MEASUREMENT AND TECHNICAL REPORT ON THE MARCONI COMMERCE SYSTEMS TRINDTM TIRISTM RADIO FREQUENCY IDENTIFICATION DEVICE

Southwest Research Institute 6220 Culebra Road San Antonio, Texas 78228-0510

Project 10-3084.01.006 Report Number EMCR 00/062

Prepared for:

Marconi Commerce Systems 7300 West Friendly Avenue P.O. Box 22087 Greensboro, NC 27420-2087

> Prepared by: Dave Carmony

August 2000

The results of this test report apply only to the specific samples tested. If the manufacturer extends the test results to apply to other samples of the same model, or from the same lot or batch, the manufacturer should ensure the additional samples are manufactured using identical electrical and mechanical components.

This test report shall not be reproduced, except in full, without written approval of the Electromagnetic Compatibility Research Section, Southwest Research Institute.

Reviewed by:

Approved by:

Ismael Martinez, Jr. Sr. Engineering Technologist James J. Polonis Manager Electromagnetic Compatibility Research Section Communications Engineering Department Electromagnetic Compatibility Research Section Communications Engineering Department

TABLE OF CONTENTS

Page

List of '	Tables	3
1.0	General Information	4
1.1	Product Description	
1.2	Related Grants	
1.3	Tested System Details	4
1.4	Test Methodology	
1.5	Test Facility	6
2.0	Product Labeling	7
2.1	FCC ID Label.	7
2.2	Location of Label on EUT	
2.3	Label for the Exterior of Devices Incorporating the EUT	7
2.4	Supplemental Information to be in the Reader Manual	7
3.0	System Test Configuration	8
3.1	Justification	8
3.2	EUT Exercise	8
3.3	Special Accessories	
3.4	Equipment Modification	
3.5	Configuration of Tested System	8
4.0	Block Diagram of the TRIND TM TIRIS TM System	9
5.0	Conducted and Radiated Measurement Photos	0
6.0	Conducted Emission Data	1
6.1	Conducted Measurement Data 1	1
6.2	Conducted Test Instrumentation 1	1
7.0	Radiated Emission Data	2
7.1	Configurations Tested 1	2
7.2	Radiated Measurement Data 1	
7.3	Test Instrumentation for Radiated Measurements 1	4
7.4	Field Strength Calculation 1	4
Append	ix A: Conducted Measurement Plots	6
Append	ix B: Radiated Measurement Data Sheets2	4
	ix C: Test Instrumentation	
	ix D: Photos of Tested EUT	
Append	ix E: Photos of Test Setups	5
	nent 1: Functional Description and Block Diagram	
	nent 2: Installation Instructions	
Attachn	nent 3: FCC ID Label	

Attachment 4: Schematics

LIST OF TABLES

Table

Page

TRIS [™] Components	5
Conducted Emission Levels	11
ons Tested For Radiated Emissions	12
nt of Fundamental Frequency	13
nt of Spurious Emissions	14
) 1	FIRIS™ Components onfigurations Tested Conducted Emission Levels ons Tested For Radiated Emissions nt of Fundamental Frequency nt of Spurious Emissions

1.0 GENERAL INFORMATION

1.1 Product Description

The TRINDTM TIRISTM (Part No. C00011-xxx) is a Radio Frequency Identification Device (RFID) which is designed for use in conjunction with both battery-powered vehicle transponders (Texas Instruments Part No. 9795101, FCC ID: A92VEHICLE) and handheld battery-less transponders (Texas Instruments RI-TRP-Series such as a key ring tag). The vehicle transponder is mounted in the back window of an automobile and the handheld transponder is carried by the user. The transmitter portion of the TRINDTM TIRISTM operates at 134.2 kHz and is subject to FCC Part 15, Subpart C, "Intentional Radiator," paragraphs 15.207 and 15.209. The digital electronics portion of the TRINDTM TIRISTM is subject to FCC Part 15, Subpart B, "Unintentional Radiator," paragraph 15.109, under the Class A limits and as such, the TRINDTM TIRISTM is incorporated into an application that is subject to Class A limits. Attachment 1 contains a detailed technical description and functionality of the TRINDTM TIRISTM and its components. Photos of the TRINDTM TIRISTM are provided in Appendix D.

