

Communication Network Interface, Inc., Model No. CNI-803D FCC ID: N79CNI-803D

6.0 Out of Band Emissions at Antenna Terminals

FCC §2.1051

The power of emissions must be attenuated below the power of the unmodulated carrier (P) on any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth - at least $43 + 10 \log P \, dB$.

6.1 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show the out-of-band emissions if any up to 10th harmonic.

6.2 Test Equipment

HP 8566B Spectrum Analyzer, 100 Hz - 22 GHz HP 7470A Plotter

6.3 Test Results

Refer to the attached plots.

Plot Number	Description
6.1.1	Low Channel, 1 MHz –1 GHz
6.1.2	Low Channel, 1 GHz – 2.5 GHz
6.1.3	Low Channel, 2.5 GHz – 10 GHz
6.2.1	Middle Channel, 1 MHz –1 GHz
6.2.2	Middle Channel, 1 GHz – 2.5 GHz
6.2.3	Middle Channel, 2.5 GHz – 10 GHz
6.3.1	High Channel, 1 MHz –1 GHz
6.3.2	High Channel, 1 GHz – 2.5 GHz
6.3.3	High Channel, 2.5 GHz – 10 GHz

Results	Passed

Radiated E	missions T	est Data			11-31-				828	20-1		
Company:	CNI					Model#:	CNI-803D			Req	FCC 2.993	
EOT:						S/N or FCC #:	-	THE STATE OF THE S		Test Deat	3	meters
Project #:	J20033456		7			Test Date:	December 2	, 2000		те	200	Watt
Test Mode;	TX @ 806 MHz					Engineer:	Xi Ming Y.			Min. Attn.	45.01	eBc
	Antabra Used				Pre-Amp Used			Cable Usad			Transduo	er Used
Numbers	7	14	12		0	j e	13	21	<u> </u>	0	0	
Model:	EM LPA- 25	EMGG 3115	EA 3	100 104	None.	CDI_P1000	ACO/400	Can_M+4.	None	None	North	
requent	Rending	Datector		Amp	Ani. Pol	I Ant. Factor	7 PV5 1 W UU U	msert Loss	40000000000000000000000000000000000000	**********		
У		J-11-11-11	-,,	лф	ZIII. I OL	Autor actor	r re-Amp	maerc ED33	N#	ERP	Allh.	Ksargen
MH2	att(pV)	PAG	#	- #	H/V.	unit 4m)	qВ	JB	dBAIVIN	WW	dBa	:::::::::::::::::::::::::::::::::::::::
806.00 1612.00	105.1	Peak	7	D	V	21.8	0.0	2.0	128.9	1.42E+03	0.0	N/A
2418.00	59.9	Peak	14	0 B	v	26.6	0.0	2.1	77.7	1.08E-02	51.2	-5.2
3224.00	50.7	Peak	14	B	v	31.3	28.5	2.3	63.8	4.39E-04	65.1	-19.1
4030.00	54.2	Peak	14	8	н	34.5	27.9	2.5	56.6 63.7	8,36E-05 4,29E-04	72.3 65.2	-26.3 -19.2
4836.00	39.5	Peak	14	8	н —	35.4	28.1	3.2	50.0	1.B3E-05	78.9	-32.9
5642.00	31.0	Peak	14	-8	v	36.1	28.3	3.7	42.5	3.25E-06	86.4	-40.4
6448.00	36.7	Peak	14	8		36.8	28,0	3.9	49.4	1.59E-05	79,5	-33.5
7254.00	36.0	Peak	14	-8	v	38,0	28.0	4.3	50.3	1.96E-05	78.6	-32.6
8060.00	34.0	Peak	14	8	V	37.9	27.2	4.5	49.5	1.63E-05	79.4	-33.4
-				-							3655310	
Notes:	(a) O.C.F.:O	ther Carrect	ion Fa	ctor							10.1	
					Cable C +	Transducer,						
						Insert. Loss.	Sile					
	d				and the same of	trength (Harm	onics),	-				-
	e) Negativa	signs (-) in 1	Margin	column	signify lev	rels below the	limits.					
Radiated E	missions T	est Data								**	MICHEL .	
company:	IZSEII			1155		Model #:	CNI-803D			R eq	reactaring	- DAMMANONI

