

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC REPORT AND ORDER: ET DOCKET 93-62, AND OET BULLETIN 65 SUPPLEMENT C

FOR

EXPRESS MINI-PCI USB WIRELESS CDMA MODEM MODULE

Model: MC5720

FCC ID: N7N-MC5720

REPORT NUMBER: 06U10157-3

ISSUE DATE: MARCH 30, 2006

Prepared for

SIERRA WIRELESS 2290 COSMOS CT CARLSBAD CA 92009 UNITED STATES

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037 United States

LAB CODE:200065-0

Revision History

Rev.	Issued date	Revisions	Revised By
	March 30, 2006	Initial	HS

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

DATES OF TEST: March 21, 2006							
APPLICANT:	SIERRA WIRELESS						
ADDRESS: 2290 COSMOS CT							
CARLSBAD CA 92009							
	UNITED STATES						
FCC ID:	N7N-MC5720						
MODEL:	MC5720						
DEVICE CATEGORY:	Portable Device						
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure						

Express MINI-PCI USB Wireless CDMA Modem Module is installed in R1 Note 14" host device.										
Test Sample is a:	Production unit	Production unit								
Host device(s):	Host Devices WLAN Module / FCC ID									
	R1 Note 14" Intel Golan / PD9LEN3945ABG									
FCC Rule Parts	Frequency Range [MHz]	The Highest SAR Values [1g]	The Highest Collocation SAR Values [1g]							
22H	824.7 – 848.31	0.071	0.067							
24E 1851.25 - 1908.75 0.182 0.187										

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (Edition 01-01). And RSS-102 Issue 1 (Provisional) September 25, 1999.

The maximum 1g SAR level measured for all the tests performed did not exceed the limits for General Population/Uncontrolled Exposure (W/kg) Partial Body of 1.6 W/kg. Level defined in Supplement C (Edition 01-01) to OET Bulletin 65 (97-01).

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

sin-Fr. Shih

Hsin Fu Shih Senior Engineer Compliance Certification Services Tested By:

Winey Dorough

Ninous Davoudi EMC Engineer Compliance Certification Services

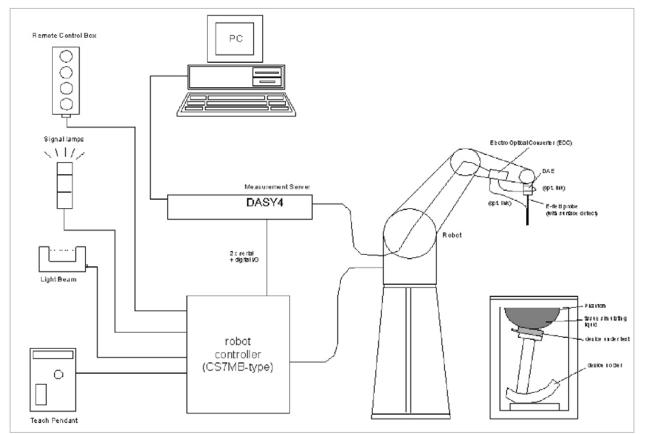
Table of Contents

1	EQI	JIPMENT UNDER TEST (EUT) DESCRIPTION	5
2	FAC	CILITIES AND ACCREDITATION	5
3	SYS	STEM DESCRIPTION	6
	3.1	COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUID	7
4	SIM	ULATING LIQUID PARAMETERS CHECK	8
	4.1	SIMULATING LIQUID PARAMETER CHECK RESULT	9
5	SYS	STEM PERFORMANCE CHECK	11
	5.1	SYSTEM PERFORMANCE CHECK RESULTS	12
6	SAF	R MEASUREMENT PROCEDURE	13
7	PRC	DCEDURES USED TO ESTABLISH TEST SIGNAL	15
8	SAF	R TEST SUMMARY	16
	8.1	LAP HELD POSITION	16
9	PHC	DTOS	17
10	MEA	ASUREMENT UNCERTAINTY	21
	10.1	MEASUREMENT UNCERTAINTY FOR 300 MHZ – 3GHZ	21
11	TES	ST EQUIPMENT LIST	22
12	ATT	ACHMENTS	23

1 EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Express MINI-PCI USB	Express MINI-PCI USB Wireless CDMA Modem Module is installed in R1 Note 14" host device.								
Host device(s):	Host Devices	WLAN Module / FCC ID							
	R1 Note 14"	Intel Golan / PD9LEN3945ABG							
Normal operation:	Lap-held position Photos	are confidential, please see a seperate file							
Power supply:	Power supplied throug	gh the laptop computer (host device)							
CDMA Antenna:	Tyco Holding (Bermue Antenna)	da) VII Ltd, Dual Band Meander (Planner Inverted F							

2 FACILITIES AND ACCREDITATION


The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

3 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

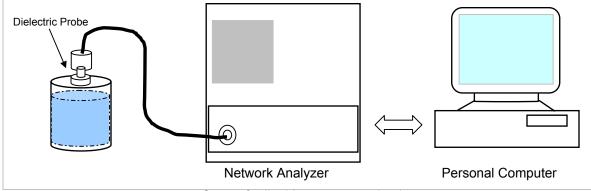
3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUID

