

SAR TEST REPORT		
Report Reference No	HCT15KR073E-1	
FCC ID	N73-MP70G2	
IC ID:	7449B-MP70G2	
Compiled by		Ma tim
(position+printed name+signature).:	File administrators Martin Ao	Clarers
Supervised by	Test Engineer Martin Ac	Manain
(position+printed name+signature).:		0000000
Approved by	Manager Tony Wu	Timm ich.
Date of issue	Nov 10 2015	U Jun
Representative Laboratory Name	Shenzhen Hongcai Testing Techn	plagy Co. 1 td
Address	1st-3rd Floor, Building C, Shuan Park, No.8 Baoqing Road, Baolor Shenzhen, Guangdong, China	ghuan Xin Yi Dai Hi-Tech Industrial ng Industrial Zone, Longgang District,
Testing Laboratory Name:	SHENZHEN YIDAJIETONG INFO	RMATION TECHNOLOGY CO., LTD
Address	No.12 Building Shangsha, Innovati District, Shenzhen, P.R.China	ion & Technology Park, Futian
Applicant's name	Mine Site Technologies Pty Ltd.	
Address	113, Wicks Road, North Ryde, NS	W 2113, AUSTRALIA
Test specification		
	ANSI C95.3	
Standard	47CFR §2.1093	
TRF Originator	Shenzhen Hongcai Testing Techno	ploav Co. I td
Shenzhen Hongcai Testing Technology	Co., Ltd. All rights reserved.	
This publication may be reproduced in Hongcai Testing Technology Co., Ltd. Testing Technology Co., Ltd. takess no from the reader's interpretation of the re	whole or in part for non-commercial as copyright owner and source of th o responsibility for and will not assu eproduced material due to its places	purposes as long as the Shenzhen ne material. Shenzhen Hongcai me liability for damages resulting ment and context.
Test item description:	Mine Phone	
Trade Mark:	MINE SITE TECHNOLOGIES	
Manufacturer	Mine Site Technologies China C	o. Ltd
Model/Type reference:	MP70	
Listed Models	1	
Operation Frequency	WLAN 2.4G	
Modulation Type	WIFI(DSSS,OFDM)	
Hardware version:	MP70_Main_PCB_F.	
Software version:	2.6.0.0.	
Power Rating	Internal 3.7V Li-ion Battery	
Result:	PASS	

TEST REPORT

Test Report No. :		HCT15KR073E-1	Nov 10, 2015	
			Date of issue	
Equipment under Test	:	Mine Phone		
Model /Type	:	MP70		
Listed Models	:	N/A		
Applicant	:	Mine Site Technologies Pt	y Ltd.	
Address	:	113, Wicks Road, North Ryde, NSW 2113, AUSTRALIA		
Manufacturer	:	Mine Site Technologies China Co. Ltd		
Address	:	4F Building-1 1413 Mogans	han Road, Hangzhou, CHINA	

|--|

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS	4
<u>2.</u>	SUMMARY	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Statement of Compliance	5
<u>3.</u>	TEST ENVIRONMENT	6
3.1.	Address of the test laboratory	6
3.2.	Test Facility	6
3.3.	Environmental conditions	6
3.4.	SAR Limits	6
3.5.	Equipments Used during the Test	7
<u>4.</u>	SAR MEASUREMENTS SYSTEM CONFIGURATION	8
4.1.	SAR Measurement Set-up	8
4.2.	DASY4 E-field Probe System	9
4.3.	Phantoms	10
4.4.	Device Holder	10
4.5.	Scanning Procedure	11
4.6.	Data Storage and Evaluation	13
4.7.	Tissue Dielectric Parameters for Head and Body Phantoms	14
4.8.	lissue equivalent liquid properties	14
4.9.	System Check	15
4.10.	SAR measurement procedure	16
<u>5.</u>	TEST CONDITIONS AND RESULTS	19
5.1.	Conducted Power Results	19
5.2.	Transmit Antennas and SAR Measurement Position	21
5.3.	SAR Measurement Results	22
5.4.	Measurement Uncertainty (300MHz-3GHz)	23
5.5.	System Check Results	26
5.6.	SAR Test Graph Results	29
<u>6.</u>	CALIBRATION CERTIFICATE	40
6.1.	Probe Calibration Certificate	40
6.2.	D2450V2 Dipole Calibration Ceriticate	51
6.3.	DAE4 Calibration Certificate	59
<u>7.</u>	TEST SETUP PHOTOS	62

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>IEEE Std C95.1, 1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

<u>IEEE C95.3-2002</u>: IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz-300 GHz.

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

<u>RSS-102 Issue 5-2015</u>: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB447498 D01 General RF Exposure Guidance v06 : Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB648474 D04, Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 : SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

2. <u>SUMMARY</u>

2.1. General Remarks

		1
Date of receipt of test sample	•	10/18/2015
Bate el lecelpt el teot campio	•	10/10/2010
Testing commenced on	:	10/19/2015
	-	
Testing concluded on		1/4/2016
	1.	

