPPLEMENT C	Pass							
RSS-102 ISSUE 2	Pass							

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Seenay Shih

SUNNY SHIH EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

Carol Baumann

CAROL BAUMANN SAR ENGINEER COMPLIANCE CERTIFICATION SERVICES

2 TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 820.11abg Transmitters May 2007, KDB 447498_RF Exposure Requirements and Procedures for mobile and portable devices and IC RSS 102 Issue 2: NOVEMBER 2005.

3 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4 CALIBRATION AND UNCERTAINTY

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5 MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz - 3000 MHz

Uncertainty component	Tol. (±%)	Probe	Div.	Ci (1g)	Ci (10g)	Std. Ur	nc.(±%)
Uncertainty component	101. (± /₀)	Dist.	Div.	Ci (ig)		Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table							
Tol - tolerance in influence quaitity							

1. Tol. - tolerance in influence quaitity

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

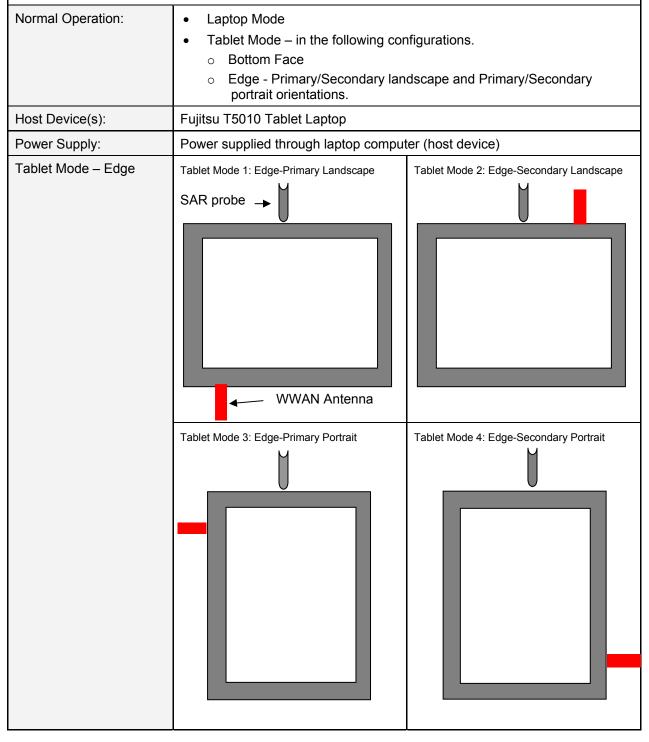
Measurement uncertainty for 3 GHz - 6 GHz

Uncertainty component	Tol. (±%)	Probe	Div.	$C:(4\pi)$	Ci (10g)	Std. Unc.(±%)		
Uncertainty component	TOI. (±%)	Dist.	Div.	Ci (1g)	CI (TUG)	Ui (1g)	Ui(10g)	
Measurement System								
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80	
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92	
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92	
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58	
Linearity	4.70	R	1.732	1	1	2.71	2.71	
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58	
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00	
Response Time	0.80	R	1.732	1	1	0.46	0.46	
Integration Time	2.60	R	1.732	1	1	1.50	1.50	
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73	
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73	
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23	
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67	
Extrapolation, interpolation, and integration algorithms for								
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25	
Test sample Related								
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10	
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60	
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89	
Phantom and Tissue Parameters								
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31	
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24	
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70	
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41	
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62	
Combined Standard Uncertainty			RSS			11.66	10.73	
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46	
Notesfor table 1. Tol tolerance in influence quaitity 2. N - Nomal								

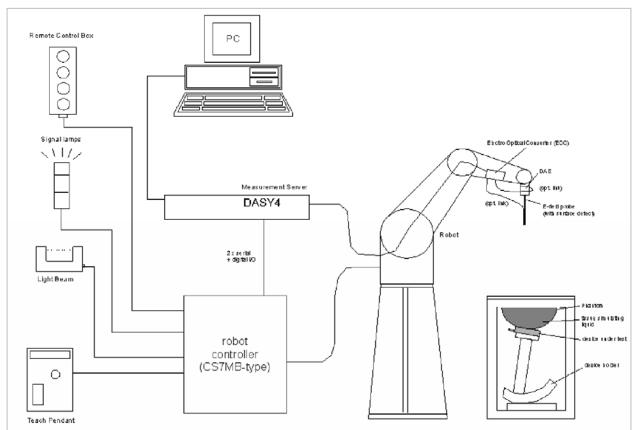
3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient


