

 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China

 Telephone:
 +86 (0) 21 6191 5666

 Fax:
 +86 (0) 21 6191 5678

 ee.shanghai@sgs.com

Report No.: SHEM160800539502 Page: 1 of 52

1 Cover Page

RF TEST REPORT

Test Result:	Pass*		
Date of Issue:	2018-03-15		
Date of Test:	2017-12-29 to 2018-03-10		
Date of Receipt:	2015-10-10		
Standards:	FCC PART 15 Subpart C RSS-247 Issue 2 RSS-Gen Issue 4		
Model No.(EUT):	PRX-CTRL		
Product Name:	Proximity Controller		
Equipment Under Test NOTE: The following sa	t (EUT): ample(s) was/were submitted and identified by the client as		
IC:	7449B-PRXCTRL		
FCC ID:	N73-PRX-CTRL		
Applicant:	MINE SITE TECHNOLOGIES PTY LTD		
Application No.:	SHEM1608005395CR		

*In the configuration tested, the EUT detailed in this report complied with the standards specified above.

SGS-CSTC (Shanghai) Co., Ltd. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the elient to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SHEM160800539502 Page: 2 of 52

2 Version

Revision Record					
Version	Chapter	Date	Modifier	Remark	
00	/	2018-03-15	/	Original	

Authorized for issue by:		
Engineer	Vincent Zhu Print Name	Vincent Zhu
Reviewer	Parlam Zhan Print Name	Parlam Zhan

Report No.: SHEM160800539502 Page: 3 of 52

3 Test Summary

Test Item	FCC Requirement	IC Requirement	Test method	Result
Antenna Requirement	FCC Part 15, Subpart C Section 15.203/15.247 (c)	RSS-Gen Section8.1.3		PASS
AC Power Line Conducted Emission	FCC Part 15, Subpart C Section 15.207	RSS-Gen Clause 8.8	ANSI C63.10 (2013) Section 6.2	N/A
Minimum 6dB Bandwidth	FCC Part 15, Subpart C Section 15.247 (a)(2)	RSS-247 Clause 5.2(1)	ANSI C63.10 (2013) Section 11.8.1	PASS
Conducted Peak Output Power	FCC Part 15, Subpart C Section 15.247 (b)(3)	RSS-247 Clause 5.4(4)	ANSI C63.10 (2013) Section 11.9.1.2	PASS
Power Spectrum Density	FCC Part 15, Subpart C Section 15.247 (e)	RSS-247 Clause 5.2(2)	ANSI C63.10 (2013) Section 11.10.2	PASS
RF Conducted Spurious Emissions and Band-edge	FCC Part 15, Subpart C Section 15.247(d)	RSS-247 Clause 5.5	ANSI C63.10 (2013) Section 11.11&11.13.3.2	PASS
Radiated Spurious Emissions and Band-edge	FCC Part 15, Subpart C Section 15.209&15.205	RSS-247 Clause 5.5	ANSI C63.10 (2013) Section 6.4&6.5&6.6&6.10	PASS
99% Occupied bandwidth		RSS-Gen Clause 6.6	RSS-Gen Issue 4 section 6.6	PASS

N/A: This EUT is powered by battery only; therefore the test on mains terminals is not applicable.

Report No.: SHEM160800539502 Page: 4 of 52

4 Contents

		Page
1	COVER PAGE	
2	2 VERSION	2
3		
4	4 CONTENTS	4
5	5 GENERAL INFORMATION	5
	5.1 Client Information	
	5.2 GENERAL DESCRIPTION OF E.U.T.	
	5.3 TECHNICAL SPECIFICATIONS	
	5.4 Test Mode	
	5.5 TEST CHANNEL	
	5.6 DESCRIPTION OF SUPPORT UNITS	
	5.7 TEST LOCATION	
	5.8 TEST FACILITY	
	5.9 Measurement Uncertainty	7
6	6 EQUIPMENTS USED DURING TEST	8
7	7 TEST RESULTS	9
	7.1 E.U.T. TEST CONDITIONS	9
	7.2 ANTENNA REQUIREMENT	
	7.3 CONDUCTED EMISSIONS ON MAINS TERMINALS	
	7.4 6DB OCCUPIED BANDWIDTH	
	7.5 CONDUCTED PEAK OUTPUT POWER	
	7.6 PEAK POWER SPECTRAL DENSITY	
	7.7 CONDUCTED SPURIOUS EMISSIONS AND BAND-EDGE	
	7.7.1 Conducted spurious emission	
	7.7.2 Conducted Band-edge	
	7.8 RADIATED SPURIOUS EMISSIONS AND BAND-EDGE	
	7.8.1 Radiated Spurious Emissions	
	7.8.2 Radiated Band edge	
	7.9 99% Occupied Bandwidth	
8	8 TEST SETUP PHOTOGRAPHS	
9	9 EUT CONSTRUCTIONAL DETAILS	

Report No.: SHEM160800539502 Page: 5 of 52

5 General Information

5.1 Client Information

Applicant:	MINE SITE TECHNOLOGIES PTY LTD
Address of Applicant:	Level 5, 113 Wicks Rd., North Ryde NSW 2113

5.2 General Description of E.U.T.

Product Description:	Mobile Product with 2.4 GHz band WIFI function
Power Supply:	DC 24V by battery

5.3 Technical Specifications

Operation Frequency:	802.11 b/g: 2412-2462MHz
Modulation Technique:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
Data Rate:	802.11b: 1/2/5.5/11Mbps, 802.11g: 6/9/12/18/36/48/54Mbps
Number of Channel:	802.11 b/g: 11
Antenna Type:	Ceramic antenna
Antenna Gain:	3.2dBi

5.4 Test Mode

Test Mode	Description of Test Mode
Engineering mode	Using test software to control EUT work in continuous transmitter and mode.

Report No.: SHEM160800539502 Page: 6 of 52

5.5 Test Channel

	802.11 b/g/n20(HT20)				80	2.11 n40(HT4	40)	
			Channel Frequency Data rate		9	Channel Free	Frequency	Data rate
	Charmer	Channel Frequency b g n(HT20)		n(HT20)	Frequency			
lowest channel	CH01	2412MHz	11Mbps	54Mbps	/	/	/	/
Middle channel	CH06	2437MHz	11Mbps	54Mbps	/	/	/	/
Highest channel	CH11	2462MHz	11Mbps	54Mbps	/	/	/	/

Remark: Preliminary tests were performed in all tests in different data rata and antenna configurations at lowest channel, the data rates of worse case as above were chosen for final test.

5.6 Description of Support Units

The EUT has been tested with support equipments as below.

Description	ption Manufacturer Model No.		Supplied by
Proximity Detection System Controller	MINE SITE TECHNOLOGIES PTY LTD	Proximity Detection System Controller	Client
Proximity Detection System Transmitter	MINE SITE TECHNOLOGIES PTY LTD	Proximity Detection System Transmitter	Client

5.7 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

5.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• NVLAP (Certificate No. 201034-0)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program(NVLAP). Certificate No. 201034-0.

• FCC – Designation Number: CN5033

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

Designation Number: CN5033. Test Firm Registration Number: 479755.

Industry Canada (IC) – IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A-1.

• VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-3868, C-4336, T-12221, G-10830 respectively.

No.	Parameter	Measurement Uncertainty
1	Radio Frequency	< ±1 x 10 ⁻⁵
2	Total RF power, conducted	< ±1.5 dB
3	RF power density, conducted	< ±3 dB
4	Spurious emissions, conducted	< ±3 dB
5	All emissions, radiated	< ±6 dB (Below 1GHz) < ±6 dB (Above 1GHz)
6	Temperature	< ±1°C
7	Humidity	< ±5 %
8	DC and low frequency voltages	< ±3 %