2.2. Product Description

The **Mine Site Technologies Pty Ltd.'s** Model: MP70 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description		
Model Number	MP70	
Modilation Type	DSSS/OFDM for WIFI 2.4G;	
Antenna Type	Internal	
Device category	Portable Device	
Exposure category	General population/uncontrolled environment	
EUT Type	Production Unit	
Power Rating	Internal 3.7V Li-ion Battery	
Hotspot	Not Supported	
For more information see the following datasheet		

WiFi	
Support Standards	802.11b, 802.11g
Frequency Range	2412-2462MHz
Data Rate	1-11Mbps, 6-54Mbps
Quantity of Channels	11
Channel Separation	5MHz
Antenna Type	Internal Antenna

2.3. Statement of Compliance

The maximum of results of SAR found during testing for MP70 are follows:

<Highest Reported standalone SAR Summary>

Classment Class	Frequency Band	Head (Report 1g SAR(W/Kg)	Body-worn (Report 1g SAR(W/Kg) (15mm)	
DTS	WIFI2.4G	0.267	0.096	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992 and RSS-102, and hadbeen tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

SHENZHEN YIDAJIETONG INFORMATION TECHNOLOGY CO., LTD. No.12 Building Shangsha, Innovation & Technology Park, Futian District, Shenzhen, P.R.China

The sites are constructed in conformance with the requirements of ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: 7547

SHENZHEN YIDA JIETONG INFORMATION TECHNOLOGY CO., LTD has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Mar 17, 2015. Valid time is until Mar 17, 2018.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.4. SAR Limits

FCC Limit (1g Tissue)				
	SAR (W/kg)			
EXPOSURE LIMITS	(General Population /Uncontrolled Exposure Environment)	(Occupational /Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

		Sorial		Calibration	
Test Equipment	Manufacturer	Type/Model	Number	Last Calibration	Calibration Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	905	2015/07/16	1
E-field Probe	SPEAG	ES3DV3	3221	2015/01/31	1
System Validation Dipole 2450V2	SPEAG	D2450V2	955	2015/01/08	3
Network analyzer	Agilent	8753E	US37390562	2015/03/15	1
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/
Dual Directional Coupler	Agilent	778D	50127	2015/10/23	1
Dual Directional Coupler	Agilent	772D	50348	2015/10/23	1
Attenuator	PE	PE7005-10	E048	2015/10/23	1
Attenuator	PE	PE7005-3	E049	2015/10/23	1
Attenuator	Woken	WK0602-XX	E050	2015/10/23	1
Power meter	Agilent	E4417A	GB41292254	2015/10/22	1
Power Meter	Agilent	E7356A	GB54762536	2015/10/25	1
Power sensor	Agilent	8481H	MY41095360	2015/10/22	1
Power Sensor	Agilent	E9327A	Us40441788	2015/03/18	1
Signal generator	IFR	2032	203002/100	2015/10/22	1
Amplifier	AR	75A250	302205	2015/10/22	1

3.5. Equipments Used during the Test

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.

The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY4 software and SEMCAD data evaluation software.

Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld mobile phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

4.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5. Scanning Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$	
	$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$3 - 4 \text{ GHz}$: $\leq 12 \text{ mm}$ $4 - 6 \text{ GHz}$: $\leq 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
		Δz_{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$	
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

4.6. Data Storage and Evaluation

Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensit	tivity	Normi, ai0, ai1, ai2
- Conve	ersion factor	ConvFi
- Diode	compression point	Dcpi
Device parameters: - Frequ	ency	f
- Crest	factor	cf
Media parameters: - Condu	uctivity	σ
- Densi	ty	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With	Vi = compensated signal of channel i	(i = x, y, z)
	Ui = input signal of channel i	(i = x, y, z)
	cf = crest factor of exciting field	(DASY parameter)
	dcpi = diode compression point	(DASY parameter)
	cf = crest factor of exciting field dcpi = diode compression point	(DASY parameter) (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

		E - field probes :	$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$
		H - field probes : H	$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$
With	Vi	= compensated signal of channel i	(i = x, y, z)
	Normi	 sensor sensitivity of channel i [mV/(V/m)2] for E-field Probes 	(i = x, y, z)
	ConvF	= sensitivity enhancement in solution	
	aij	= sensor sensitivity factors for H-field p	robes
	f	= carrier frequency [GHz]	
	Ei	= electric field strength of channel i in V	//m
	Hi	= magnetic field strength of channel i in	A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with	SAR Etot	 local specific absorption rate in mW/g total field strength in V/m
	σ	= conductivity in [mho/m] or [Siemens/m]
	ρ	= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Ingradiant										
Ingredient	0001		1900		1750		2450		2000	
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	41.45	52.5	55.242	69.91	55.782	69.82	62.7	73.2	62.3	72.6
Salt	1.45	1.40	0.306	0.13	0.401	0.12	0.50	0.10	0.20	0.10
Sugar	56	45.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Preventol	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	44.452	29.96	43.817	30.06	36.8	26.7	37.5	27.3

The composition of the tissue simulating liquid

Target Frequency	Не	ad	Bo	dy
(MHz)	ε _r	σ(S/m)	٤r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