1.2 Related Grants

A vehicle transponder (FCC ID: A92VEHICLE) and a handheld battery-less transponder (Texas Instruments RI-TRP-Series key ring tag) were used to exercise the TRINDTM TIRISTM during the intentional radiator radiated and conducted tests. The microreader module (Texas Instruments part No. RI-STU-MRD1) which provides the 134.2 kHz fundamental emission is a component of the TRINDTM TIRISTM and has previously received certification under FCC ID: A92MICRO.

1.3 Tested System Details

The TRINDTM TIRISTM is intended to be mounted into an enclosure such as a fueling dispenser and includes two overhead 134.2 kHz low Q transmit antennas with tuning boards, a low frequency (LF) transmitter module (which includes two remote 134.2 kHz RF transmitters), a data control board, a UHF 902.858 MHz receiver, two UHF receiving antennas, two 134.2 kHz LF PCA (printed circuit assembly) antennas, and two light microreader/LED bezel assemblies. These components are assembled per the drawings in Attachment 1.

The TRINDTM TIRISTM operates from 120 VAC converted to 22.5 Vdc and 5 Vdc using power supply Part No. T20314-G1. The system description, functionality and block diagrams are located in Attachment 1. Cabling is denoted in the dispenser block diagram located in Attachment 1. The components on the system are listed below in Table 1.1.

Component Description	Part Number
TIRIS Data Control Board with UHF Receiver DCB 1	Q13563-04
TIRIS Data Control Board with UHF Receiver DCB 2	Q13563-01
TIRIS 134 kHz Transmitter Board with Remote Radio Frequency Module (two each) and Carrier Board	Q13579-01
TIRIS 902-928 MHz Receiver Board	RI-RFM-HREA (TI)
Marconi Power Supply	T20314-G1
TRIND Gateway Board	T20128-GX
Antenna Specialist 902-928 MHz Receive Antenna (.50"x3.0" PCB)	Q13851-01
LF Bezel Antennas (2 Per Installation)	T20524-G1
Overhead Antenna Tuning Board	T20579-GX
Light/Microreader Board	T20601 (Advantage) M001218 (Encore)

TABLE 1.1TRINDTM TIRISTM COMPONENTS

The TRINDTM TIRISTM is used with Marconi Commerce Systems Advantage, MPD-3, and Encore line of fuel dispensers. Each type of fuel dispenser uses an identical TRINDTM TIRISTM system with the exception of slight differences in the overhead antennas, door antennas, and tuning board. The following TRINDTM TIRISTM configurations were tested.

Dispenser	Overhead Antenna (for car tag)	Door Antenna (for hand-held tag)	Tuning Board Note 1
	(2) 9.5" x 42.34" single-loop antenna, 3/8" diameter aluminum tubing (tested configuration had this antenna on one side)		T20579 bareboard C1= 15nF C2= 10nF C3= 1800pF
Advantage and MPD-3	(2) 9.5" x 30.34" single-loop antenna, 3/8" diameter aluminum tubing (tested configuration had this antenna on other side)	(2) 5.2" x 10.2" 134 kHz antennas mounted to the plastic bezel doors	Same as above except C3= 3900pF
	No overhead antenna (hand-held only configuration). "Dummy" resistive loads were connected to the Transmitter Board outputs.		N/A
	9.5" x 35.42" single-loop antenna, 3/8" diameter aluminum tubing	(2) 3.5" x 10.25" 134 kHz antennas	Same as above except C3= 2700pF
Encore	No overhead antenna (hand-held only configuration). "Dummy" resistive loads were connected to the Transmitter Board outputs.	mounted to the plastic bezel doors	N/A

TABLE 1.2ANTENNA CONFIGURATIONS TESTED

Note 1: Each overhead antenna size variation uses the same PC board-based tuning circuitry with the only difference being capacitor values which customizes that board for the inductance required for a given antenna size/geometry.

1.4 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4-1992, and the limits prescribed in CFR 47, FCC 15.207, 15.109, and 15.209. Radiated testing was performed at antenna-to-EUT distances of 3, 10, and 30 meters.

A test fixture for the TRINDTM TIRISTM system was used during radiated emissions testing to replicate the actual installation of the system in a high hose fueling dispenser (gas pump) with the 134kHz transmit antenna at the heights they would be in the field. The test fixture was constructed from materials which would not provide additional shielding (wood & PVC pipe). Pre-compliance testing demonstrated that this arrangement is "worst case" with respect to the radiated emissions limits, particularly when measuring the harmonics of the 134 kHz intentionally radiated signal at close distances (3 meters). Photographs of the radiated emissions test setup showing the test fixtures are provided in Appendix E.