EUT:		***		V 15/16		S/N or FCC #:				Test Dist	3	metere
Project #:	J20033456					Test Date:	December 2	2000		тр	2.00	Watt
Test	Tx @ 813					Engineer:	Xi Ming Y.			Min. Altri	45.01	dBc
Mode:	MHz							-				
	Amenda				Pre-Amp			Cable Used			Transfer	064 3.55 0 cd
	Uest				Useti							
Numbers	7	14	12		0	8	13	21	a	0	σ	
Model	EM LFA	EMCO	EΝ	100	None	CDI_P1000	ACO/400	Gm_te+1	Neme	None	Nime	
	25	3176	31	04								
	1000											
requere	Restring	Detector	Aht.	Arrip.	Act Pol	Ant. Factor	Pre-Arep	insert Loss	Net	ERP	Atte.	Margin
¥	294	Bre 19										
MHZ	авсиу)	PIAIQ	#	#	H/V	dB(f/m)	胡野	45	deff vim	mW	dBc	₫₿
813.00	105.0	Peak	7	0	V	21.8	0.0	2.0	126.8	1.39E+03	0.0	N/A
1612.00	48,7	Peak	14	0	v_	26.6	0.0	2.0	77.4	1.01E-02	49.1	-3,1
2439.00	61.0	Peak	14	8	V	30.1	28.5	2.3	64.9	5.65E-04	61.6	-15.6
3252.00	47.0	Peak	14	-a	V	31,3	27.9	2.5	52,9	3.57E-05	73.6	-27.6
4065.00	53.0	Peak	14	8	н	34.5	27.9	2.9	62.5	3.25E-04	54.0	-18.0
4878.00	37.0	Peak	14	8	н	35,4	28.1	3.2	47.5	1.03E-05	79.0	-33,0
5691.00	31.0	Peak	14	8	V	36.7	28.3	3,7	42.5	3.25E-06	84.0	-38.0
6504.00	35.0	Peak	14	8	V	36,4	28.0	4.2	47.6	1.05E-05	78.9	-32,9
7317,00	36.0	Peak	14	8	V	38.0	28.0	4.3	50.3	1.96E-05	75.2	-30.2
8130.00	34.0	Peak	14	8		37.9	27.2	4.8	49.5	1.63E-05	77.0	-31.0
			-		E E	0.000	-	-				-
1000000					8			SE				
11.86	3					+		8				-
						L.						
Notes:	a) O.C.F.;Ot	her Correct	ion Fac	ctor								
	b) Insert. Lo	ss = Cable	A + Ca	ble B +	Cable C +	Transducer.		-				
	c) Net = Rea	ding + Ante	enna F	actor -	Pre-Amp +	Insert, Loss,						
	d) Atln = Fle	ald Strength	(Fund	ament	III. FIOLD S	trength (Harm	onicel					