4.8. Tissue equivalent liquid properties

Dielectric performance of Head and Body tissue simulating liquid

Ticcuo	Measured	Target	Target Tissue		Measured Tissue				
Туре	Frequency (MHz)	٤ _r	σ	ε _r	Dev.	σ	Dev.	Temp.	Test Data
2450H	2450	1.80	39.2	1.83	1.7%	38.19	-2.6%	22.4	10/19/2015
2450B	2450	1.95	52.7	1.9	-2.6%	50.59	-4.0%	22.7	10/19/2015
2450B	2450	1.95	52.7	1.92	-1.5%	50.64	-3.9%	22.5	1/4/2016

4.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

Frequency (MHz)	Description	SAR(1g) W/Kg	SAR(10g) W/Kg	Tissue Temp. (℃)	Date
2450 (Hoad)	Reference	52.4±10% (47.16~57.64)	24.4±10% (21.96~26.84)	NA	10/19/2015
(neau)	Measurement	53.2	25.84	22.4	
2450 (Body)	Reference	53.7±10% (48.33~59.07)	25±10% (22.5~27.5)	NA	10/19/2015
	Measurement	54.0	25.36	22.7	
2450	Reference	53.7±10% (48.33~59.07)	25±10% (22.5~27.5)	NA	1/4/2016
(DOUY)	Measurement	53.6	25.2	22.5	

4.10. SAR measurement procedure

WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures. Channels with measured maximum output power within ¼ dB are considered to have the same maximum output.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands
c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.

4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions . a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration. 802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures .
6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within 1/4 dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- 4. Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

5. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
 - 2) replace "initial test configuration" with "all tested higher output power configurations"
- 6. When the WIFI SAR test, it's the test-software to control.

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

WLAN							
Mode	Channel	Frequency (MHz)	Worst case Data rate of worst case	Conducted Average Output Power (dBm)			
	1	2412	1Mbps	13.04			
802.11b	6	2437	1Mbps	13.49			
	11	2462	1Mbps	14.38			
	1	2412	6Mbps	16.05			
802.11g	6	2437	6Mbps	15.48			
	11	2462	6Mbps	15.21			

Note: SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Manufacturing tolerance

WiFi								
	802.11b (Average)							
Channel	Channel Channel 1 Channel 6 Channel 11							
Target (dBm)	14	14	14					
Tolerance ±(dB)	1	1	1					
	802.11g ((Average)						
Channel	Channel 1	Channel 6	Channel 11					
Target (dBm)	15.5	15.5	15.5					
Tolerance ±(dB)	1	1	1					

5.2. Transmit Antennas and SAR Measurement Position

5.3. SAR Measurement Results

5.3.1 SAR Results

Note:

				Maximum				SAR ₁ , res	ults(W/ka)			
Ch.	Freq. (MHz)	Service	Test Position	Allowed Power (dBm)	Conducted Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results		
	measured / reported SAR numbers - Head											
11	2462	DSSS	Right Cheek	15.00	14.38	0.10	1.153	0.178	0.209	1		
11	2462	DSSS	Right Tilt	15.00	14.38	-0.05	1.153	0.075	0.088	2		
11	2462	DSSS	Left Cheek	15.00	14.38	-0.11	1.153	0.121	0.142	3		
11	2462	DSSS	Left Tilt	15.00	14.38	-0.08	1.153	0.051	0.060	4		
1	2412	DSSS	Right Cheek	15.00	13.04	-0.01	1.570	0.167	0.267	5		
6	2437	DSSS	Right Cheek	15.00	13.49	0.12	1.416	0.152	0.220	6		
			measured / r	eported SAR	numbers – Bo	dy worn	(distance	10mm)				
11	2462	DSSS	Front	15.00	14.38	-0.17	1.153	0.038	0.045	7		
11	2462	DSSS	Back	15.00	14.38	-0.03	1.153	0.067	0.079	8		
1	2412	DSSS	Back	15.00	13.04	0.12	1.570	0.059	0.095	9		
6	2437	DSSS	Back	15.00	13.49	0.08	1.416	0.043	0.062	10		
		meas	ured / reported	d SAR numbe	ers – Body wol	rn with Be	lt Clips (d	istance 0mr	n)			
1	2412	DSSS	Back	15.00	13.04	0.07	1.570	0.061	0.096	11		

1. The value with black color is the maximum Reported SAR Value of the test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. Per RSS-102, The mid-channel of a transmission band shall first be tested in the SAR evaluation. However, if the variation of the maximum output power across the required test channels is more than 0.5 dB above the output power of the mid-channel, the channel with the highest output power shall first be tested (if different from the mid-channel). The method for determining the maximum output power, as well as the value of each channel, shall be documented in the RF exposure technical brief.

4. Per KDB 248227-SAR is measured using the highest measured maximum output power channel for the initial test configuration.

5. Per KDB 248227- Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output, When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement. And when there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

6. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was **0.377**

W/Kg(0.267*(44.67/31.62)=0.141) So ODFM SAR test is not required.

7. Per KDB 648474 D04, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is \leq 1.2 W/kg, SAR testing with a headset connected to the handset is not required.