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients					Frequency (MHz)					
(% by weight)	45	50	83	35	91	15	19	00	2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose


Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

4 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Bo	ody
raiget requercy (wriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	<mark>55.2</mark>	<mark>0.97</mark>
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	<mark>53.3</mark>	<mark>1.52</mark>
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameters Check Result @ Muscle 835 MHz

Room Ambient Temperature = 23°C; Relative humidity = 30%

Measured by: Ninous Davoudi

f (MHz)	imulating Liqu Temp. (°C)			Parameters	Target	Measured	Deviation (%)	Limit (%)
			с"	Relative Permittivity (ε_r):	55.2	54.0665	-2.05	± 5
835	21	15	20.9025	Conductivity (σ):	0.97	0.97097	0.10	± 5
Liquid Che	n ck							
		e [.] 23.0 dec	n C. Liau	id temperature: 21 de	D ne			
March 21,	•		j. 0, Liqu		,g C			
Frequency		e'		e"				
75000000		54.99	969	21.2389				
75500000		54.94		21.1930				
76000000	О.	54.86	676	21.2182				
76500000	D.	54.8 ⁻	189	21.1968				
77000000	D.	54.76	643	21.1542				
77500000	О.	54.69	902	21.1538				
78000000	О.	54.68	518	21.1181				
78500000		54.60	009	21.1100				
79000000	D.	54.54	476	21.0915				
79500000	D.	54.47	715	21.0697				
80000000		54.40		21.0783				
80500000		54.38	307	21.0283				
81000000		54.30		20.9846				
81500000		54.28		20.9682				
82000000		54.23		20.9556				
82500000		54.20		20.9076				
83000000		54.12	226	20.8956				
83500000		54.00		20.9025				
84000000		54.04		20.8754				
84500000		53.98		20.8300				
85000000		53.93		20.8326				
85500000		53.88		20.8063				
86000000		53.82		20.8059				
86500000		53.77		20.7759				
87000000		53.74		20.7738				
87500000		53.67		20.7449				
88000000		53.63		20.7586				
88500000		53.57		20.7663				
89000000		53.52		20.7645				
89500000		53.49		20.7210				
90000000		53.43		20.7188				
90500000		53.4		20.7103				
91000000	J.	53.3	579	20.6709				
The condu	ictivity (σ)	can be giv	en as:					
$\sigma = \omega \varepsilon_0 \sigma$		•						
where f =	target f *	10 ⁶						
E _0 =	= 8.854 * 1	0''2						

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 30%

Measured by: Ninous Davoudi

S	Simulating Liqu	uid		Parameters	Target	Mossured	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)	T didificiers		Target	Measured	Deviation (%)	Limit (%)
1900	21	15	с"	Relative Permittivity (ε_r):	53.3	51.4474	-3.48	± 5
1000	21	10	14.1179	Conductivity (o):	1.52	1.49225	-1.83	± 5
Liquid Che	eck							
Ambient te	emperature	e: 23.0 deg	J. C; Liqu	id temperature: 21 de	eg C			
March 21,	2006 01:3	84 PM						
Frequency	/	e'		e"				
17100000	00.	52.17	739	13.4588				
17200000	00.	52.13	375	13.4959				
17300000	00.	52.09	977	13.5394				
17400000	00.	52.0	556	13.5598				
17500000	00.	51.99	943	13.6068				
17600000		51.97	707	13.6448				
17700000	00.	51.92	240	13.6912				
17800000		51.88		13.7349				
17900000		51.83		13.7633				
18000000		51.80		13.7933				
18100000		51.77	705 13.8228					
18200000	00.	51.73	351	13.8574				
18300000		51.67	747	13.8814				
18400000		51.64		13.9109				
18500000	00.	51.6 ⁻	166	13.9623				
18600000	00.	51.57	725	13.9983				
18700000	00.	51.53	325	14.0204				
18800000		51.48	347	14.0638				
18900000		51.46	623	14.0817				
<mark>19000000</mark>	00.	51.44	474	14.1179				
19100000	00.	51.38	365	14.1599				
The condu	uctivity (σ)	can be giv	en as:					
$\sigma = \omega \varepsilon_0$	e″= 2 π f	έ ε₀ e″						
where f =	= target f *	10 ⁶						
ɛ ₀ :	= 8.854 * 1	1 0 ⁻¹²						

5 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with **Body** simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E Field Probe EX3DV3 SN:3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and f 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm).
- Distance between probe sensors and phantom surface was set to 2.5 (below 3 G) mm.
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	850	<mark>9.71</mark>	<mark>6.38</mark>	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	<mark>39.8</mark>	<mark>20.8</mark>	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

5.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D835V2 SN:4d002

Date: March 21, 2006

Ambient Temperature = 23° C; Relative humidity = 30%

Measured by: Ninous Davoudi

Body	Body Simulating Liquid			Mrasured		Deviation[%]	Limit [%]
f(MHz)	Temp.[°C]	Depth [cm]	1 g	Normalized to 1 W	Target_1g	Deviation[%]	
			2.60	10.4	9.71	7.11	± 10
835	21	15	10g	Normalized to 1 W	Target_10g	Deviation[%]	Limit [%]
			1.71	6.84	6.38	7.21	± 10