1.5 Test Facility

The Open Area Test Site (OATS) and the Radiated/Conducted Measurement Facility used to collect data are located at Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas. Details concerning the test site and measurement facility are found in a letter from SwRI to the FCC dated 23 May 2000, which is on file with the FCC Laboratory Division in Columbia, Maryland. On June 2, 2000, the FCC approved the sites for the purpose of providing test results for submission with equipment authorization applications under the Commission's Equipment Authorization Program.

2.0 PRODUCT LABELING

2.1 FCC ID Label

The FCC ID label is shown in the drawing in Attachment 3.

2.2 Location of Label on EUT

The location of the label is shown in the drawing in Attachment 3.

2.3 Label for the Exterior of Devices Incorporating the EUT

The TRINDTM TIRISTM will be incorporated in other devices such as a fuel dispenser (e.g., a fueling dispenser (gasoline pump) employed at a service station). A label will be supplied with the TRINDTM TIRISTM for placement on the exterior of the device in which the equipment is incorporated. This label is shown in a drawing in Attachment 3.

2.4 Supplemental Information to be in the Reader Manual

In addition to reiteration of required information as on intentional radiator, in keeping with sections 15.21 and 15.105 of the FCC rules, the manual supplied with the TRINDTM TIRISTM will also include the following admonitions:

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference; in which case, the user will be required to correct the interference at his own expense.

NO MODIFICATIONS: Modifications to this device shall not be made without the written consent of Marconi Commerce Systems. Unauthorized modifications may void the authority granted under Federal Communications Commission Rules permitting the operation of this device.

3.0 SYSTEM TEST CONFIGURATION

3.1 Justification

Radiated tests were performed on the TRINDTM TIRISTM intentional radiator from 134 kHz to 30 MHz for the highest fundamental and harmonics. Three polarizations of the receive loop antenna were used. Radiated tests were performed up to 1 GHz for spurious emissions related to the digital electronics portion of the unit. Both vertical and horizontal polarizations of the receive dipoles were tested. Radiated signature scans were made at 3 meters in a shielded anechoic chamber.

Conducted tests were performed on the AC power of the TRINDTM TIRISTM from 450 kHz to 30 MHz.

3.2 EUT Exercise

The TRINDTM TIRISTM is powered by 120VAC. During conducted tests, the unit was exercised by establishing the interrogation reply sequence using handheld transponders. Dummy loads were used in place of the overhead antennas during conducted tests.

During radiated tests of the intentional radiator, the unit was exercised by establishing the interrogation reply sequence using both vehicle and handheld transponders.

For radiated tests of the digital electronics, the 134 kHz overhead antenna transmitter and the microreader transmitter were disabled. L2 was lifted from the Vcc side to disable the microreader. The overhead antenna transmitters were disabled by removing the fuse on each of the LF transmitter modules' carrier boards, which removed Vcc from the final stage of the transmitter.

3.3 Special Accessories

In order to meet the FCC radiated limit for the spurious emissions, three ferrite beads were added to the TRINDTM TIRISTM. A ferrite bead (Fair-Rite p/n 0431167281) was installed on each of the two Light/MicroReader data/power cables. For the Advantage configuration a ferrite bead (Fair-Rite p/n 0444164181) was also installed on the overhead antenna cable assembly at the point where the cable exits the card cage.

In order to meet the FCC limits for conducted emissions shielded power cables were used for both the Encore and the Advantage configurations. Additionally, the Encore configuration, when tested with the digital circuit board, DCB 1, required ferrites on both cable harnesses.

3.4 Equipment Modification

The need for special accessories noted in 3.3 above was determined during equipment testing.

3.5 Configuration of Tested System

Refer to Figure 4.1 for block diagram of tested configuration.

4.0 BLOCK DIAGRAM OF THE TRINDTM TIRISTM SYSTEM

A block diagram of the TRINDTM TIRISTM system is provided in Attachment 1.

5.0 CONDUCTED AND RADIATED MEASUREMENT PHOTOS

Refer to Appendix E for photographs of the conducted and radiated test setups.

6.0 CONDUCTED EMISSION DATA

6.1 Conducted Measurement Data

Two configurations of the TRINDTM TIRISTM system were tested for conducted emissions. Both the Advantage/MPD-3 system and the Encore system were tested for conducted emissions in the 'ho overhead antenna" (hand-held only configuration - see Table 1.2). In accordance with C63.4, Appendix I, "dummy" resistive loads were connected to the Transmitter Board outputs in place of the overhead antennas. Each TRINDTM TIRISTM configuration was also tested with two different versions of the Data Control Board, DCB 1 and DCB 2. A complete conducted emissions test was performed with each version of the Data Control Board installed.