	Relative DSAY4 Uncertainty Budget for SAR Tests According to IFFF Std 1528™												
	1	r	Accordin	ig to IEEE Sto	d 1528	тм		011	011	-			
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom			
Measuremer	nt System		•	L									
1	Probe calibration	В	5.50%	Ν	1	1	1	5.50%	5.50%	8			
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	8			
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	8			
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8			
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	œ			
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞			
7	RF ambient conditions- noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8			
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8			
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞			
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	œ			
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	œ			
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	8			
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8			
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8			
Test Sample	Related			1	-			r	r				
15	Test sample positioning	Α	1.86%	N	1	1	1	1.86%	1.86%	8			
16	Device holder uncertainty	Α	1.70%	N	1	1	1	1.70%	1.70%	8			
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞			
Phantom and	d Set-up	1	I		r	1	1	1	1				
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞			
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	œ			
20	Liquid conductivity (meas.)	A	0.50%	Ν	1	0.64	0.43	0.32%	0.26%	∞			
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8			
22	Liquid	Α	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞			

5.4. Measurement Uncertainty (300MHz-3GHz)

	cpermittivity (meas.)								
Combined standard uncertainty	$u_{c} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$	/	/	/	/	/	10.20%	10.00%	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$	/	R	K=2	/	/	20.40%	20.00%	8

	Uncer	tainty o	of a System P	erformance C	Check	with D	ASY4 S	System		
			Accordin	ng to IEEE Sto	d 1528	тм				
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measureme	nt System	1	1	I	1	1				
1	Probe calibration	В	5.50%	N	1	1	1	5.50%	5.50%	œ
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞
3	Hemispherical isotropy	В	0.00%	R	$\sqrt{3}$	0.7	0.7	0.00%	0.00%	∞
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions- noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	œ
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	8
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF Ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	œ
13	Probe positioning with respect to phantom shell	В	6.70%	R	$\sqrt{3}$	1	1	3.90%	3.90%	œ
14	Max.SAR Evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
15	Modulation Response	В	2.40%	R	$\sqrt{3}$	1	1	1.40%	1.40%	∞
Test Sample	Related	1	I	I	T		1	1	1	1
16	Test sample positioning	A	0.00%	N	1	1	1	0.00%	0.00%	œ
17	Device holder uncertainty	A	2.00%	N	1	1	1	2.00%	2.00%	∞
18	Drift of output power	В	3.40%	R	$\sqrt{3}$	1	1	2.00%	2.00%	∞
Phantom an	d Set-up	- -	1		-		-	1	1	1
19	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞

Page 25 of 65

Report No.: HCT15KR073E-1

20	SAR correction	В	1.90%	R	$\sqrt{3}$	1	0.84	1.11%	0.90%	8
21	Liquid conductivity (meas.)	A	0.50%	Ν	1	0.64	0.43	0.32%	0.26%	œ
22	Liquid cpermittivity (meas.)	A	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	8
23	Temp.Unc Conductivity	В	1.70%	R	$\sqrt{3}$	0.78	0.71	0.80%	0.80%	8
24	Temp.Unc Permittivity	В	0.40%	R	$\sqrt{3}$	0.23	0.26	0.10%	0.10%	8
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 \iota}$	u_i^2	/	1	/	/	/	9.37%	9.19%	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K=2	1	1	18.74%	18.38%	œ

5.5. System Check Results

1

Date: 10/19/2015

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 955 Program Name: System Performance Check Head at 2450 MHz

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.83 mho/m; ε_r = 38.19; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.50, 4.50, 4.50); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 16.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.0 V/m; Power Drift = 0.019 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.45 mW/g

Maximum value of SAR (measured) = 16.2 mW/g

 $0 \, dB = 16.2 \, mW/g$

Date: 10/19/2015

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 955 Program Name: System Performance Check Body at 2450 MHz

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.90 mho/m; ϵ_r = 50.59; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.49, 4.49, 4.49); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 16.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.5 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.34 mW/g

Maximum value of SAR (measured) = 15.4 mW/g

0 dB = 15.4mW/g

Date: 1/4/2016

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 955 Program Name: System Performance Check Body at 2450 MHz

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.92 mho/m; ϵ_r = 50.51; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.49, 4.49, 4.49); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 16.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 88.4 V/m; Power Drift = 0.005 dB
Peak SAR (extrapolated) = 26.5 W/kg
SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.3 mW/g
Maximum value of SAR (measured) = 15.1 mW/g

 $0 \, dB = 15.1 \, mW/g$

5.6. SAR Test Graph Results

SAR plots for **the highest measured SAR** in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

#1

Date: 10/19/2015

WLAN2.4G_802.11b_Right Cheek_Ch11

Communication System: 802.11; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.84 mho/m; ϵ_r = 37.1; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.50, 4.50, 4.50); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Cheek/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.189 mW/g

Right Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.51 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.391 W/kg SAR(1 g) = 0.178 mW/g; SAR(10 g) = 0.089 mW/g Maximum value of SAR (measured) = 0.195 mW/g