5.9 Measurement Uncertainty

Report No.: SHEM160800539502 Page: 8 of 52

6 Equipments Used during Test

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Conducted Emission at AC			,, , ,		
EMI test receiver	R&S	ESR7	SHEM162-1	2017-12-20	2018-12-19
LISN	Schwarzbeck	NSLK8127	SHEM061-1	2017-12-20	2018-12-19
LISN	EMCO	3816/2	SHEM019-1	2017-12-20	2018-12-19
Pulse limiter	R&S	ESH3-Z2	SHEM029-1	2017-12-20	2018-12-19
CE test Cable	/	CE01	/	2017-12-26	2018-12-25
Conducted Test	,	0201	,	2011 12 20	2010 12 20
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Spectrum Analyzer	Agilent	N9020A	SHEM181-1	2017-09-26	2018-09-25
Power meter	R&S	NRP	SHEM057-1	2017-12-26	2018-12-25
Power Sensor	R&S	NRP-Z22	SHEM136-1	2017-07-22	2018-07-21
Power Sensor	R&S	NRP-Z91	SHEM057-2	2017-12-26	2018-12-25
Signal Generator	R&S	SMR40	SHEM058-1	2017-07-03	2018-07-02
Signal Generator	Agilent	N5182A	SHEM182-1	2017-09-26	2018-09-25
Communication Tester	R&S	CMW270	SHEM183-1	2017-10-22	2018-10-21
Switcher	Tonscend	JS0806	SHEM184-1	2017-09-26	2018-09-25
Splitter	Anritsu	MA1612A	SHEM185-1	/	/
Coupler	e-meca	803-S-1	SHEM186-1	/	/
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2017-09-26	2018-09-25
AC Power Stabilizer	WOCEN	6100	SHEM045-1	2017-12-26	2018-12-25
DC Power Supply	QJE	QJ30003SII	SHEM046-1	2017-12-26	2018-12-25
Conducted test Cable	/	RF01, RF 02	/	2017-12-26	2018-12-25
Radiated Test			ł		•
EMI test receiver	R&S	ESU40	SHEM051-1	2017-12-20	2018-12-19
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2017-04-10	2020-04-09
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2017-02-28	2020-02-27
Antenna (25MHz-3GHz)	Schwarzbeck	HL562	SHEM010-1	2017-02-28	2020-02-27
Horn Antenna (1-8GHz)	Schwarzbeck	HF906	SHEM009-1	2017-10-24	2020-10-23
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2017-01-14	2020-01-13
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2017-12-03	2020-12-02
Pre-amplifier (9KHz-2GHz)	CLAVIIO	BDLNA-0001-412010	SHEM164-1	2017-08-22	2018-08-21
Pre-amplifier (1-18GHz)	CLAVIIO	BDLNA-0118-352810	SHEM050-2	2017-08-22	2018-08-21
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2017-12-20	2018-12-19
Band filter	LORCH	9BRX-875/X150-SR	SHEM156-1	/	/
Band filter	LORCH	13BRX-1950/X500-SR	SHEM083-2	/	/
Band filter	LORCH	5BRX-2400/X200-SR	SHEM155-1	/	/
Band filter	LORCH	5BRX-5500/X1000-SR	SHEM157-2	/	/
High pass Filter	Wainwright	WHK3.0/18G-100SS	SHEM157-1	/	/
High pass Filter	Wainwright	WHKS1700-3SS	SHEM157-3	/	/
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2017-07-22	2020-07-21
RE test Cable	/	RE01, RE02, RE06	/	2017-12-26	2018-12-25

Report No.: SHEM160800539502 Page: 9 of 52

7 Test Results

7.1 E.U.T. test conditions

15.31(e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

Operating	Temperature:	20.0 -25.0 °C
Environment:	Humidity:	35-75 % RH
	Atmospheric Pressure:	99.2 -102 kPa

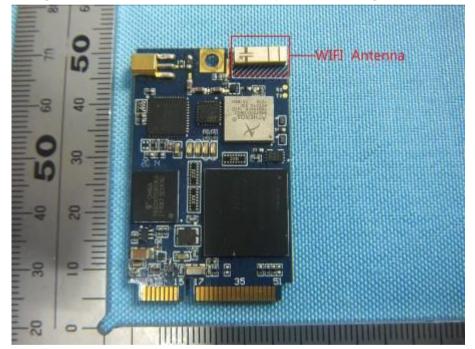
Test frequencies: According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. if required. reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over which	Number of	Location in the range of
device operates	frequencies	operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top. 1 near middle and 1 near bottom

Pursuant to Part 15.31(c) For swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported.

Report No.: SHEM160800539502 Page: 10 of 52

7.2 Antenna Requirement


Standard requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

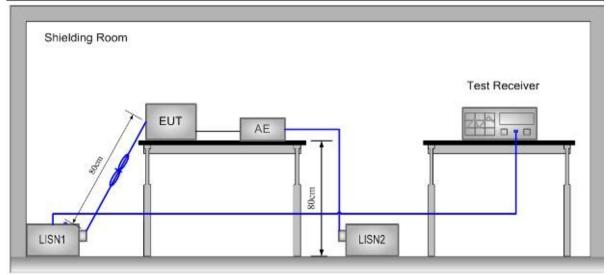
EUT Antenna:

The antenna is integral antenna and no consideration of replacement. The gain is less than 3.2 dBi.

Report No.: SHEM160800539502 Page: 11 of 52

7.3 Conducted Emissions on Mains Terminals

Frequency Range: 150 KHz to 30 MHz


Limit:

Frequency range	Class B Limits: dB (µV)		
MHz	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

Note1: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.

Note2: The lower limit is applicable at the transition frequency.

Test Setup:

Test Procedure:

- 1) The mains terminal disturbance voltage was measured with the EUT in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN, which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN and the EUT. The mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m. All other units of the EUT and associated equipment were at least 0.8 m from the LISN.

Report No.: SHEM160800539502 Page: 12 of 52

Remark: Pre-scan was performed with peak detected on all ports, Quasi-peak & average measurements were performed at the frequencies at which maximum peak emission level were detected. Pretest under all modes; choose the worst case mode (802.11b in Middle channel) record on the report. Please see the attached Quasi-peak and Average test results.

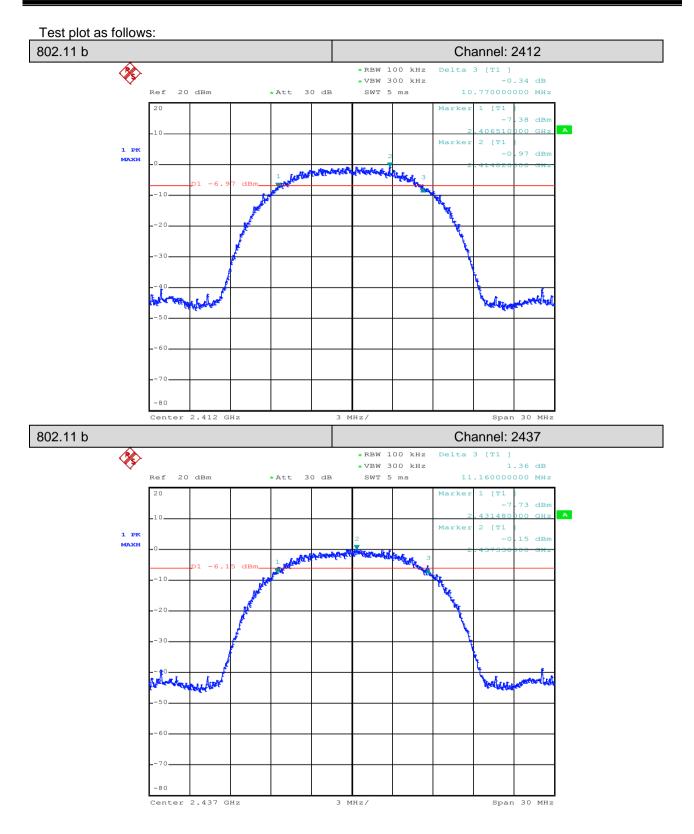
Test Result: N/A

Test Data:

This EUT is powered by battery only; therefore the test on mains terminals is not applicable.

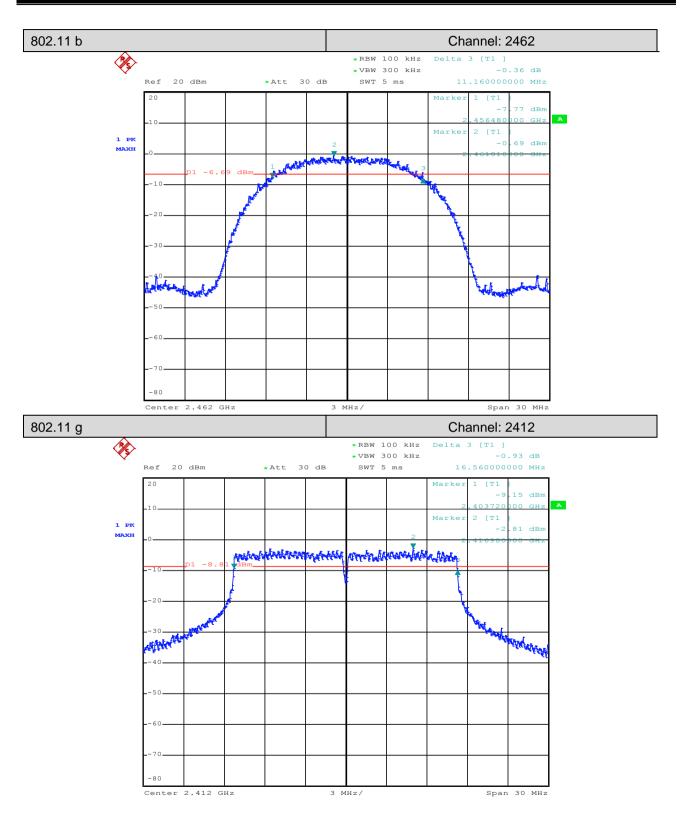
Report No.: SHEM160800539502 Page: 13 of 52