The initial step in collecting conducted data was to perform a spectrum analyzer peak scan of the measurement range to determine worst case. A computer-controlled spectrum analyzer was used to produce a peak measurement data plot. Quasi-peak measurements were made on signals that were close to or above the paragraph 15.207 limit. The worst case emission levels are provided in Table 6.1. Appendix A contains conducted emission measurement plots.

	Judgment: EUT	Passed By 0.5 d	IB	
	FREQUENCY		SURED L (dBuV)	LIMIT
Configuration	(MHz)	LINE	NEUTRAL	(dBuV)
Advantage/MPD-3 no	0.75	43 ¹		48
overhead antenna – DCB 1	0.75		43 ¹	48
Advantage/MPD-3 no	1.3	47.5 ¹		48
overhead antenna – DCB 2	18		46.5 ²	48
Encore no overhead antenna –	15	46.5 ¹		48
DCB 1	16		44 ¹	48
Encore no overhead antenna –	18	47 ²		48
DCB 2	18.5		45 ²	48

TABLE 6.1WORST CASE CONDUCTED EMISSION LEVELS

¹ Readings are quasi-peak measurements made with a spectrum analyzer.

 2 Readings are peak measurements made with a spectrum analyzer, which are under the 15.207 (equivalent class B) limit.

6.2 Conducted Test Instrumentation

The test instrumentation used to make conducted measurements is given in Appendix C.

7.0 RADIATED EMISSION DATA

7.1 Configurations Tested

Both the TRINDTM TIRISTM Advantage/MPD-3 system and the TRINDTM TIRISTM Encore system were tested for radiated emissions. The Encore system was tested with a DCB 1 (Data Control Board) installed and then the test was repeated with a DCB 2 installed. The Advantage system was also tested first with the DCB 1 installed and then tested again with the DCB 2 installed. Both the Encore and Advantage systems were also tested with the overhead antenna(s) replaced with a dummy load(s) leaving only the hand-held configuration active. All tested configurations are listed in Table 7.1.

As can be seen in the table, full prescans from 134 kHz to 1000 MHz were performed on the Advantage/MPD-3 system with both overhead antennas installed. OATS tests from 30 MHz to 1000 MHz were performed with DCB 2 installed because prescans confirmed the Advantage had higher levels of emissions with DCB 2 installed than it had with DCB 1 installed. Measurements at the OATS of the signals from the printed circuit assembly antennas were made from 134 kHz to 30 MHz, including the measurement of the fundamental emission. During measurement of the printed circuit assembly antenna emissions, the overhead antennas were replaced with a dummy load.

Prescans and OATS testing from 134 kHz to 1000 MHz were performed on the Encore system that uses an overhead antenna. Measurements at the OATS from 134 kHz to 30 MHz, including the measurement of the fundamental emission, were also made on the "no overhead antenna" configuration. All measurements at the OATs were made with DCB 2 installed which had been found to be worse case during the prescans in the anechoic chamber.

Dispenser	Overhead Antenna (for car tag)	Pre-scan	OATS
	1 ea 9.5" X 42.34" single loop antenna, made from 3/8" diameter tubing mounted on one side. <i>And</i> 1 ea 9.5" X 30.34" single loop antenna, made from 3/8" diameter tubing mounted on the other side. <i>With DCB 1</i>	Full (134 kHz- 1000 MHz)	During pre scans it was determined that the configuration with DCB 2 installed was the worse case. A full scan from
Advantage and MPD-3	1 ea 9.5" X 42.34" single loop antenna, made from 3/8" diameter tubing mounted on one side. <i>And</i> 1 ea 9.5" X 30.34" single loop antenna, made from 3/8" diameter tubing mounted on the other side. <i>With DCB 2</i>	Full (134 kHz- 1000 MHz)	134.2 kHz to 1000 MHz was performed at the OATs with DCB 2 installed.
	No overhead antenna (hand-held only configuration). "Dummy" resistive loads were connected to the Transmitter Board outputs.	Bandpass of 134.2 kHz carrier only.	Partial (134 kHz- 30 MHz)