Date: 10/19/2015

WLAN2.4G_802.11b_Right Tilt_Ch11

Communication System: 802.11; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.84 mho/m; ϵ_r = 37.1; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.50, 4.50, 4.50); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Tilt/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.083 mW/g

Right Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.03 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.172 W/kg SAR(1 g) = 0.075 mW/g; SAR(10 g) = 0.041 mW/g Maximum value of SAR (measured) = 0.087 mW/g

Date: 10/19/2015

WLAN2.4G_802.11b_Left Cheek_Ch11

Communication System: 802.11; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.84 mho/m; ϵ_r = 37.1; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.50, 4.50, 4.50); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Cheek/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.147 mW/g

Left Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.54 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.312 W/kg SAR(1 g) = 0.121 mW/g; SAR(10 g) = 0.064 mW/g Maximum value of SAR (measured) = 0.145 mW/g

Date: 10/19/2015

WLAN2.4G_802.11b_Left Tilt_Ch11

Communication System: 802.11; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.84 mho/m; ϵ_r = 37.1; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.50, 4.50, 4.50); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Cheek/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.181 mW/g

Right Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.03 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.373 W/kg SAR(1 g) = 0.167 mW/g; SAR(10 g) = 0.081 mW/g Maximum value of SAR (measured) = 0.185 mW/g

Date: 10/19/2015

WLAN2.4G_802.11b_Right Cheek_Ch1

Communication System: 802.11; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.82 mho/m; ϵ_r = 37.5; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.50, 4.50, 4.50); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Cheek/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.181 mW/g

Right Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.03 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.373 W/kg SAR(1 g) = 0.167 mW/g; SAR(10 g) = 0.081 mW/g Maximum value of SAR (measured) = 0.185 mW/g

Date: 10/19/2015

WLAN2.4G_802.11b_Right Cheek_Ch6

Communication System: 802.11; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.827 mho/m; ϵ_r = 38.1; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.50, 4.50, 4.50); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Cheek/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.177 mW/g

Right Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.95 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.351 W/kg SAR(1 g) = 0.152 mW/g; SAR(10 g) = 0.073 mW/g Maximum value of SAR (measured) = 0.178 mW/g

Date: 10/19/2015

WLAN2.4G_802.11b_Front_1cm_Ch11

Communication System: 802.11; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.92 mho/m; ϵ_r = 50.58; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.49, 4.49, 4.49); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Front/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.077 mW/g

Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.71 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.141 W/kg SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.024 mW/g Maximum value of SAR (measured) = 0.072 mW/g

Date: 10/19/2015

WLAN2.4G_802.11b_Back_1cm_Ch11

Communication System: 802.11; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.92 mho/m; ϵ_r = 50.58; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.49, 4.49, 4.49); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.086 mW/g

Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.17 V/m; Power Drift =- 0.03 dB Peak SAR (extrapolated) = 0.171 W/kg SAR(1 g) = 0.067 mW/g; SAR(10 g) = 0.042 mW/g Maximum value of SAR (measured) = 0.083 mW/g

Date: 10/19/2015

WLAN2.4G_802.11b_Back_1cm_Ch1

Communication System: 802.11; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.88 mho/m; ϵ_r = 51.2; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.49, 4.49, 4.49); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.077 mW/g

Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.78 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.150 W/kg SAR(1 g) = 0.059 mW/g; SAR(10 g) = 0.034 mW/g Maximum value of SAR (measured) = 0.073 mW/g

Date: 10/19/2015

WLAN2.4G_802.11b_Back_1cm_Ch6

Communication System: 802.11; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.91 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.49, 4.49, 4.49); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.071 mW/g

Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.52 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.141 W/kg SAR(1 g) = 0.043 mW/g; SAR(10 g) = 0.021 mW/g Maximum value of SAR (measured) = 0.071 mW/g

Date: 1/4/2016

WLAN2.4G_802.11b_Back_1cm_Ch1

Communication System: 802.11; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.89 mho/m; ϵ_r = 51.3; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3221; ConvF(4.49, 4.49, 4.49); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
 Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.085 mW/g

Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.95 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.171 W/kg SAR(1 g) = 0.061 mW/g; SAR(10 g) = 0.036 mW/g Maximum value of SAR (measured) = 0.081 mW/g