System Validation Dipole: D1900V2 SN:5d043

Date: March 21, 2006

Ambient Temperature = 23° C; Relative humidity = 30%

Measured by: Ninous Davoudi

Body	Body Simulating Liquid			Mrasured		Target_1g Deviation[%]	
f(MHz)	Temp.[°C]	Depth [cm]	1 g	Normalized to 1 W	Target_1g	Deviation[%]	Limit [%]
			10.20	40.8	39.8	2.51	± 10
1900	21	15	10g	Normalized to 1 W	Target_10g	Deviation[%]	Limit [%]
		5.35	21.4	20.8	2.88	± 10	

6 SAR MEASUREMENT PROCEDURE

A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.5 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- c) Around this point, a volume of X=Y=Z=30 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:
 - (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
 - (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
 - (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
 - (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

DASY4 SAR MEASUREMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $5 \times 5 \times 7$ mm points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

7 PROCEDURES USED TO ESTABLISH TEST SIGNAL

The manufacturer supplied a special driving program (Hyper Terminal) by using the following commands to turn the transmitter on and change the channels and bands:

at!oem=176

ΟK

at!diag

OK

at!tx=1

OK

at!chan=XXXX,1 or 0

ΟK

at!allup=1

ΟK

"at!chan=" changes both the band and the channels. Channels the first # then the comma followed by the band 0= cellular and 1= PCS.

Conducted powers were measured prior to SAR measurement. CDMA Cell Band:

	Conducted Power				
Ch	f (MHz)	Avg Power			
1013	824.70	24.71			
384	836.52	24.51			
777	848.31	24.49			
CDMA PCS Bnad:					
		Conducted Power			
Ch	f (MHz)	Avg Power			
25	1851.25	24.55			
	1001.20	21.00			
600	1880.00	24.53			

8 SAR TEST SUMMARY

8.1 LAP HELD POSITION

Photos are confidential, please see a seperate file					
CDMA Cell B	and			1)	
- · · ·		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR	
Channel	f (MHz)	1g (mW/g)	(dBm)	1g (mW/g)	
1013	824.70	0.068	-0.208	0.071	
384	836.52	0.060	0.000	0.060	
777	848.31	0.058	0.000	0.058	
1013 ³⁾	824.70	0.067	0.000	0.067	
CDMA PCS E	Band				
		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR	
Channel	f (MHz)	1g (mW/g)	(dBm)	1g (mW/g)	
25	1851.25	0.180	-0.049	0.182	
600	1880.00	0.150	0.000	0.150	
1175	1908.75	0.147	0.000	0.147	
25 ³⁾	1851.25	0.187	0.000	0.187	
	Y4 system can b			R reported at the end of the means the SAR at the beginning of the section of the	

Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.
Collocation with Intel Golan WLAN module FCC ID: PD9LEN3945ABG

9 PHOTOS

Express MINI-PCI USB Wireless CDMA Modem Module

R1 Note 14"

Antenna Location

EUT Location

10 MEASUREMENT UNCERTAINTY

10.1 MEASUREMENT UNCERTAINTY FOR 300 MHZ - 3GHZ

	Tol. (±%)	Probe Dist.	Div.	Ci (1g)	Ci (10g)	Std. Unc.(±%)	
Uncertainty component						Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table 1. Tol tolerance in influence quaitity 2. N - Nomal							

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

11 TEST EQUIPMENT LIST

Name of Equipment	Manufacturer	Type/Model	Serial Number	Cal. Due date
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535	N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041	N/A
Probe Alignment Unit	SPEAG	LB (V2)	261	N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	US39173569	2/9/07
Electronic Probe kit	Hewlett Packard	85070C	N/A	N/A
E-Field Probe	SPEAG	EX3DV3	3531	7/21/06
Thermometer	ERTCO	639-1	8636	10/20/06
SAM Phantom (SAM1)	SPEAG	TP-1185	QD000P40CA	N/A
SAM Phantom (SAM2)	SPEAG	TP-1015	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	558	1/20/07
System Validation Dipole	SPEAG	D835V2	4d002	1/23/08
System Validation Dipole	SPEAG	D1900V2	5d043	1/29/08
Power Meter	Giga-tronics	8651A	8651404	12/27/06
Power Sensor	Giga-tronics	80701A	1834588	12/27/07
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A
Radio Communication Tester	Rohde & Schwarz	CMU 200	838114/032	12/17/06
Simulating Liquid	CCS	M835	N/A	Within 24 hrs of first test
Simulating Liquid	CCS	M1900	N/A	Within 24 hrs of first test

12 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	4
2	SAR Test Plots	10
3	Certificate of E-Field Probe - EX3DV3SN3531	10
4	Certificate of System Validation Dipole - D835V2 SN:4d002	9
5	Certificate of System Validation Dipole - D1900V2 SN:5d043	9

End of Report