7.4 6dB Occupied Bandwidth

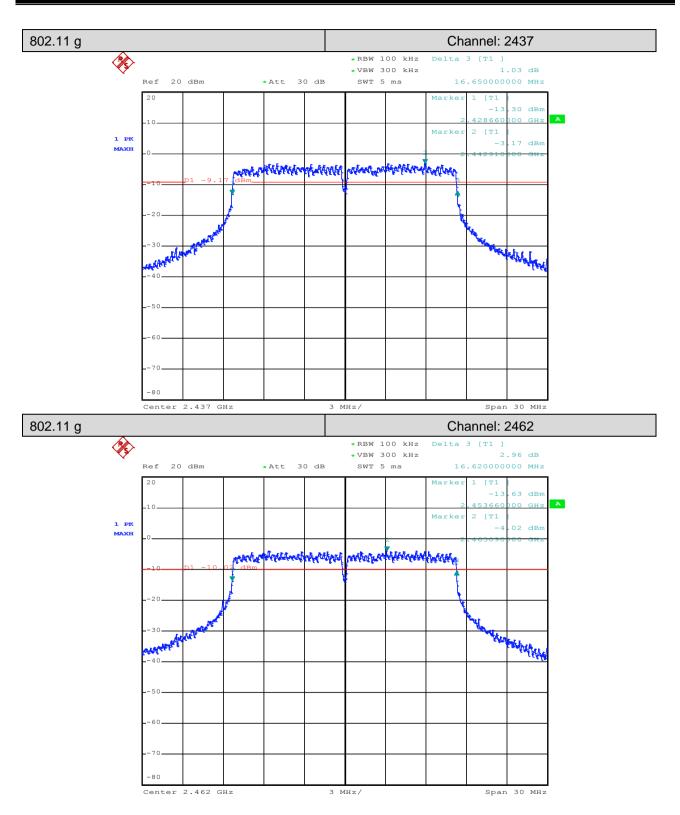

Test Configuration:		connected		1
i con configuration.	EUT (Antenna Port	cable	Spectrum Analyzer	
Test Procedure:	1) Place the EUT on t	the table and se	et it in transmitting mode.	
	2) Remove the anten	na from the EU	T and then connect a low	v loss RF cable
	from the antenna p	ort to the spect	rum analyzer.	
	3) Set the spectrum a	nalyzer as RB	W=100KHz, VBW≥3* RB'	W, Detector=Peak,
	Trace mode= Max	hold, Sweep=A	uto couple.	
	4) Mark the peak freq	uency and –6d	B (upper and lower) freq	uency.
	5) Repeat above proc	edures until all	frequency measured wa	s complete.
Limit:	≥ 500 kHz			
Test Result:	Pass			

Test Data:

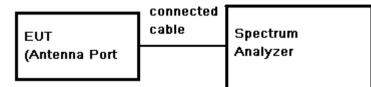
Test Mode	Test Frequency (MHz)	6dB Bandwidth (MHz)	Limit (KHz)	Result
	2412	10.77		Pass
802.11b	2437	11.16		Pass
	2462	11.16		Pass
	2412	16.56	500	Pass
802.11g	2437	16.65		Pass
	2462	16.62		Pass



Report No.: SHEM160800539502 Page: 14 of 52



Report No.: SHEM160800539502 Page: 15 of 52


Report No.: SHEM160800539502 Page: 16 of 52

Report No.: SHEM160800539502 Page: 17 of 52

7.5 Conducted Peak Output Power

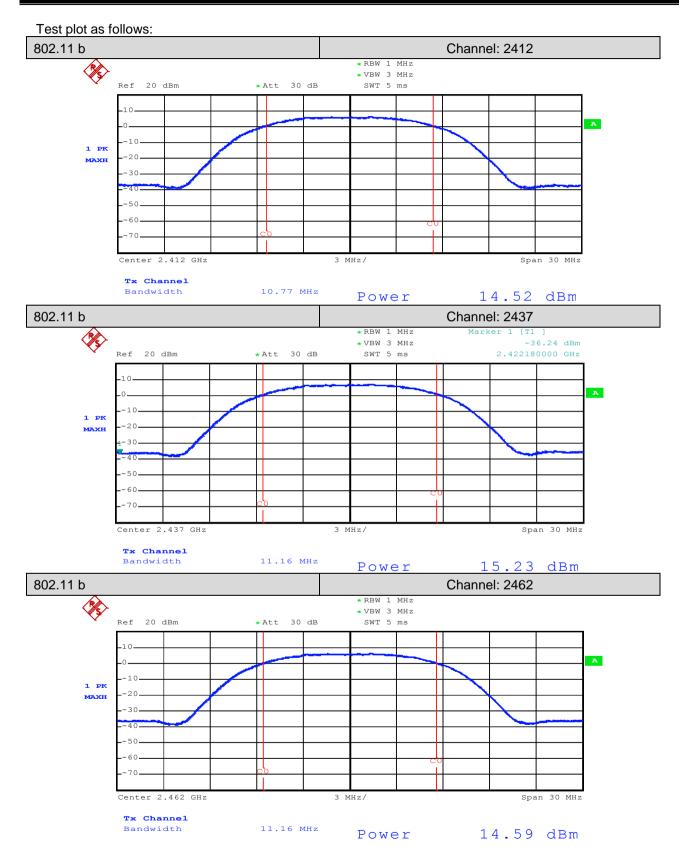
Test Procedure:

Test Configuration:

1) Place the EUT on the table and set it in transmitting mode.

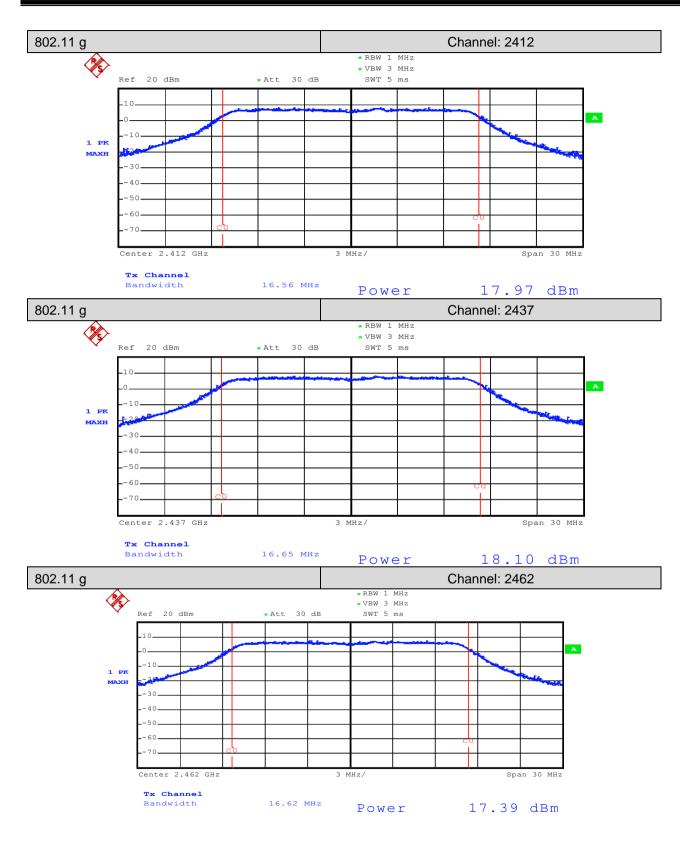
- 2) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum.
- Set the spectrum analyzer as RBW=1MHz, VBW≥3* RBW, Detector=Peak, Span≥1.5 × DTS bandwidth, Trace mode= Max hold, Sweep=Auto couple
- 4) Allow trace to fully stabilize.
- 5) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges
- 6) Record the max. Power channel reading.
- 7) Repeat above procedures until all the frequency measured were complete.

Test Limit:30dBmTest Result:Pass


Test Data:

Test mode	Test Channel	Reading Power (dBm)	Output Power (dBm)	Limit (dBm)	Result
	2412	14.52	15.02		Pass
802.11b	2437	15.23	15.73		Pass
	2462	14.59	15.09		Pass
	2412	17.97	18.47	30	Pass
802.11g	2437	18.10	18.60		Pass
	2462	17.39	17.89		Pass

Remark: 1) Output Peak Power = Reading Peak Power + Cable loss 2) Cable loss=0.5dB



Report No.: SHEM160800539502 Page: 18 of 52

Report No.: SHEM160800539502 Page: 19 of 52

Test

Test

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM160800539502 Page: 20 of 52

7.6 Peak Power Spectral Density

	connected 1		
EUT (Antenna Port	cable	Spectrum Analyzer	
			ow RF cable from
= 3 kHz VBW = 10) kHz. Span= 1	.5 times the DTS bandwi	idth, Sweep =
 Use the peak man within the RBW. 	rker function to	determine the maximun	n amplitude level
	 (Antenna Port) Remove the anter the antenna port te 2) Set the spectrum = 3 kHz VBW = 10 auto; Detector = F 3) Use the peak ma) Remove the antenna from the Electron the antenna port to the spectrum 2) Set the spectrum analyzer: Centrer = 3 kHz VBW = 10 kHz. Span= 1 auto; Detector = Peak; Trace model 3) Use the peak marker function to the spectrum of the spectrum and the spectrum analyzer. 	EUT (Antenna Port cable Spectrum Analyzer) Remove the antenna from the EUT and then connect a lot the antenna port to the spectrum. 2) Set the spectrum analyzer: Center Frequency= Channel F = 3 kHz VBW = 10 kHz. Span= 1.5 times the DTS bandwin auto; Detector = Peak; Trace mode=max hold, Trace=Ma 3) Use the peak marker function to determine the maximum

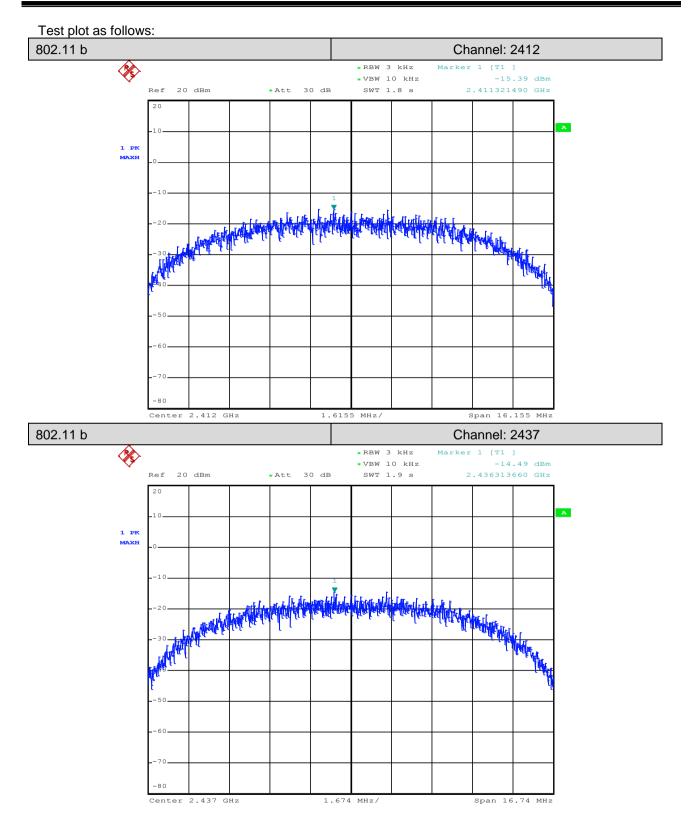
- 4) Record the marker level for the particular mode.
- 5) Repeat these steps for other channel and modes.