6. Calibration Certificate

6.1. Probe Calibration Certificate

TT	In Collaborati	on with C A G N LABORATORY	Iac MRA	CNAS
Add: No.51 Xueyuan Tel: +86-10-6230463	Road, Haidian Distric 3-2079 Fax: +86	t, Beijing, 100191, China -10-62304633-2504	" Infaladalater	CALIBRATION
E-mail: cttl@chinattl.	com Http://ww	vw.chinattl.cn		
Client GCC	F errar 1	Certificate No:	Z15-97014	Messel .
CALIBRATION CE	RTIFICATE			
Object	ES3DV3	- SN:3221		
Calibration Procedure(s)	FD-Z11-2	-004-01	100 M	
	Calibratio	n Procedures for Dosimetric E-field	Probes	
Calibration date:	January 3	31, 2015	Sup cast	
This calibration Certificate d measurements(SI). The meas pages and are part of the cer	ocuments the tra surements and th tificate.	ceability to national standards, whi e uncertainties with confidence prob	ch realize the pl ability are given o	nysical units of on the following
All calibrations have been humidity<70%.	conducted in the	e closed laboratory facility: enviro	nment temperatu	ire(22±3)℃ and
Calibration Equipment used (M&TE critical for	calibration)		
Primary Standards	ID# (Cal Date(Calibrated by, Certificate No	o.) Schedu	led Calibration
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15	
Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15	
Power sensor NRP-Z91	101548	01-Jul-14 (CTTL, No.J14X02146)	Jun-15	
Reference10dBAttenuator	18N50W-10dB	13-Mar-14(TMC,No.JZ14-1103)	Mar-16	
Reference20dBAttenuator	18N50W-20dB	13-Mar-14(TMC,No.JZ14-1104)	Mar-16	
Reference Probe EX3DV4	SN 3617	28-Aug-14(SPEAG,No.EX3-3617_4	Aug14) Aug-15	
DAE4	SN 777	17-Sep-14 (SPEAG, DAE4-777_Se	p14) Sep -15	
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate	No.) Schedul	ed Calibration

SignalGeneratorMG3700A	6201052605	01-Jul-14 (CTTL, No.J14X02145)	Jun-15
Network Analyzer E5071C	MY46110673	15-Feb-14 (TMC, No.JZ14-781)	Feb-15
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	AR
Reviewed by:	Qi Dianyuan	SAR Project Leader	200
Approved by:	Lu Bingsong	Deputy Director of the laboratory	Je write
This politopation contification of		Issued: Fe	bruary 02, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	$\boldsymbol{\theta}$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
	0=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y,z = NORMx, y, z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z15-97014

Page 2 of 11

Probe ES3DV3

SN: 3221

Calibrated: January 31, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 systemi)

Certificate No: Z15-97014

Page 3 of 11

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3221

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) ^A	1.08	1.39	1.06	±10.8%
DCP(mV) ^B	103.1	100.5	103.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	261.1	±2.6%
		Y	0.0	0.0	1.0		292.6	
		Z	0.0	0.0	1.0		262.2	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 4 of 11

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3221

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.36	6.36	6.36	0.41	1.42	±12%
835	41.5	0.90	6.25	6.25	6.25	0.41	1.47	±12%
900	41.5	0.97	6.13	6.13	6.13	0.35	1.63	±12%
1750	40.1	1.37	5.33	5.33	5.33	0.46	1.55	±12%
1900	40.0	1.40	5.20	5.20	5.20	0.71	1.25	±12%
2000	40.0	1.40	5.12	5.12	5.12	0.70	1.25	±12%
2300	39.5	1.67	4.77	4.77	4.77	0.59	1.45	±12%
2450	39.2	1.80	4.50	4.50	4.50	0.85	1.16	±12%
2600	39.0	1.96	4.35	4.35	4.35	0.76	1.26	±12%

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation

formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page 5 of 11

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3221

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) [⊦]	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.28	6.28	6.28	0.38	1.63	±12%
835	55.2	0.97	6.29	6.29	6.29	0.44	1.54	±12%
900	55.0	1.05	6.16	6.16	6.16	0.49	1.45	±12%
1750	53.4	1.49	5.00	5.00	5.00	0.61	1.34	±12%
1900	53.3	1.52	4.79	4.79	4.79	0.61	1.36	±12%
2000	53.3	1.52	4.75	4.75	4.75	0.48	1.62	±12%
2300	52.9	1.81	4.65	4.65	4.65	0.63	1.48	±12%
2450	52.7	1.95	4.49	4.49	4.49	0.88	1.16	±12%
2600	52.5	2.16	4.37	4.37	4.37	0.71	1.32	±12%

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
 ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies

between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z15-97014

Page 6 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Page 7 of 11

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM 13 270 -0-Z --- Tot

Page 8 of 11

 10^{2}

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: Z15-97014

Page 9 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z15-97014

Page 10 of 11

1

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3221

Other Flobe Falameters	
Sensor Arrangement	Triangular
Connector Angle (°)	36.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Other Probe Parameters