6 TEST EQUIPMENT LIST

Nome of Equipment	Manufacturer	Turne/Madal	Serial Number		Cal.	Due date
Name of Equipment	Manufacturer	Type/Model	Serial Number	MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A		N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A
Electronic Probe kit	HP	85070C	N/A			N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	14	2008
E-Field Probe	SPEAG	EX3DV3	3531	4	23	2009
Thermometer	ERTCO	639-1S	1718	5	28	2009
Data Acquisition Electronics	SPEAG	DAE3 V1	500	11	16	2008
System Validation Dipole	SPEAG	D2450V2	748	4	14	2009
System Validation Dipole	SPEAG	D5GHzV2	1003	11	21	2009
Signal Generator	R&S	SMP 04	DE34210	2	16	2009
Power Meter	Giga-tronics	8651A	8651404	1	11	2010
Power Sensor	Giga-tronics	80701A	1834588	1	11	2010
Amplifier	Mini-Circuits	ZVE-8G	90606			N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A
Simulating Liquid	CCS	M835	N/A	Withir	n 24 h	rs of first test
Simulating Liquid	CCS	M1900	N/A	Withir	n 24 h	rs of first test


7 DEVICE UNDER TEST (DUT) DESCRIPTION

T5010 Tablet PC with WWAN MC5727 and Intel or Atheros WLAN modules. The WWAN MC5727 module with CDMA2000 1xRTT, 1xEv-DO Rel 0 and Rev A The host tablet PC system has following FCC Grants:

- T5010 tablet PC with Intel WLAN: FCC ID: EJE-WB0058
- T5010 tablet PC with Atheros WLAN: FCC ID: EJE-WB0059

8 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

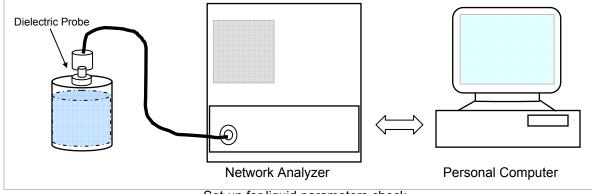
- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

8.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)										
(% by weight)	450		83	835		915		1900		50		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2		
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04		
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0		
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0		
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0		
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7		
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78		

Salt: 99+% Pure Sodium Chloride


Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

9 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Bo	dy
raiget requency (Miriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

9.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 25°C; Relative humidity = 39%

Simulatin	ng Liquid		Pa	arameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Depth (cm)		16	arameters	Weasured	raiget	Deviation (70)	
1900	15	e'	51.7723	Relative Permittivity (ε_r):	51.7723	53.3	-2.87	± 5
1900	15	e"	14.3837	Conductivity (σ):	1.52035	1.52	0.02	± 5
Liquid Chec	k							
Ambient ten	nperature: 2	25 de	eg. C; Liqui	id temperature: 24 de	eg. C			
October 03,	2008 09:5	6 AN	1		-			
Frequency		e'		e"				
171000000).	5	2.4592	13.744	3			
172000000).	5	2.4068	13.759	8			
173000000).	5	2.3639	13.771	4			
174000000).	5	2.3452	13.792	5			
1750000000).	5	2.3405	13.863	6			
176000000).	5	2.2807	13.943	7			
1770000000).	5	2.2077	14.013	5			
178000000).	5	2.1414	14.049	3			
179000000).	5	2.1208	14.072	7			
180000000).	5	2.1043	14.128	5			
181000000).	5	2.0990	14.156	9			
182000000).	5	2.0633	14.143	1			
183000000).	5	2.0551	14.134	6			
184000000).	5	2.0376	14.159	2			
1850000000).	5	1.9932	14.200	1			
186000000).	5	1.9042	14.240	9			
187000000).	5	1.7983	14.272	2			
1880000000).	5	1.7711	14.285	2			
189000000).	5	1.7590	14.317	2			
190000000).	5	1.7723	14.383	7			
191000000).	5	1.7666	14.474	3			
The conduct	tivity (σ) ca	n be	given as:					
$\sigma = \omega \varepsilon_{\theta} e'' =$	= $2 \pi f \varepsilon_{\theta}$ e	"						
where $f = i$								
$\boldsymbol{\mathcal{E}}_{\boldsymbol{\theta}} = \boldsymbol{\delta}$	8.854 * 10 ⁻¹²	?						