Test Limit: 8dBm/3kHz

Pass

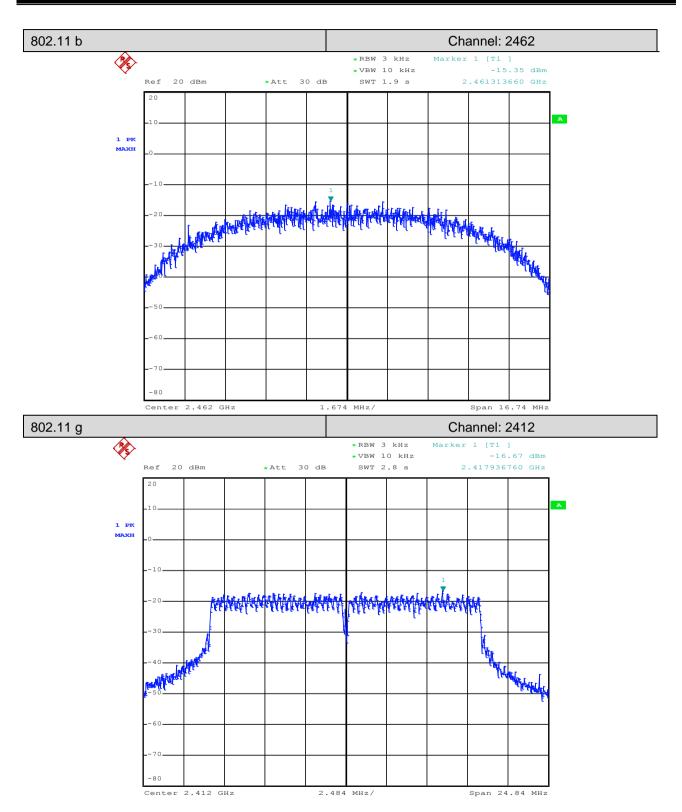
Test Result:

Test Data:

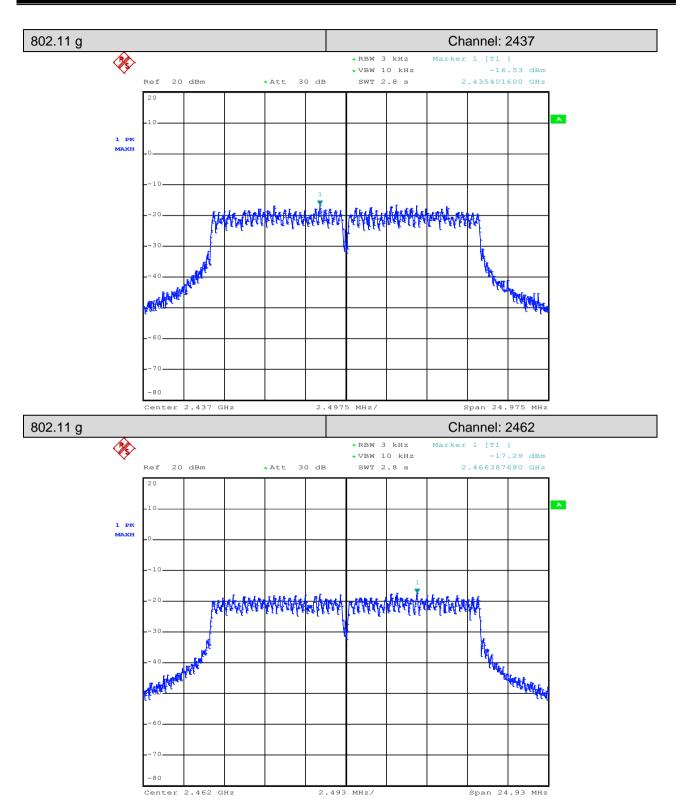

Test mode	Test Channel	Reading Value (dBm/3KHz)	PSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
	2412	-15.39	-14.89		Pass
802.11 b	2437	-14.49	-13.99		Pass
	2462	-15.35	-14.85		Pass
	2412	-16.67	-16.17	8	Pass
802.11 g	2437	-16.53	-16.03		Pass
	2462	-17.29	-16.79		Pass

Remark: 1) Output Peak Power = Reading Peak Power + Cable loss

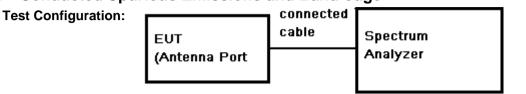
2) Cable loss=0.5dB



Report No.: SHEM160800539502 Page: 21 of 52



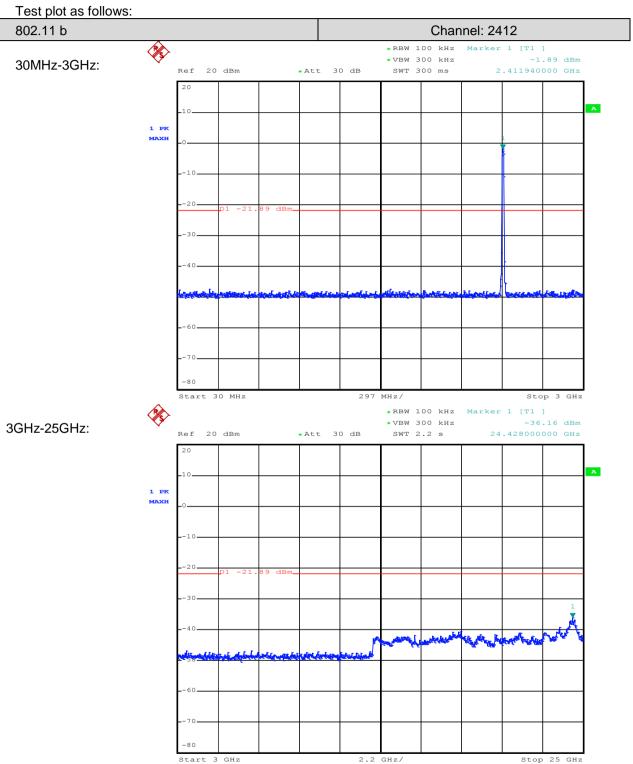
Report No.: SHEM160800539502 Page: 22 of 52


Report No.: SHEM160800539502 Page: 23 of 52

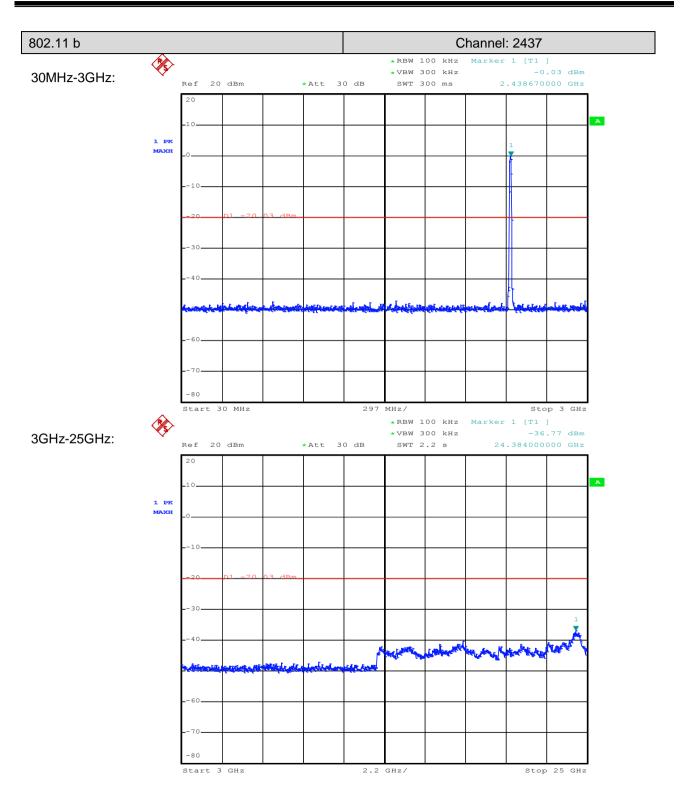
Report No.: SHEM160800539502 Page: 24 of 52