Radiated E	missions T	st Data		-		tell.	-					
				Manual Pro-			11/201		- 875			
Company:	CNI					Model #:	[CNI-803D			Req	FCC 2.993	
EUT:			-			S/N or FCC				Test Dist	3	tricler
						#:						
Project #:	J20033456					Test Date:	December 2	2, 2000		TP	2.00	W#II
Test Mode:	Tx @ 821 MHz					Engineer:	XI Ming Y.			Min Attn	46.01	dBo
WOUG.	19172											L
X-2	Anterna		**********		Pre-Amp			Cable Used		***************************************	Tienedico	KK PILASA
	Uped				Used							
Number:	7	14	12		0	8	13	21	0	0	0	
Model:	EM LPA-	EMCO	EN	100	None	CEIL P1008	ACC/406	Gm_M+L	None	None	None	
	25	3115	3	04								
					******************************	***************************************		***********	kanananan	************	teresconductively.	*****
Frequenc	Reading	Detector	Ant.	Amp.	Ant. Pot.	Ant Factor	Рге-Апър	PISOTE LOSS	Net	ERP	Atta.	Marg
y MHZ	detuv)	P/AJO			НAV	de (146)	45	æ	dB(pV/m	нWV	c#Sc	dВ
					10.4	CESTATO	68	OD	GID(DONI)	Here	teet.	OE.
821.00	105.2	Peak	7	0	V	21.9	0.0	2.0	129,1	1.49E+03	0.0	NVA
1642,00	47.8	Peak	14	0	٧	26.6	0.0	2.1	76.5	8.17E-D3	52,6	-6.6
2463,00	60.0	Peak	14	8	V	30,1	28.5	2.3	63,9	4.49E-04	65.2	-19.2
3284.00	41.0	Peak	14	В	V	31.3	27.9	2.5	45.9	8.96E-06	B2.2	-36,2
4105.00	45.0	Peak	14	В	Н	34.5	27.9	2.9	54.5	5.1 6 E-05	74.6	-28.€
4926.00	32.0	Peak	14	В	н	35.4	28,1	3.2	42.5	3.25E-D6	B6.6	-40.€
5746,00	33.0	Peak	14	В	V	36.1	28.3	3.7	44.5	5.16E-06	84.6	-38.6
6568.00	34.5	Peak	14	8	V	36.4	28.0	4.2	47.1	9.38E-06	82,0	-36.0
7389.00 8210.00	35.0 34.0	Peak Peak	14	В	٧	36.0	28.0	4.3	49.3	1.56E-05	79.8	3.EE-
6210.00	34.0	Peak	14	8	V	37.9	27.2	4.8	49.5	1.63E-05	79.6	-33.6
	- 9	- 2			p.		100					3 7.1
Notes:	a) O.C.F.:OI	her Correct	ion Fac	etor		-				1111.000000		
					Cable C +	Transducer.						
	c) Net = Rea	ding + Ante	enna F	actor -	Pre-Amp +	Insert. Loss.			H10			
	d) Attn = Fir	ald Strength	/Fund	amenta	an - Field St	trength (Harm	onics).	-				

Date of Test: December 2-3, 2000

ITS Intertek Testing Services

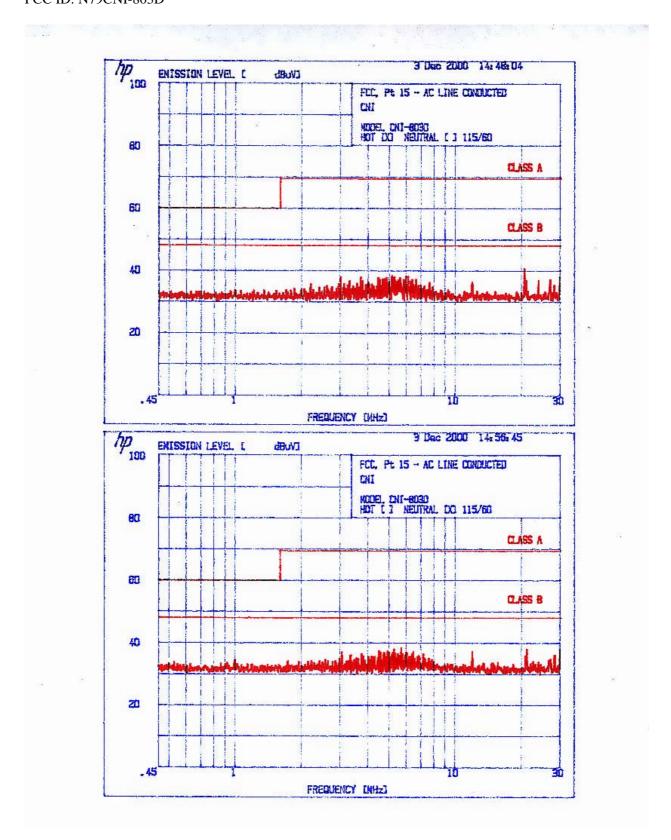
Radiated Emissions Test Data

Company:	CNI	Model#:	CNI-B03D	Statidatxi_ F	CC § 15.209
EUT:		S/N #:		Limits	3
Project#:	J2003345 6	Test Date:	December 3, 2000	Fest Distance	3 meters
Test Mode;	Tx mode	Engineer:	Xi-Ming Y.	Buty Retaxation	0 88

Aritenti	t Used		Pre-Ar	np Used		Catha Used			Transducer U	ad
Number: 14	7	9	5	В	Ö	21	0	0	6	*********
Model: ENGO	em lpa-	EMCO	CDI P950	COLP1000	Necone	Gin_M+L	Nare	Nane	None	
3115	25	3104								