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 25°C; Relative humidity = 40%

Simulati	ng Liquid		D	arameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Depth (cm)		F	ardineters	Ivieasureu	Taiyet		Linin (70)
1900	15	e'	51.7205	Relative Permittivity (ε_r):	51.7205	53.3	-2.96	± 5
1500	10	e"	14.4298	Conductivity (σ):	1.52522	1.52	0.34	± 5
Liquid Cheo	ck							
Ambient ter	mperature: 2	25 de	eg. C; Liqu	id temperature: 24 de	eg. C			
October 06	, 2008 08:3	0 AN	1					
Frequency		e'		e"				
17100000	0.	5	2.4198	13.808	4			
172000000	0.	5	2.3843	13.799	5			
173000000	0.	5	2.3430	13.799	2			
174000000	0.	5	2.3140	13.825	2			
175000000	0.	5	2.2843	13.909	6			
176000000	0.	5	2.2099	13.980	3			
177000000	0.	5	2.1407	14.054	4			
178000000	0.	5	2.1024	14.088	9			
179000000	0.	5	2.1000	14.129	5			
18000000	0.	5	2.0946	14.172	6			
181000000	0.	5	2.0739	14.178	2			
182000000	0.	5	2.0286	14.165	5			
183000000	0.	5	2.0073	14.154	1			
184000000	0.	5	1.9936	14.182	8			
185000000	0.	5	1.9360	14.249	7			
186000000	0.	5	1.8482	14.303	9			
187000000	0.	5	1.7596	14.338				
188000000	0.	5	1.7186	14.334	9			
189000000	0.		1.7038	14.383				
19000000			1.7205	14.429				
191000000	0.	5	1.6769	14.461	8			
The conduc	ctivity (σ) ca	n be	given as:					
$\sigma = \omega \varepsilon_{\theta} e^{\prime t}$	$=2\pi f \varepsilon_{ heta}$ e	"						
where $f =$								
E Ø =	8.854 * 10 ⁻¹²	?						

Simulating Liquid Dielectric Parameters Check Result @ Muscle 835 MHz

Room Ambient Temperature = 25°C; Relative humidity = 40%

Simulati	ng Liquid		P		Magazinad	Torrat	Deviation (0()	$\lim_{n \to \infty} \frac{1}{n} \left(0 \right)$		
f (MHz)	Depth (cm)		P	arameters	Measured	Target	Deviation (%)	Limit (%)		
835	15	e'	53.5299	Relative Permittivity (ε_r):	53.5299	55.2	-3.03	± 5		
000	15	e"	21.0320	Conductivity (σ):	0.97698	0.97	0.72	± 5		
Liquid Chec	k			· · · · ·						
Ambient tem	Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C									
October 07,	2008 08:30) AN	1	-	-					
Frequency		e'		e"						
750000000.		54	4.3939	21.511	2					
755000000.		54	4.3109	21.525	4					
760000000.		54	4.2686	21.478	7					
765000000.		54	4.2238	21.456	9					
77000000.			4.1942	21.441						
775000000.		54	4.1443	21.398						
78000000.			4.1061	21.386						
785000000.			4.0825	21.347						
790000000.			4.0328	21.362						
795000000.		5	3.9532	21.353						
80000000.			3.8954	21.337						
805000000.		5	3.8250	21.315						
810000000.		5	3.7604	21.257	2					
815000000.		5	3.6915	21.184	6					
820000000.		5	3.6390	21.123	7					
825000000.		5	3.5817	21.109	6					
830000000.		5	3.5288	21.088	7					
835000000.		5	3.5299	21.032	0					
840000000.		5	3.4409	20.997	4					
845000000.		5	3.3708	21.011	0					
850000000.		5	3.3306	21.013	7					
855000000.		5	3.2609	20.962	4					
860000000.		5	3.2252	20.942	3					
865000000.		5	3.1773	20.916	1					
870000000.		5	3.1468	20.905	0					
875000000.		5	3.1335	20.908	8					
880000000.		5	3.1208	20.912	2					
885000000.		5	3.0719	20.929	1					
890000000.			3.0516	20.935						
895000000.			2.9998	20.911						
90000000.			2.9307	20.894						
The conduct	tivity (σ) caι	n be	given as:							
$\sigma = \omega \varepsilon_{\theta} e'' =$	$=2\pi f arepsilon_{ heta}$ e									
where $f = t$		i								
$\boldsymbol{\varepsilon}_{\boldsymbol{\theta}} = \boldsymbol{\delta}$	$8.854 * 10^{-12}$									