7.7 Conducted Spurious Emissions and Band-edge

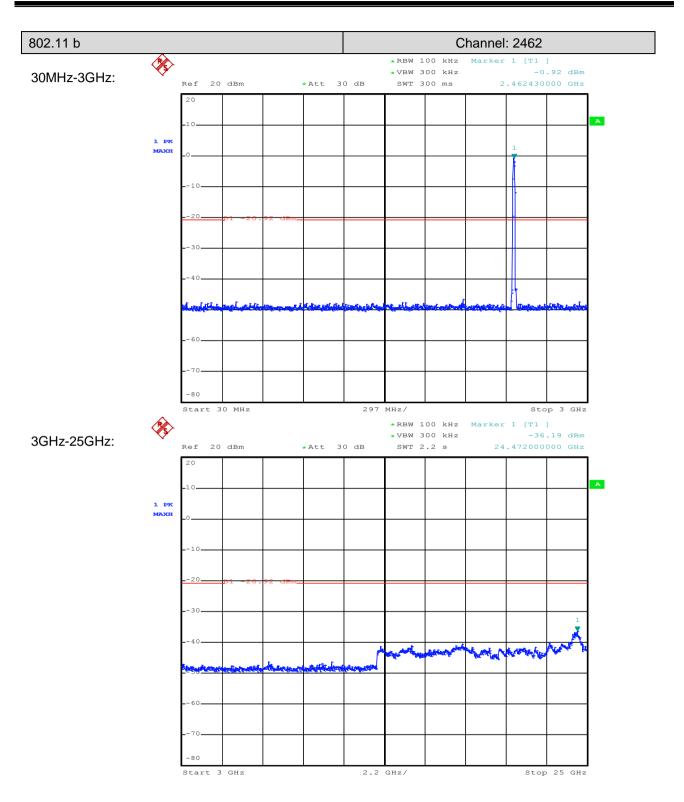
Test Procedure:	1) Remove the antenna from the EUT and then connect a low RF cable from
	the antenna port to the spectrum.


- Set the spectrum analyzer: RBW = 100KHz. VBW = 300KHz.
 Sweep = auto; Detector Function = Peak (Max. hold).
- Limit: (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the Highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

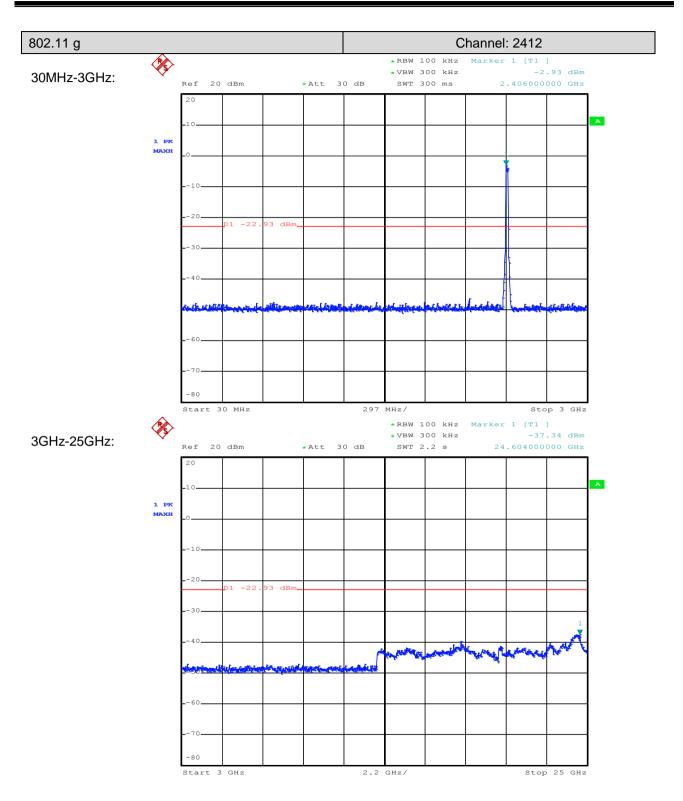
Test Result: Pass


Report No.: SHEM160800539502 Page: 25 of 52

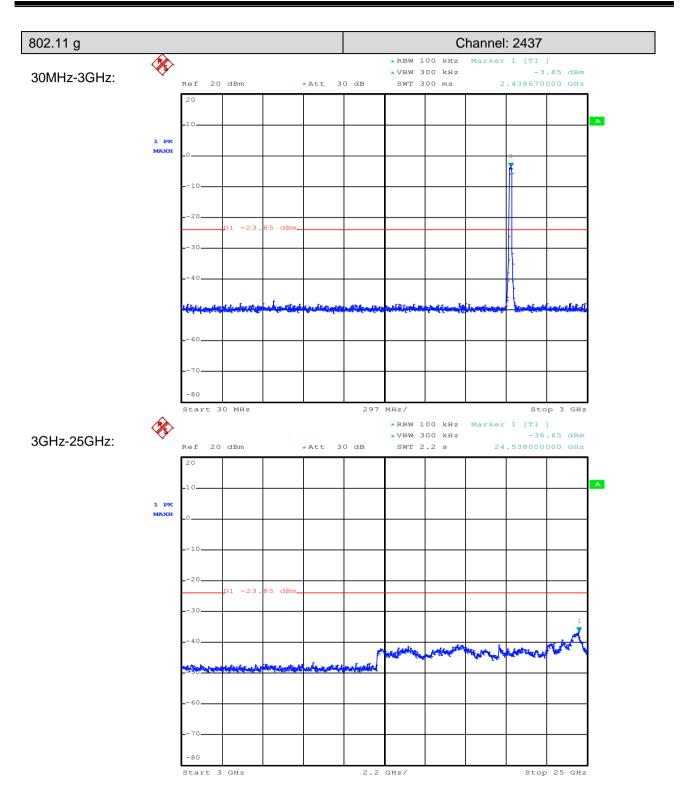
7.7.1 Conducted spurious emission



Report No.: SHEM160800539502 Page: 26 of 52

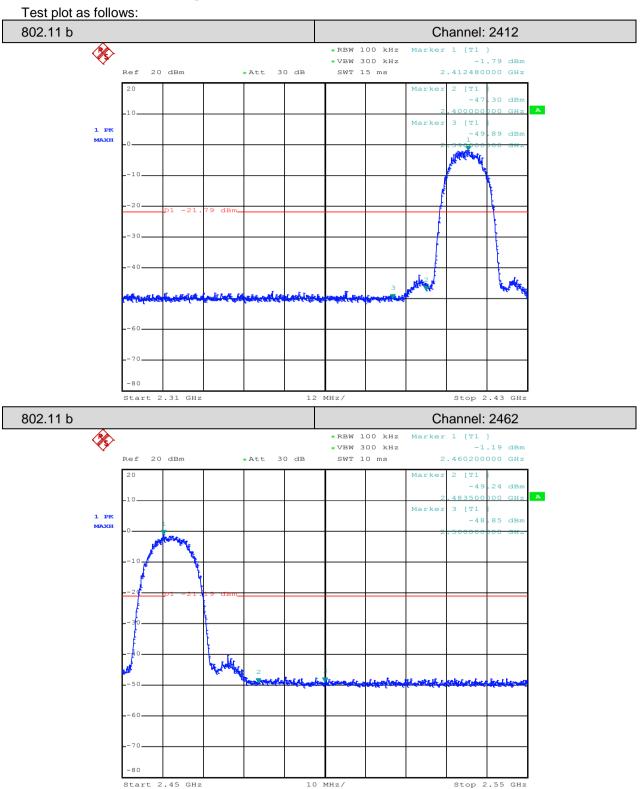


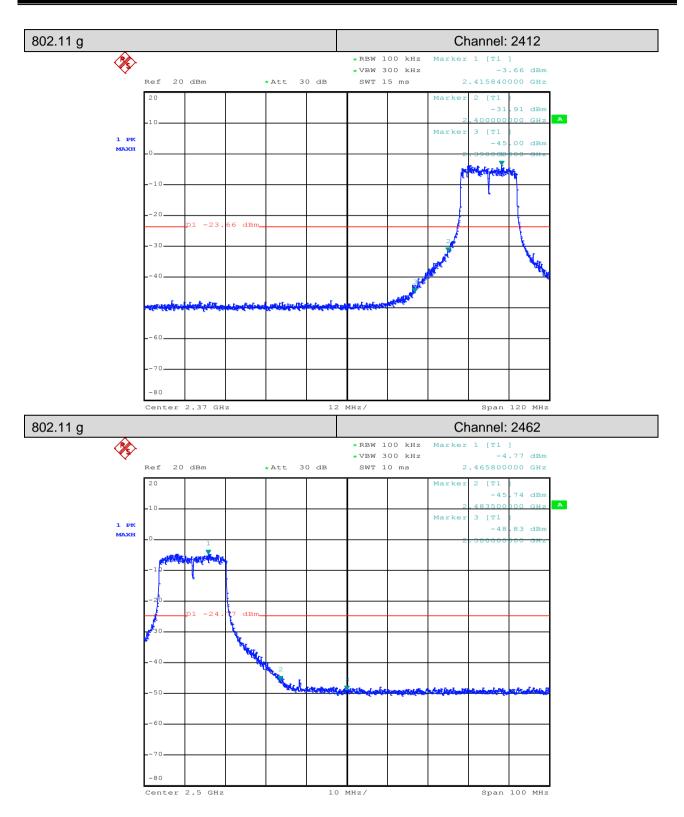
Report No.: SHEM160800539502 Page: 27 of 52