6.2. D2450V2 Dipole Calibration Ceriticate

Chmid & Partner Engineering AG wyhausstrasse 43, 8004 Zuric	ry of		Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredits The Swiss Accreditation Servic Aultilateral Agreement for the r	tion Service (SAS) e is one of the signatorie ecognition of calibration	es to the EA	Accreditation No.: SCS 0108
Client SMQ (Auden)		Certificate N	te: D2450V2-955_Jan15/2
CALIBRATION O	CERTIFICATE	E (Replacement of No: D	02450V2-955_Jan15)
Object .	D2450V2 - SN: 9	55	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	January 08, 2015	5	
This calibration certificate docum The measurements and the unce All calibrations have been conduc	ents the traceability to nat artainties with confidence p cted in the closed laborato	ional standards, which realize the physical u robability are given on the following pages a ry facility: anvironment temperature (22 ± 3)	nits of measurements (SI). Ind are part of the certificate. °C and humidity < 70%.
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&	ents the traceability to nati rtainties with confidence p cted in the closed laborato TE critical for calibration)	ional standards, which realize the physical u robability are given on the following pages a ny facility: environment temperature (22 ± 3)	nits of measurements (SI). Ind are part of the certificate. °C and humidity < 70%.
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards	ents the traceability to nat stainties with confidence p cted in the closed laborato TE critical for calibration)	ional standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	rits of measurements (SI). Ind are part of the certificate. °C and humidity < 70%. Scheduled Calibration
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A	ents the traceability to net stainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704	ional standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	nits of measurements (SI). Ind are part of the certificate. °C and humidity < 70%. Scheduled Calibration Oct-15
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ents the traceability to nati stainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783	ional standards, which realize the physical u robability are given on the following pages a ry facility: anvironment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	nits of measurements (SI). Ind are part of the certificate. °C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M8: ^o nmary Standards ^o ower meter EPM-442A ^o ower sensor HP 8481A ^o ower sensor HP 8481A	ID # GB37480704 US37292763 MY41092317	ional standards, which realize the physical u robability are given on the following pages a ry facility: anvironment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	nits of measurements (SI). Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M8: Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ents the traceability to nat entainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	ional standards, which realize the physical u robability are given on the following pages a ny facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918)	nits of measurements (SI). Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M8: ^p rimary Standards ^p ower meter EPM-442A ² ower sensor HP 8481A ² ower sensor HP 8481A ³ Reference 20 dB Attenuator ¹ ype-N mismatch combination	ents the traceability to nati intainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 5047.2 / 06327	ional standards, which realize the physical u robability are given on the following pages a ny facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 29 Dec 14 (No. 217-01921)	nits of measurements (SI). Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M8: Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe ES3DV3 DAE4	ents the traceability to nati intainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5068 (20k) SN: 5047.2 / 06327 SN: 3206 SN: 601	ional standards, which realize the physical u robability are given on the following pages a ny facility: environment temperature (22 ± 3) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205-Dec14) 18-Aup-14 (No. ES3-3205-Dec14)	nits of measurements (SI). Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aux-15
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ents the traceability to nativitalinties with confidence p cted in the closed laboration TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20/6527 SN: 5047.2 / 06327 SN: 601	ional standards, which realize the physical u robability are given on the following pages a ry facility: anvironment temperature (22 ± 3) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. 217-01921)	nits of measurements (SI). Ind are part of the certificate. "C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Dec-15 Aug-15
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481	ents the traceability to nativitalinties with confidence p cted in the closed laboration TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20/6527 SN: 5047.2 / 06327 SN: 601 ID #	ional standards, which realize the physical u robability are given on the following pages a ry facility: anvironment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. DAE4-601_Aug14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	nits of measurements (SI). Ind are part of the certificate. "C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Dec-15 Aug-15 Scheduled Check
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 848	ents the traceability to nativitalinties with confidence p cted in the closed laboration TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20/6327 SN: 50547.2 / 06327 SN: 601 ID # 100005 US37390585 S4206	ional standards, which realize the physical u robability are given on the following pages a ry facility: anvironment temperature (22 ± 3) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. DAE4-601_Aug14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	nits of measurements (SI). Ind are part of the certificate. "C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ents the traceability to nati stainties with confidence p cted in the closed laboration TE critical for calibration) ID # GBS7480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3206 SN: 601 ID # 100005 US37390585 S4206	ional standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. DAE4-601_Aug14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	nits of measurements (SI). Ind are part of the certificate. "C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Oct-15 Dec-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ents the traceability to net stainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 3206 SN: 601 ID #	ional standards, which realize the physical u robability are given on the following pages a ny facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 03-Apr-14 (No. 217-02021) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	nits of measurements (SI). Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Oct-15 Oct-15 Dec-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 Eignahuse
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M8: Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8763E	ents the traceability to net intainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 50647.2 / 06327 SN: 3206 SN: 601 ID # 100005 US37390585 S4206 Name Claudio Leubler	ional standards, which realize the physical u robability are given on the following pages a ny facility: environment temperature (22 ± 3) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205 Dec14) 18-Aug-14 (No. DAE4-601_Aug14) 04-Aug-99 (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function Laboratory Technician	nits of measurements (SI). Indiane part of the certificate. *C and humidity < 70%. *C and humidity
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M8: Calibration Equipment used (M8: Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	ents the traceability to nativitalinties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5086 (20k) SN: 5068 (20k) SN: 507 SN: 3206 SN: 601 ID # 100005 US37390585 S4206 Name Claudio Leubler Katja Pokovic	Cal Data (Certificate No.) Cal Data (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-15) 18-Oct-01 (in house check Oct-14) Function Laboratory Technician	nits of measurements (SI). Ind are part of the certificate. "C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 Fignature Fignature

Certificate No: D2450V2-955_Jan15/2

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

•

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-955_Jan15/2

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

+	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.12 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51,0 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	53.7 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.36 W/kg