10 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

450 to 2450 MHz Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

5 GHz Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using finite-difference time-domain FDTD method (feed point-impedance set to 50 ohms) and the mechanical dimensions of the D5GHzV2 dipole (manufactured by SPEAG).

f (MHz)	Head Tissue		Body Tissue		
((W (1 1 Z)	SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	SAR _{Peak}
5000	72.9	20.7	68.1	19.2	260.3
5100	74.6	21.1	78.8	19.6	272.3
5200	76.5	21.6	71.8	20.1	284.7
5500	83.3	23.4	79.1	22.0	326.3
5800	78.0	21.9	74.1	20.5	324.7

Note: All SAR values normalized to 1 W forward power.

10.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D1900V2 SN:5d043

The dipole input power (forward power): 250 mW

<u>Results</u>

Date: October 3, 2008

Ambient Temperature = 25°C; Relative humidity = 39%

Body Simulating		mulating Liquid		Normalized		Normalized		Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	to	5 1 W	Target	(%)	(%)		
1900	24	15	1 g	37.1	39.8	-6.78	± 10		
1900	24	15	10g	19.5	20.8	-6.25	± 10		

Date: October 6, 2008

Ambient Temperature = 25°C; Relative humidity = 40%

Body Simulating Liquid Deviation Normalized Limit Target to 1 W (%) (%) f(MHz) Temp. (°C) Depth (cm) 36.5 39.8 -8.29 1 g ± 10 1900 24 15 10g 19.2 20.8 -7.69 ± 10

System Validation Dipole: D835V2 SN: 4d002

The dipole input power (forward power): 250 mW

<u>Results</u>

Date: October 7, 2008

Ambient Temperature = 25°C; Relative humidity = 40%

Body Simulating Liquid Deviation Normalized Limit Target to 1 W (%) (%) f(MHz) Temp. (°C) Depth (cm) 9.34 9.7 -3.81 1 g ± 10 835 24 15 10g 6.17 6.4 -3.29 ± 10

Measured by: Carol Baumann

Measured by: Carol Baumann

11 OUTPUT POWER VERIFICATION

3G-CDMA2000 1xRTT

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

Application	Rev, License
CDMA2000 Mobil Test	B.10.11, L

<u>1xRTT</u>

•

- Call Setup > Shift & Preset
- Protocol Rev > 6 (IS-2000-0)
- Radio Config (RC) > RC3 (Fwd3, Rvs3)
- FCH Service Option (SO) Setup > 32 (+ F-SCH)
- Traffic Data Rate > Full

TDSO SCH Info > F-SCH Parameters > F-SCH Data Rate > 153.6 kbps

- > R-SCH Parameters > R-SCH Data Rate > 153.6 kbps
- Cell Info > Cell Parameters > System ID (SID) > 8
 - > Network ID (NID) > 65535

Once "Active Cell" show "Connected " then change "Rvs Power Ctrl" from "Active bits" to "All Up bits" to get the maximum power.