Report No.: SHEM160800539502 Page: 28 of 52

Report No.: SHEM160800539502 Page: 29 of 52


Report No.: SHEM160800539502 Page: 30 of 52


Report No.: SHEM160800539502 Page: 31 of 52

7.7.2 Conducted Band-edge

Report No.: SHEM160800539502 Page: 32 of 52

Report No.: SHEM160800539502 Page: 33 of 52

7.8 Radiated Spurious Emissions and Band-edge

Frequency Range: 9KHz to 25GHz

Test site/setup:

Measurement Distance: 3m

Test instrumentation set-up:					
Frequency Range	Detector	RBW	VBW		
0.009MHz-0.090MHz	Peak	10kHz	30kHz		
0.009MHz-0.090MHz	Average	10kHz	30kHz		
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz		
0.110MHz-0.490MHz	Peak	10kHz	30kHz		
0.110MHz-0.490MHz	Average	10kHz	30kHz		
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz		
30MHz-1GHz	Quasi-peak	100kHz	300kHz		
	Peak	RBW=1MHz	VBW≥RBW		
Above 1GHz	Average		VBW=10Hz		
Sweep=Auto					

15.209 Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)		
0.009MHz-0.490MHz	2400/F(KHz)	128.5 ~ 93.8		
0.490MHz-1.705MHz	24000/F(KHz)	73.8 ~63.0		
1.705MHz-30MHz	30	69.5		
30MHz-88MHz	100	40.0 43.5		
88MHz-216MHz	150			
216MHz-960MHz	200	46.0		
960MHz-1GHz	500	54.0		
Above 1GHz	500	54.0		

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: SHEM160800539502 Page: 34 of 52

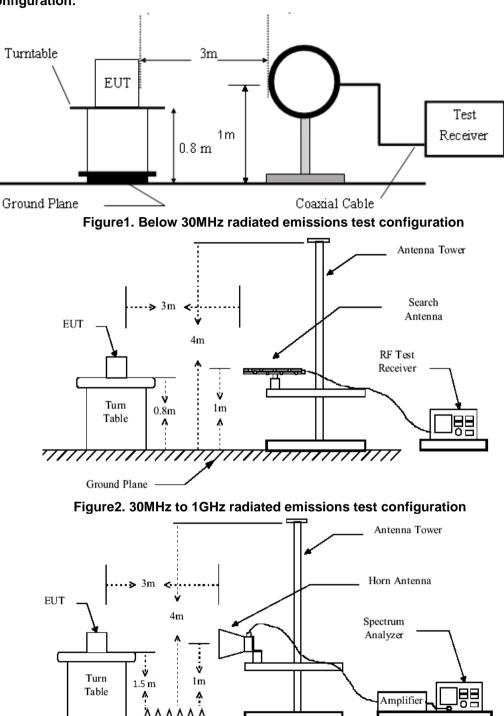


Figure3. Above 1GHz radiated emissions test configuration

Report No.: SHEM160800539502 Page: 35 of 52

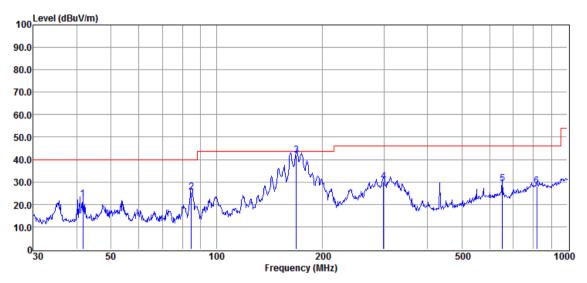
- **Test Procedure:** 1) The procedure used was ANSI Standard C63.10. The receiver was scanned from 9 KHz to 25GHz.When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.
 - 2) Low noise amplifier was used below 1GHz, High pass Filter was used above 3GHz. We did not use any amplifier or filter between 1G and 3GHz.
 - 3) Test were performed for their spatial orthogonal(X, Y, Z), the worst test data (X orthogonal) was submitted.
 - a) For this intentional radiator operates below 25 GHz. the spectrum shall be investigated to the tenth harmonic of the highest fundamental frequency. And above the third harmonic of this intentional radiator, the disturbance is very low. So the test result only displays to 5rd harmonic.
 - b) As shown in Section, for frequencies above 1000MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
 - 4) Pretest under all modes below 1GHz; choose the worst case mode (802.11b) record on the report.
 - 5) No spurious emissions were detected within 20dB of limit below 30MHz.
- Test Result: Pass

Report No.: SHEM160800539502 Page: 36 of 52

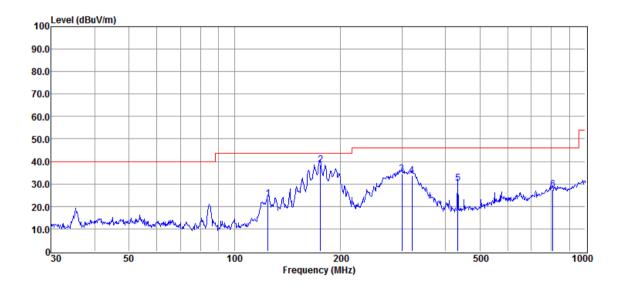
7.8.1 Radiated Spurious Emissions

Highest Channel

SG


Item	Freq.	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	124.55	45.39	11.85	35.25	1.24	23.23	43.50	-20.27	QP	Horizontal
2	175.94	61.51	11.47	36.00	1.48	38.46	43.50	-5.04	QP	Horizontal
3	300.05	54.61	13.50	35.80	2.06	34.37	46.00	-11.63	QP	Horizontal
4	320.62	53.88	13.26	35.68	2.13	33.59	46.00	-12.41	QP	Horizontal
5	432.82	47.26	16.11	35.75	2.54	30.16	46.00	-15.84	QP	Horizontal
6	808.23	35.21	23.58	35.07	3.65	27.37	46.00	-18.63	QP	Horizontal
1	41.53	43.82	13.81	35.80	0.62	22.45	40.00	-17.55	QP	Vertical
2	84.73	51.37	8.63	35.72	1.01	25.29	40.00	-14.71	QP	Vertical
3	168.72	63.98	12.19	35.64	1.45	41.98	43.50	-1.52	QP	Vertical
4	299.35	50.76	13.40	35.83	2.06	30.39	46.00	-15.61	QP	Vertical
5	652.76	40.14	20.35	34.57	3.21	29.13	46.00	-16.87	QP	Vertical
6	819.31	35.62	23.69	34.92	3.68	28.07	46.00	-17.93	QP	Vertical

Result Level = Read Level + Antenna Factor + Cable loss - Preamp Factor



Report No.: SHEM160800539502 Page: 37 of 52

Below is the plot of worst case on lowest channel: Vertical:

Horizontal:

Report No.: SHEM160800539502 Page: 38 of 52

Above 1GHz:

Test mode: 802.11b						Ch	annel: 24	12
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	4824	38.33	6.4	44.73	54	-9.27	peak	Horizontal
2	7236	37.04	10.76	47.8	54	-6.2	peak	Horizontal
3	9648	34.43	14.37	48.8	54	-5.2	peak	Horizontal
4	4824	39.02	6.4	45.42	54	-8.58	peak	Vertical
5	7236	38.07	10.76	48.83	54	-5.17	peak	Vertical
6	9648	35.28	14.37	49.65	54	-4.35	peak	Vertical

Test mode: 802.11b

Channel: 2437

Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	4874	38.24	6.92	45.16	54	-8.84	peak	Horizontal
2	7311	37.71	11.08	48.79	54	-5.21	peak	Horizontal
3	9748	35.7	14.36	50.06	54	-3.94	peak	Horizontal
4	4874	38.37	6.92	45.29	54	-8.71	peak	Vertical
5	7311	37.67	11.08	48.75	54	-5.25	peak	Vertical
6	9748	35.08	14.36	49.44	54	-4.56	peak	Vertical

Test mode: 802.11b

Reading Factor **Over Limit** Frequency Emission Limit Mark Detector Polarization (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) 1 4924 7.31 Horizontal 39.81 47.12 54 -6.88 peak 2 7386 11.41 -4.23 Horizontal 38.36 49.77 54 peak 3 9848 35.92 14.38 50.3 54 -3.7 peak Horizontal 4 4924 38.95 7.31 46.26 54 -7.74 Vertical peak 5 7386 11.41 49.43 54 -4.57 38.02 Vertical peak 6 9848 35.2 14.38 49.58 54 -4.42 peak Vertical

Channel: 2462

Report No.: SHEM160800539502 Page: 39 of 52

Test mode: 802.11g						Ch	annel: 24	12
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	4824	38.13	6.4	44.53	54	-9.47	peak	Horizontal
2	7236	39.71	10.76	50.47	54	-3.53	peak	Horizontal
3	9648	35.05	14.37	49.42	54	-4.58	peak	Horizontal
4	4824	37.96	6.4	44.36	54	-9.64	peak	Vertical
5	7236	40.95	10.76	51.71	54	-2.29	peak	Vertical
6	9648	34.72	14.37	49.09	54	-4.91	peak	Vertical

Test mode: 802.11g						Ch	annel: 24	137
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	4874	37.95	6.92	44.87	54	-9.13	peak	Horizontal
2	7311	39.12	11.08	50.2	54	-3.8	peak	Horizontal
3	9748	36.35	14.36	50.71	54	-3.29	peak	Horizontal
4	4874	38.07	6.92	44.99	54	-9.01	peak	Vertical
5	7311	40.11	11.08	51.19	54	-2.81	peak	Vertical
6	9748	34.88	14.36	49.24	54	-4.76	peak	Vertical