Frequency	Reading	Retirctor	Ant.	Апр.	Art. Pos.	Ant. Factor	Рта-Апар	msert Loss	D.C.F.	Net	Limit @Jen	Margin
MHŁ	dB(pV)	PAID	"	#	HV	dB(16h)	üВ	35	병원	dB(pV//ii	dB(UV/m)	dB
										1		
133.30E+0	45.0	QP	9	5	V	12.8	19.1	8.0	0.0	39.5	43.5	-4.0
233,20E+0	45.0	Peak	1	5	V	11.3	19.6	1.0	0.0	37.7	46.0	-8.3
267.30E+0	45.0	QP	7	-5	V	14.8	19.6	1.1	0.0	41.3	46.0	-4.7
300,00E+0	41.4	Peak	7	5	H	15.4	18.1	1.2	0,0	39,9	46.0	-6.1
356.30E+0	41.4	QP	7	5	н	16.5	17.9	1.3	a.o	41.3	46.0	-4.7
368,60E+0	40.0	Peak	7	5	н	17.7	17.9	1.3	0.0	41,1	45.0	-4.9
491.50E+0	38.0	Peak	7	5	н	18.0	17.0	1,5	0.0	40.5	46.0	-5.5
E06.00E+0	26.0	Peak	7	5	н	22.5	14.3	2.0	0.0	36.2	46.0	-9.B
813,00E+0	24.8	Peak	7	5	н	22.6	14.3	2.0	0,0	35.1	46.0	-10.9
621,00E+0	24.1	Peak	1	5	Н	22.5	14.3	2.0	0.0	34.3	46.0	-11.7
1612.00E+0	28.0	Ave.	14	8	н	26.2	29.5	2.1	0.0	26.B	54.0	-27,2
1626.00E+0	31.0	Ave.	14	8	н	26:2	29.5	2,1	0.0	29.5	54.0	-24.2
1642'00E+0	35.0	Ave.	14	8	н	26.2	29.5	2.1	0.0	34.B	54.0	-19.2
2418.00E+0	28,0	Ave.	14	8	H	28.8	28.5	2.3	0.0	30.6	54.0	-23.4
2439.00E+0	29.0	Ave.	14	8	н	28.8	26.5	2.3	0.0	31.6	54.0	-22.4
2463.00E+0	30.0	Ave.	14	В	н	28.8	28.5	2.3	0.0	32.6	54.0	-21.4

a) D.C.F.:Distance Correction Factor
b) Insert. Loss (dB) = Cable A + Cable B + Cable C,
c) Net (dB) = Reading + Antanna Factor - Pre-amp + Insert. Loss. - Transducer Loss - Duty Relaxation (transmitter only).
d) Negative signs (-) in Margin column signify levels below the limits.
e) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.


Date of Test: December 2-3, 2000

- **8.0** Line Conducted Emissions, FCC § 15.107
- 8.1 Test Procedure
- 8.2 Test Results

See attached test data.

Results	Passed

Communication Network Interface, Inc., Model No. CNI-803D FCC ID: N79CNI-803D

9.0 Frequency Stability vs Temperature, FCC § 2.995(a)

9.1 Test Procedure

The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feedthrough attenuators. The EUT was placed inside the temperature chamber. The DC leads, RF output cable, exited the chamber through an opening

After the temperature stabilized for approximately 20 minutes, the frequency of the output signal was recorded from the counter.

9.2 Test Equipment

Temperature Chamber, -50C to +100C Hewlett Packard 5383A Frequency Counter Tektronix 2784 Spectrum Analyzer Goldstar DC Power Supply, GR303

9.3 Test Results

Refer to the test data below.

Frequency 8	Frequency 813.00 MHz						
Temperature, C	Difference (Hz)						
+60	895						
+50	325						
+40	-265						
+30	-120						
+20	-175						
+10	290						
0	450						
-10	520						
-20	530						
-30	560						

Results Passed

Communication Network Interface, Inc., Model No. CNI-803D FCC ID: N79CNI-803D

10.0 Frequency Stability vs Voltage, FCC §2.995(d)(2)

10.1 Test Procedure

An external variable DC power supply was connected to the EUT. The frequency of the transmitter was measured for 115% of the DC nominal value and for 85% of the nominal value.