Worst-case Measurement Result @ Low, Middle and High Channel

Cellular Band

Radio Configuration (RC)	Service Option (SO)	Channel	Frequency	Output Power (dBm) Average
		1013	824.70	24.80
RC3 (Fwd3, Rvs3)	SO32 (+F-SCH)	384	836.52	24.90
(FWU3, RVS3)	(+F-301)	777	848.31	24.95

PCS Band

Radio Configuration (RC)	Service Option (SO)	Channel	Frequency	Output Power (dBm) Average
	(00)	25	1851.25	24.90
RC3 (Fwd3, Rvs3)	SO32 (+F-SCH)	600	1880.00	24.80
(1 wao, 1 woo)		1175	1908.75	24.80

3G-CDMA2000 1xEV-DO Release 0 (Rel 0)

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

ApplicationRev, License1xEV-DO Terminal TestA.06.06, L

<u>FTAP</u>

- Call Setup > Shift & Preset
- Protocol Rev > 0 (1xEV-DO)
- Application Config > Enhanced Test Application Protocol > FTAP
- FTAP Rate > 307.2 kbps (2 Slot, QPSK)
- Access Network Info > Cell Parameters > Sector ID > 00000000 > Subnet Mask > 0
- Generator Info > Termination Parameters > Max Forward Packet Duration > 16 Slots
- Rvs Power Ctrl > All Up bits (to get the maximum power)

RTAP

- Call Setup > Shift & Preset
- Protocol Rev > 0 (1xEV-DO)
- Application Config > Enhanced Test Application Protocol > RTAP
- RTAP Rate > 153.6 kbps
- Access Network Info > Cell Parameters > Sector ID > 00000000 > Subnet Mask > 0
- Generator Info > Termination Parameters > Max Forward Packet Duration > 16 Slots
- Rvs Power Ctrl > All Up bits (to get the maximum power)

Worst-case Measurement Result @ Low, Middle and High Channel

Cellular Band	ł			
				Conducted power (dBm)
Channel	f (MHz)	FTAP Rate	RTAP Rate	Average
1013	824.70			24.80
384	836.52	307.2 kbps (2 slot, QPSK)	153.6	24.92
777	848.31	(2 301, Q1 017)		24.86

PCS Band				
				Conducted power (dBm)
Channel	f (MHz)	FTAP Rate	RTAP Rate	Average
25	1851.25	007.011		24.80
600	1880.00	307.2 kbps (2 slot, QPSK)	153.6	24.84
1175	1908.75	(2 301, Q1 017)		24.80

3G-CDMA2000 1xEV-DO Revision A (Rev A)

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

Application	Rev, License
1xEV-DO Terminal Test	A.06.06, L

<u>FETAP</u>

- Call Setup > Shift & Preset
- Protocol Rev > A (1xEV-DO-A)
- Application Config > Enhanced Test Application Protocol > FETAP
- FTAP Rate > 307.2 kbps (2 Slot, QPSK)
- Protocol Subtype Config > Release A Physical Layer Subtype > Subtype 0
- Access Network Info > Cell Parameters > Sector ID > 00000000 > Subnet Mask > 0
- Generator Info > Termination Parameters > Max Forward Packet Duration >16 Slots
- Rvs Power Ctrl > All Up bits (to get the maximum power)

<u>RETAP</u>

- Call Setup > Shift & Preset
- Protocol Rev > A (1xEV-DO-A)
- Application Config > Enhanced Test Application Protocol > RETAP
- F-Traffic Format > 4 (1024, 2,128) Canonical (307.2k, QPSK)
- R-Data Pkt Size > 4096 (for PCS band), 12288 (for Cellular band)
- Protocol Subtype Config > Release A Physical Layer Subtype > Subtype 2
 - > PL Subtype 2 Access Channel MAC Subtype > Default (Subtype 0)
- Access Network Info > Cell Parameters > Sector ID > 00000000 > Subnet Mask > 0
- Generator Info > Termination Parameters > Max Forward Packet Duration >16 Slots
- > ACK R-Data After > Subpacket 0 (All ACK)
- Rvs Power Ctrl > All Up bits (to get the maximum power)

Worst-case Measurement Result @ Low, Middle and High Channel

Cellular Band	t			
				Conducted power (dBm)
Channel	f (MHz)	FETAP-Traffic Format	RETAP-Data Payload Size	Average
1013	824.70	307.2 kbps		24.85
384	836.52	QPSK/ACK channel is	4096	24.95
777	848.31	transmitted at all slots		24.79

PCS Band				
				Conducted power (dBm)
Channel	f (MHz)	FETAP-Traffic Format	RETAP-Data Payload Size	Average
25	1851.25	307.2 kbps		24.95
600	1880.00	QPSK/ACK channel is	4096	24.92
1175	1908.75	transmitted at all slots		24.90

SAR Evaluation Consideration

The mode of operation was selected based upon output power verification.