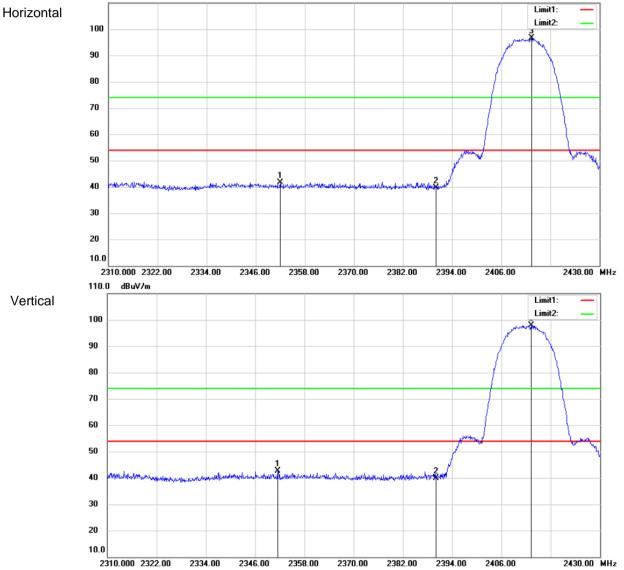
Test mode: 802.11g

Channel: 2462 Frequency Reading Factor Emission Limit **Over Limit** Mark Detector Polarization (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) 4924 Horizontal 1 39.16 7.31 46.47 54 -7.53 peak 11.41 2 7386 38.75 50.16 -3.84 Horizontal 54 peak 3 34.32 14.38 48.7 Horizontal 9848 54 -5.3 peak 4 4924 37.29 7.31 44.6 -9.4 Vertical 54 peak 5 7386 39.55 11.41 Vertical 50.96 54 -3.04 peak 14.38 6 9848 33.83 48.21 54 -5.79 Vertical peak

Remark: 1) Emission = Receiver Reading + Factor

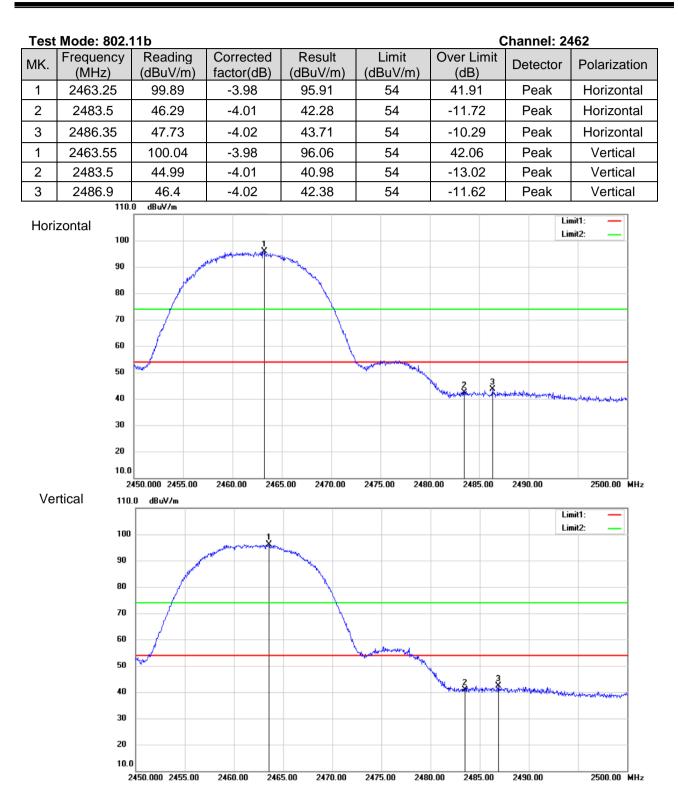
2) Factor = Antenna Factor + Cable Loss + Pre-amplifier Factor.

3) If the Peak value below the AV Limit, the AV test doesn't perform for this submission.

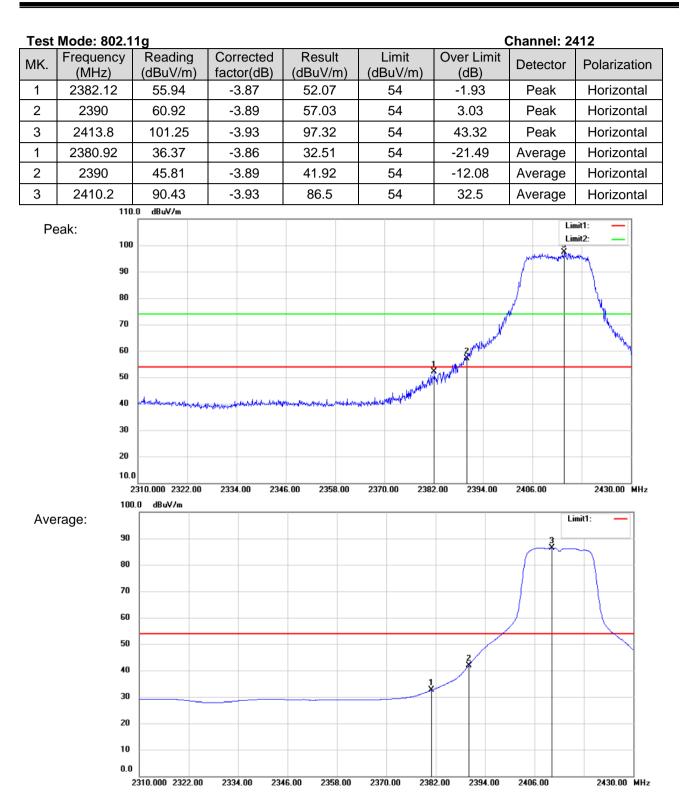

SGS

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

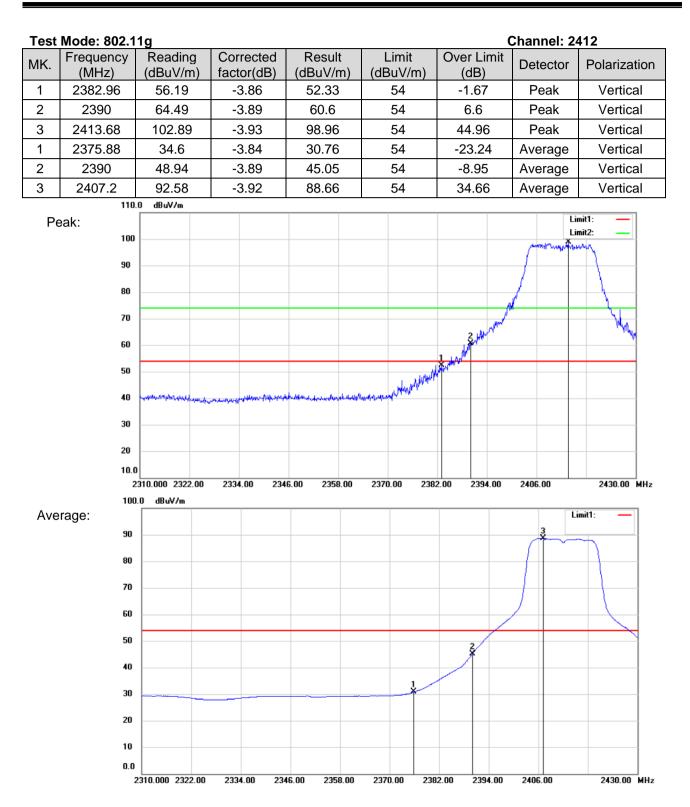
Report No.: SHEM160800539502 Page: 40 of 52


7.8.2 Radiated Band edge

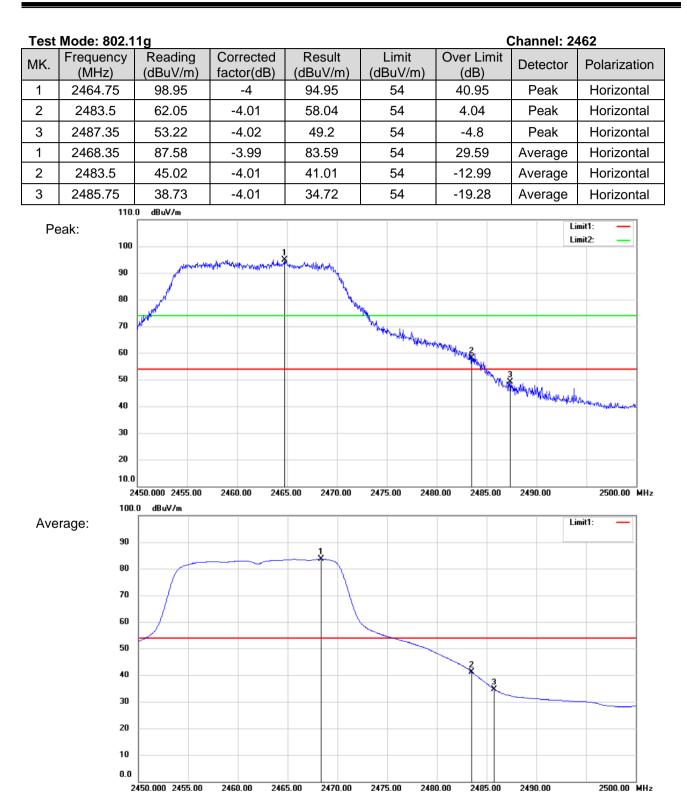
Те	st Mode: 80	2.11b			C	Channel: 24	112	
MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	2352	45.36	-3.78	41.58	54	-12.42	Peak	Horizontal
2	2390	43.62	-3.89	39.73	54	-14.27	Peak	Horizontal
3	2413.44	100.6	-3.93	96.67	54	42.67	Peak	Horizontal
1	2351.52	46.36	-3.77	42.59	54	-11.41	Peak	Vertical
2	2390	43.88	-3.89	39.99	54	-14.01	Peak	Vertical
3	2413.32	101.92	-3.93	97.99	54	43.99	Peak	Vertical
•	110.0 dBuV/m							