10.2 Test Equipment

Hewlett Packard 5383A Frequency Counter Tektronix 2784 Spectrum Analyzer Goldstar DC Power Supply, GR303

10.3 Test Results

Voltag	ge, VDC	Difference (Hz)			
85%	4.25	-175			
100%	53.0	-177			
115%	5.75	-179			

Paculte	Doggod
Results	1 asseu

Date of Test: December 2-3, 2000

11.0 Transient Frequency Behavior, FCC §90.214

11.1 Test Procedure

Test was performed according the TIA/EIA/IS-102.CAAA, Section 2.2.18. The transmitter was continuously transmitting a modulated signal (FSK, 2400 bits/sec.). The generator was generating FM signal (1 kHz tone, 12.5 kHz deviation). Several plots were made on the FM demodulator output with the EUT turned ON and OFF.

11.2 Test Results

Results	Not Applicable
---------	----------------

Communication Network Interface, Inc., Model No. CNI-803D FCC ID: N79CNI-803D

12.0 RF Exposure

12.1 Maximum Permissible Exposure Limits, FCC 1.1310

The following exposure limits apply to equipment use in Uncontrolled Environments:

Maximum Permissible Exposure for Uncontrolled Environments

Frequency Range (MHZ)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) E-field, H-field (mW/cm²)	Averaging Time (Minutes)
0.3 - 1.34	614	1.63	*100	30
1.34 - 30	824/f	2.19/f	*180/f ²	30
30 - 300	27.5	0.073	0.2	30
300 - 1500	-	-	f/1500	30
1500 - 100,000 -		-	1.0	30

^{* =} Plane-wave equivalent power density.

Dashes "-" are used to indicate that there is no limit under the guideline.

12.2 Test Procedure

The test was performed at 815 MHz. The antenna was placed on a 0.8m wooden table on open site. The antenna was connected to the EUT. EUT output power was measured at RF output connector. EUT has 0.47W ERP power output.

The sensor of the field strength meter was moved around the antenna to obtain the maximum reading of the field strength meter. The measurements were performed at the distance 0.1m to 1m from the antenna.

12.3 Field Strength Calculations

The field strength was measured directly from the meter. The power density (PD in $W.m^2$) was calculated using the following formula:

$$Pd = E^2/120$$

Where E is Field Strength in V/m

Communication Network Interface, Inc., Model No. CNI-803D FCC ID: N79CNI-803D

12.4 Test Results

Module Used With Antenna #1				
Test Distance	Maximum Field	Calculated Power	FCC Limit for Time-	
m	Strength Reading	Density	Averaging Interval of 30 min.	
	V/m	MW/cm ²	mW/cm ²	
0.1	55	0.8	0.54	
0.2	26	0.18	0.54	
0.3	18	0.086	0.54	
0.5	10	0.027	0.54	
1.0	5.5	0.008	0.54	

As can be seen from the Table, Power Density at 0.2 m distance from the antenna is well below the limit.

Communication Network Interface, Inc., Model No. CNI-803D

FCC ID: N79CNI-803D

13.0 List of Test Equipment

Equipment	Manufacturer	Model	Serial #	Cal. Int.	Cal. Due	Used
Double-ridged Horn Antenna	EMCO	3115	9107-3712	12	6/25/01	X
Horn Antenna	EMCO	3160-9	N/A	#	#	X
Pre-amplifier	CDI	P1000	N/A	12	11/14/00	X
Pre-amplifier	Avantek	AFT18855	8723H705	12	11/14/00	X
Pre-amplifier	CTT	ACO/400	47526	12	11/14/00	X
Spectrum Analyzer w/8650 QP Adapter	Hewlett Packard	HP 8566B	2416A00317 2521A01021	6	2/03/01	X
Spectrum Analyzer	Tektronix	2784	B3020108	12	8/4/01	X
Field Strength Meter	Holaday	HI-3004EX				
Peak Power Meter	Hewlett Packard	8900D	3607U00673	12	7/31/01	X
Peak Power Sensor	Hewlett Packard	84811A	3318A05091	12	12/7/99	X
Power Meter	Hewlett Packard	EPM-441A	US37481023	12	5/17/01	X

[#] Calibration is not required

Communication Network Interface, Inc., Model No. CNI-803D

FCC ID: N79CNI-803D

14.0 Document History

Revision/Job Number	Date	Change
1.0 / J20033456	12/6/00	Original document