- Per FCC 3G procedures for 1xRTT with EV-DO Data modem device, when 1xRTT highest output power is less 0.25 dB higher of highest output power of EV-DO, 1xRTT SAR measurement is not required.
 - Based upon output power measurement, the highest measured 1xRTT output power is 24.95 dBm (cell band) / 24.90 dBm (PCS band) which is not 0.25 dB higher of EV-DO Rel.0 / 24.92 dBm (cell band) / 24.84 dBm (PCS band)
- Per the FCC 3G procedures for EV-DO Rev 0/A Data modem device, EV-DO Rev.A SAR evaluation is not required when the highest measured average output power is less than EV-DO Rel. 0.

Mode	Band	Highest output power (dBm)	Mode selected for testing
EV-DO Rel. 0	Cell	24.92	
EV-DO Rei. U	PCS	24.84	
EV-DO Rev. A	Cell	24.95	
EV-DO REV. A	PCS	24.95	

Final SAR evaluations were performed for both EV-DO Rel.0 and Rev. A.

12 KDB 447498 RF EXPOSURE ASSESSMENT

KDB 447498, b) iii): For each edge positioned closest to the user, simultaneous transmission SAR evaluation is not required when the simultaneous transmitting antennas along that edge are: (1) Located < 5 cm from the edge and the sum of the stand-alone 1-g SAR is < the SAR limit for these antennas or the SAR-to-peak location separation ratios are < 0.3 for all antenna pairs.

ASSESSMENT:

Tablet Mode 2: Edge - Secondary Landscape SAR testing is not required since the WWAN antenna is not a functional orientation.

When the Host is at Tablet Mode (Bottom Face) - Lap-held position, the WLAN main antenna (Ant 1), WWAN main (Ant 5) and BT (Ant 4) is less than 5 cm from the edge.

Since BT output power is below power threshold (60/f(GHz) mW, BT stand alone SAR is not required.

	and cam of the highes					
Test Configuraion: Tablet Mode (Bottom Face) - Lap-held position						
			Stand Alone			
Radio	Antenna	Freq. Band	SAR Value (mW/g)			
Sierra Wireless - WWAN	Main (Ant 5)	850 MHz	0.344			
Sierra Wireless - WWAN	Main (Ant 5)	1900 MHz	0.213			
Intel - WLAN	Main Ant 1	2.4 GHz	0.041			
Intel - WLAN	Main Ant 1	5 GHz	0.028			
Atheros - WLAN	Main Ant 1	2.4 GHz	0.026			
Atheros - WLAN	Main Ant 1	5 GHz	0.012			
Sum of the highest 1g SAF	0.385					

The stand alone SAR values and sum of the highest SAR value:

- The sum of the stand-alone 1-g SAR is < the SAR limit
- The WLAN main antenna (Ant 1) to WWAN main antenna (Ant 5) separation distance is 10.7 cm, thus the SAR-to-peak location ratio (0.036) is less than 0.3.
 - SAR-to-peak location ratio: 0.385/10.7 = 0.036

As the result, simultaneous SAR evaluation for WWAN-Main (Ant 5) and WLAN-Main (Ant 1) is not required.

13 SAR TEST RESULTS

13.1 SAR TEST RESULT FOR CELL BAND

 Laptop Mode: Lap-held with the display open at 90° to the keyboard. SAR testing is not required due to the large distance (> 20 cm) between WWAN antenna and person's body.

2) Tablet Mode 1: Edge - Primary Landscape

SAR testing is not required due to the large distance (> 20 cm) between WWAN antenna and person's body.

3) Tablet Mode 2: Edge - Secondary Landscape SAR testing is not required since the WWAN antenna is not a functional orientation.

4) Tablet Mode 3: Edge - Primary Portrait

				Measured SAR	
Mode	Antenna (Deg)	Channel	f (MHz)	1g (mW/g)	Limit
EV-DO Rel. 0	0	384	836.52	0.021	1.6
EV-DO Rel. 0	90	384	836.52	0.285	1.6

Antenna configuration below was chosen based on measured SAR values for EV-DO Rel. 0.