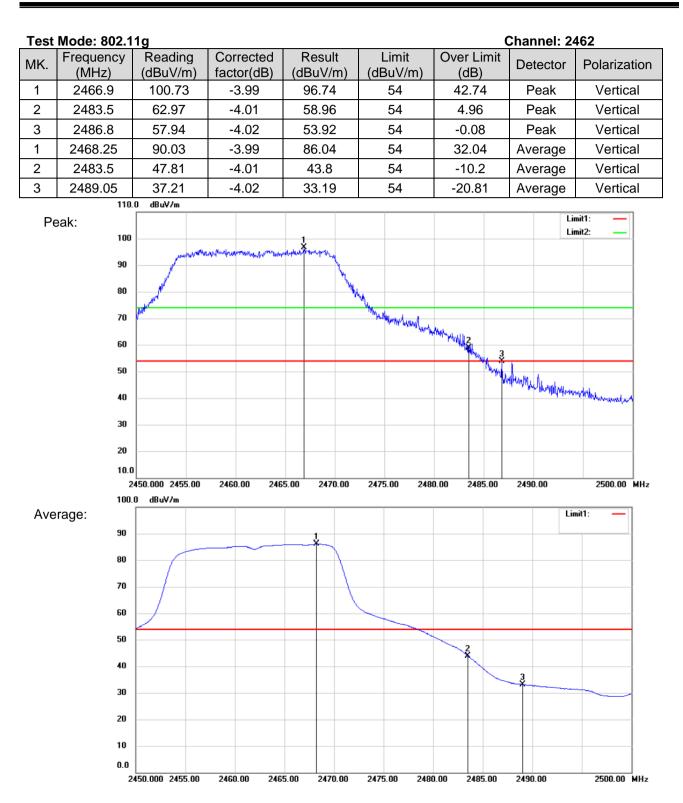
Report No.: SHEM160800539502 Page: 41 of 52



Report No.: SHEM160800539502 Page: 42 of 52



Report No.: SHEM160800539502 Page: 43 of 52



Report No.: SHEM160800539502 Page: 44 of 52

Report No.: SHEM160800539502 Page: 45 of 52

Report No.: SHEM160800539502 Page: 46 of 52

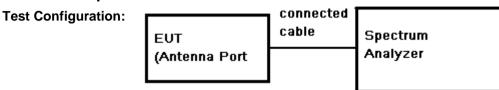
Remark: 1). Test Level = Receiver Reading + Antenna Factor + Cable Loss- Preamplifier Factor 2). If the Peak value below the AV Limit, the AV test doesn't perform for this submission.

All frequencies within the "Restricted bands" have been evaluated to compliance. Except as shown in paragraph of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.5 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41			

a. FCC Part 15, Subpart C Section 15.205 Restricted bands of operation.

Report No.: SHEM160800539502 Page: 47 of 52

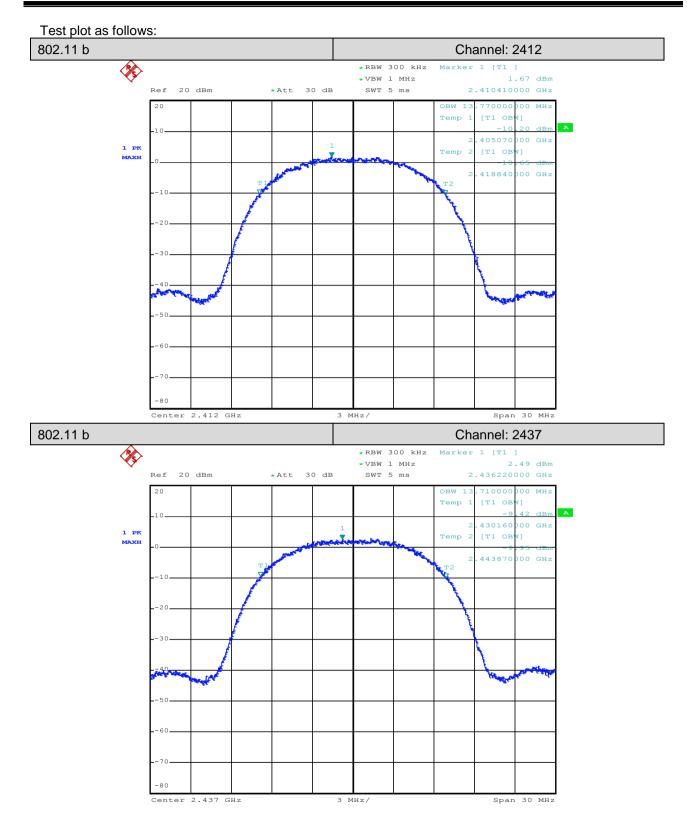

b. RSS-Gen section 7.2.2 Restricted bands of operation

MHz	MHz	GHz
0.090-0.110	240-285	9.0-9.2
2.1735-2.1905	322-335.4	9.3-9.5
3.020-3.026	399.9-410	10.6-12.7
4.125-4.128	608-614	13.25-13.4
4.17725-4.17775	960-1427	14.47-14.5
4.20725-4.20775	1435-1626.5	15.35-16.2
5.677-5.683	1645.5-1646.5	17.7-21.4
6.215-6.218	1660-1710	22.01-23.12
6.26775-6.26825	1718.8-1722.2	23.6-24.0
6.31175-6.31225	2200-2300	31.2-31.8
8.291-8.294	2310-2390	36.43-36.5
8.362-8.366	2655-2900	Above 38.6
8.37625-8.38675	3260-3267	
8.41425-8.41475	3332-3339	
12.29-12.293	3345.8-3358	
12.51975-12.52025	3500-4400	
12.57675-12.57725	4500-5150	
13.36-13.41	5350-5460	
16.42-16.423	7250-7750	
16.69475-16.69525	8025-8500	
16.80425-16.80475		
25.5-25.67		
37.5-38.25		
73-74.6		
74.8-75.2		
108-138		
156.52475-156.52525		
156.7-156.9		

Report No.: SHEM160800539502 Page: 48 of 52

7.9 99% Occupied Bandwidth

Test Procedure:

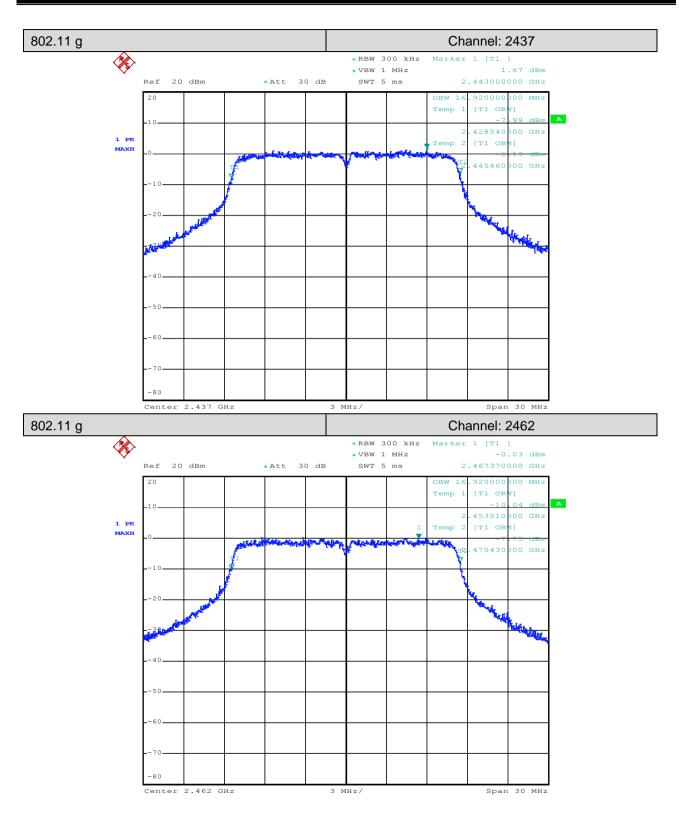

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: Span = approximately 2 to 3 times the 20dB bandwidth, centred on the hopping channel;
- Set the spectrum analyzer: RBW >= 1% of the 20dB bandwidth. VBW >= RBW. Sweep = auto; Detector Function = Peak. Trace = Max Hold.
- 4. Mark the peak frequency and -20dB points.

Test Date:

Test Mode	Channel (MHz)	Bandwidth (MHz)
	2412	13.77
802.11 b	2437	13.71
	2462	13.80
	2412	16.95
802.11 g	2437	16.92
	2462	16.92



Report No.: SHEM160800539502 Page: 49 of 52



Report No.: SHEM160800539502 Page: 50 of 52

Report No.: SHEM160800539502 Page: 51 of 52

Report No.: SHEM160800539502 Page: 52 of 52

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

--End of the Report--