Certificate No: D2450V2-955_Jan15/2

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

54.8 Ω + 3.5 jΩ	
- 24.9 dB	
	54.8 Ω + 3.5 jΩ - 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.2 Ω + 4.9 jΩ	
Return Loss	- 26.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.165 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 05, 2014

Certificate No: D2450V2-955_Jan15/2

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 08.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 955

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.84 S/m; ϵ_r = 39.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63, 19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.12 W/kg Maximum value of SAR (measured) = 17.5 W/kg

Certificate No: D2450V2-955_Jan15/2

Page 5 of 8

Page 56 of 65

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-955_Jan15/2

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 08.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 955

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.17, 4.17, 4.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.96 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.36 W/kg Maximum value of SAR (measured) = 18.3 W/kg

Certificate No: D2450V2-955_Jan15/2

Page 7 of 8

Page 58 of 65

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-955_Jan15/2

Page 8 of 8

6.3. DAE4 Calibration Certificate

Add: No.51 Xue Tel: +86-10-623	yuan Road, Haidian I 04633-2218 Fax	District, Beijing, 100191, China :: +86-10-62304633-2209	CALIBRATION No. L0570		
E-mail: ettl@chi	nattLeom <u>Htt</u>	Certificate	e No: Z15-97093		
ALIBRATION	CERTIFICA	TE			
Object	DAE	DAE4 - SN: 905			
Calibration Procedure(s)	FD-Z Calib (DAE	FD-Z11-2-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx)			
Calibration date:	July	16, 2015			
This calibration Certifica measurements(SI). The r pages and are part of the All calibrations have be	te documents the measurements ar e certificate. een conducted in	e traceability to national standards, wi nd the uncertainties with confidence pro n the closed laboratory facility: envir	ronment temperature(22±3)*C an		
This calibration Certifica neasurements(SI). The r pages and are part of the All calibrations have be numidity<70%. Calibration Equipment us	te documents th measurements ar e certificate. een conducted in sed (M&TE critica	e traceability to national standards, wi id the uncertainties with confidence pro in the closed laboratory facility: envir al for calibration)	ronment temperature(22±3)*C an		
This calibration Certifica measurements(SI). The r pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	te documents thi measurements ar e certificate. een conducted in sed (M&TE critica ID # (e traceability to national standards, wi id the uncertainties with confidence pro in the closed laboratory facility: envir al for calibration) Cal Date(Calibrated by, Certificate No.)	ronment temperature(22±3)*C an Scheduled Calibration		
This calibration Certifica neasurements(SI). The r pages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	te documents th measurements ar e certificate. een conducted ii sed (M&TE critica ID # (1971018	e traceability to national standards, wind the uncertainties with confidence pro in the closed laboratory facility: envir al for calibration) Cal Date(Calibrated by, Certificate No.) 08-July-15 (CTTL, No:J15X04257)	scheduled Calibration July-16		
his calibration Certifica neasurements(SI). The r ages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	te documents th measurements ar e certificate. een conducted ii sed (M&TE critica ID # (1971018	e traceability to national standards, wi id the uncertainties with confidence pro in the closed laboratory facility: envir al for calibration) Cal Date(Calibrated by, Certificate No.) 08-July-15 (CTTL, No:J15X04257) Function	scheduled Calibration July-16		
his calibration Certifica neasurements(SI). The r ages and are part of the sages and are part of the unidity<70%. Calibration Equipment us primary Standards Process Calibrator 753 Calibrated by:	te documents th measurements ar e certificate. sen conducted in sed (M&TE critica ID # (1971018 Name Yu Zongying	e traceability to national standards, wi nd the uncertainties with confidence pro- n the closed laboratory facility: envir al for calibration) Cal Date(Calibrated by, Certificate No.) 08-July-15 (CTTL, No:J15X04257) Function Function SAR Test Engineer	Signature		
This calibration Certifica neasurements(SI). The r pages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by:	te documents th measurements ar e certificate. sen conducted in sed (M&TE critica ID # (1971018 Name Yu Zongying Qi Dianyuan	e traceability to national standards, wind the uncertainties with confidence pro in the closed laboratory facility: envir al for calibration) Cal Date(Calibrated by, Certificate No.) 06-July-15 (CTTL, No:J15X04257) Function Function SAR Test Engineer SAR Project Leader	Scheduled Calibration July-16		

Certificate No: Z15-97093

Page 1 of 3

Glossary:

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z15-97093

Page 2 of 3

DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	404.672 ± 0.15% (k=2)	405.235 ± 0.15% (k=2)	404.825 ± 0.15% (k=2)
Low Range	3.98116 ± 0.7% (k=2)	4.00286 ± 0.7% (k=2)	3.99735 ± 0.7% (k=2)

Connector Angle

269°±1°

Certificate No: Z15-97093

Page 3 of 3

7. <u>Test Setup Photos</u>

Photograph of the depth in the Head Phantom

Photograph of the depth in the Body Phantom

Right Head Tilt Setup Photo

Right Head Cheek Setup Photo

Left Head Tilt Setup Photo

Left Head Cheek Setup Photo

10mm Back Side Setup Photo

10mm Front Side Setup Photo

Back Side with Belt Clips Setup Photo

.....End of Report.....