				Measured SAR	
Mode	Antenna (Deg)	Channel	f (MHz)	1g (mW/g)	Limit
EV-DO Rev. A	90	384	836.52	0.246	1.6

5) Tablet Mode 4: Edge - Secondary Portrait

				Measured SAR	
Mode	Antenna (Deg)	Channel	f (MHz)	1g (mW/g)	Limit
EV-DO Rel. 0	90	384	836.52	0.073	1.6
EV-DO Rev. A	90	384	836.52	0.062	1.6

6) Tablet Mode 5: Bottom Face - Lap-held

				Measured SAR	
Mode	Antenna (Deg)	Channel	f (MHz)	1g (mW/g)	Limit
EV-DO Rel. 0	90	384	836.52	0.344	1.6
EV-DO Rev. A	90	384	836.52	0.287	1.6

Notes:

a. The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

The Highest SAR Plot & Data for Cell Band

Date/Time: 10/7/2008 3:23:03 PM

Test Laboratory: Compliance Certification Services

Tablet Mode 5 Bottom Face - Lapheld

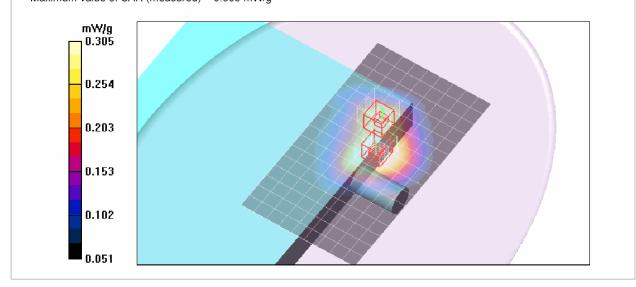
DUT: Fujitsu; Type: N/A; Serial: N/A

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.978 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(10.22, 10.22, 10.22); Calibrated: 4/23/2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 11/16/2007
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


EV-DO Rel. 0 M-Ch Ant 90/Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.360 mW/g

EV-DO Rel. 0_M-Ch Ant 90/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 5.66 V/m; Power Drift = -0.166 dB Peak SAR (extrapolated) = 0.469 W/kg SAR(1 g) = 0.344 mW/g; SAR(10 g) = 0.245 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.389 mW/g

EV-DO Rel. 0 M-Ch Ant 90/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 5.66 V/m; Power Drift = -0.166 dB Peak SAR (extrapolated) = 0.362 W/kg SAR(1 g) = 0.272 mW/g; SAR(10 g) = 0.204 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.305 mW/g

13.2 SAR TEST RESULT FOR PCS BAND

1) Laptop Mode: Lap-held with the display open at 90° to the keyboard

SAR testing is not required due to the large distance (> 20 cm) between WWAN antenna and person's body.

2) Tablet Mode 1: Edge - Primary Landscape

SAR testing is not required due to the large distance (> 20 cm) between WWAN antenna and person's body.

3) Tablet Mode 2: Edge - Secondary Landscape

SAR testing is not required since the WWAN antenna is disabled by software tool for this configuration.

4) Tablet Mode 3: Edge - Primary Portrait

Mode Antenna (Deg) Chanr	nel f (MHz) 1g (mW/g) Limit
EV-DO Rel. 0 0 600	1880.00 0.045 1.6
EV-DO Rel. 0 90 600	1880.00 0.438 1.6

Antenna configuration below was chosen based on measured SAR values for EV-DO Rel. 0.

				Measured SAR	
Mode	Antenna (Deg)	Channel	f (MHz)	1g (mW/g)	Limit
EV-DO Rev. A	90	600	1880.00	0.383	1.6

5) Tablet Mode 4: Edge - Secondary Portrait

				Measured SAR	
Mode	Antenna (Deg)	Channel	f (MHz)	1g (mW/g)	Limit
EV-DO Rel. 0	0	600	1880.00	0.018	1.6
EV-DO Rel. 0	90	600	1880.00	0.181	1.6
A stand a second second back					

Antenna configuration below was chosen based on measured SAR values for EV-DO Rel. 0.

