

2. Photograph for the worst case configuration

3. Sample Calculation

The emission level measured in decibels above one microvolt (dB μ V) was converted into microvolt per meter (μ V/m) as shown in following sample calculation.

For example :

Measured Value at 2411.0MHz	63.5 dB μ V
+ Antenna Factor	28.6 dB
+ Cable Loss	2.9 dB
- Preamplifier	35.0 dB
- Distance Correction Factor *	0.0 dB
<hr/>	
= Radiated Emission	60.0 dB μ V/m
	(= 1000.0 μ V/m)

* Extrapolated from the measured distance(1.0m) to the specified distance(3m) by an inverse linear distance extrapolation.

2. Photograph for the worst case configuration

3. Sample Calculation

The emission level measured in decibels above one microvolt ($\text{dB}\mu\text{V}$) was converted into microvolt (μV) as shown in following sample calculation.

For example :

Measured Value at	1.17MHz	24.8dB μV
+ Cable Losses *		0.0 dB
= Conducted Emission		24.8dB μV (= 17.4 μV)

* In case of RG214/ RF cable 15Ft, the loss is about 0.17dB at the frequency of 30MHz which is negligible.