				Measured SAR	
Mode	Antenna (Deg)	Channel	f (MHz)	1g (mW/g)	Limit
EV-DO Rev. A	90	600	1880.00	0.157	1.6

6) Tablet Mode 5: Bottom Face - Lap-held

				Measured SAR	
Mode	Antenna (Deg)	Channel	f (MHz)	1g (mW/g)	Limit
EV-DO Rel. 0	0	600	1880.00	0.021	1.6
EV-DO Rel. 0	90	600	1880.00	0.213	1.6
Antonna configuration hold	w was chosen ba	sod on moosur	od SAR values f	for EV DO Pol 0	

Antenna configuration below was chosen based on measured SAR values for EV-DO Rel. 0.

				Measured SAR	
Mode	Antenna (Deg)	Channel	f (MHz)	1g (mW/g)	Limit
EV-DO Rev. A	90	600	1880.00	0.187	1.6

Notes:

a. The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

The Highest SAR Plot & Data for PCS Band

Date/Time: 10/6/2008 10:44:15 AM

Test Laboratory: Compliance Certification Services

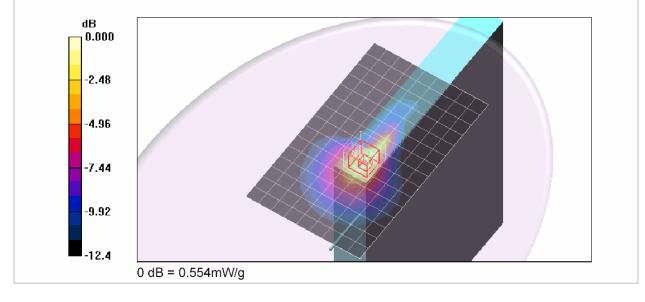
Tablet Mode 3 Edge - Primary Portrait

DUT: Fujitsu; Type: N/A; Serial: N/A

Communication System: CDMA; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

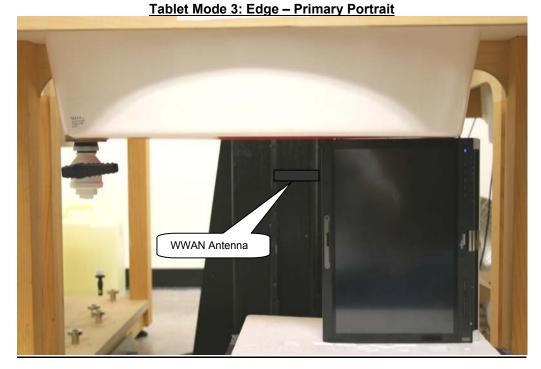
DASY4 Configuration:


- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV3 SN3531; ConvF(8.7, 8.7, 8.7); Calibrated: 4/23/2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 11/16/2007
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

EV-DO Rel. 0_M-Ch Ant 90/Area Scan (10x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.525 mW/g

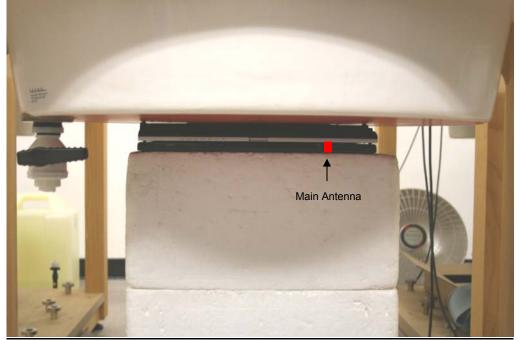
EV-DO Rel. 0_M-Ch Ant 90/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 3.56 V/m; Power Drift = 0.260 dB Peak SAR (extrapolated) = 0.950 W/kg SAR(1 g) = 0.438 mW/g; SAR(10 g) = 0.232 mW/g Maximum value of SAR (measured) = 0.554 mW/g

14 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	6
2-1	SAR Test Plots for Cell Band	8
2-2	SAR Test Plots for PCS Band	10
3	Certificate of E-Field Probe - EX3DV3SN3531	10
4	Certificate of System Validation Dipole - D835V2 SN:4d002	9
5	Certificate of System Validation Dipole - D1900V2 SN:5d043	9

15 SETUP PHOTOS



Tablet Mode 4: Edge – Secondary Portrait

(shown with antenna in 90° position)

Tablet Mode 6: Bottom Face – Lap-held

END OF REPORT