 TABLE 7.1

 CONFIGURATIONS TESTED FOR RADIATED EMISSIONS

Dispenser	Overhead Antenna (for car tag)	Pre-scan	OATS
	1 ea 9.5" X 35.42" single loop antenna, made from 3/8" diameter tubing. <i>With DCB 1</i>	Full (134 kHz- 1000 MHz)	During pre scans it was determined that the configuration with DCB 2 installed was the worse case. A full scan from
Encore	1 ea 9.5" X 35.42" single loop antenna, made from 3/8" diameter tubing. <i>With DCB 2</i>	Full (134 kHz- 1000 MHz)	134.2 kHz to 1000 MHz was performed at the OATs with DCB 2 installed.
	No overhead antenna (hand-held only configuration). "Dummy" resistive loads were connected to the Transmitter Board outputs.	Bandpass of 134.2 kHz carrier only.	Partial (134 kHz- 30 MHz)

 TABLE 7.1 (Cont)

 CONFIGURATIONS TESTED FOR RADIATED EMISSIONS

7.2 Radiated Measurement Data

The data below are the corrected highest level EME measurements taken from the radiated data sheets provided in Appendix B. The data sheets include the emission frequencies and the corrected level. An explanation of the field strength calculation is given in paragraph 7.4.

Measurements were made of the fundamental frequency of 134.2 kHz on each of the configurations listed in Table 7.1. Additionally, the spectrum was investigated for harmonics and spurious emissions to 30 MHz at 30 meters. No harmonics or spurious emissions were detected up to 30 MHz on any configuration at 30 meters. The measurement level of the fundamental of each configuration is shown in Table 7.2.

	11	ILASUKLINIL					
		Judg	gment: EUT F	Passed by 4.0	dB		
Carfinnetian	Freq.		ected vel		mit eters ¹		mit eters ¹
Configuration	(kHz)	Peak dB(uV/m)	Average dB(uV/m)	Peak dB(uV/m)	Average dB(uV/m)	Peak dB(uV/m)	Average dB(uV/m)
Advantage 9.5" x 42.34" And 9.5" x 30.34"	134	100.6	81.0	104	85	N/A	N/A
Advantage No OH antenna	134	92.5	84.4	NA	NA	125	105
Encore 9.5" x 35.42"	134	100.3	78.1	104	85	N/A	N/A
Encore No OH antenna	134	88.1	77.2	NA	NA	125	105

 TABLE 7.2

 MEASUREMENT OF FUNDAMENTAL FREQUENCY

¹Limits at 10 and 3 meters are calculated using a 40 dB/decade extrapolation factor, in accordance with FCC Part 15, Subpart C, Intentional Radiator, paragraph 15.31, (f), (2). Fundamental emissions could not be detected beyond the 3 and 10 meter distance.

The spectrum from 30 MHz to 1000 MHz was investigated for spurious emissions. The worst case spurious emission levels, taken from the data sheets in Appendix B, are given in Table 7.3. Prescans revealed emission levels were highest with DCB 2 installed. OATS testing was performed only with DCB 2 installed. Plots of the peak signature scans of the Advantage/MPD-3 9.5" x 42.34" and 9.5x30.34" and Encore 9.5" x 35.42" configurations, with DCB 2 and DCB1 installed are not included in the report but are on file at Southwest Research Institute.

	Judg	ment EUT passed by 2	.1 dB	
Configuration	Frequency (MHz)	Corrected Level ¹ dB(uV/m)	Limit ² dB(uV/m)	dB under limit
	72.025	33.6	39	5.4
Advantage/MPD-3	48	35.8	39	3.2
	36	36.9	39	2.4
Encore	36	36.6	39	2.1
Encore	103.071	38.8	43.5	4.7
	108.011	36.9	43.5	6.6

TABLE 7.3MEASUREMENT OF SPURIOUS EMISSIONS

¹ All readings are quasi-peak manual measurements made with a receiver.

² These emissions are related to the digital electronics and are compared to the 15.109 Class A limit.

The frequency and amplitude stability of the TRINDTM TIRISTM fundamental emission were verified by varying the AC input voltage between 85% and 115% of the nominal 120 VAC. Both the TRINDTM TIRISTM Encore and Advantage/MPD-3 configurations were tested. The amplitude of the fundamental emission changed by a maximum of 0.4 dB. The frequency of the fundamental emission changed by a maximum of 1000 Hz.

7.3 Test Instrumentation for Radiated Measurements

Scans were made at an open area test site (OATS) and in an RF semi-anechoic chamber 28' long x 16' wide x 16' high with its interior lined on the ceiling and four walls with pyramidal absorber material up to four feet in length. Measurements were made with a spectrum analyzer and a quasi-peak adapter in the anechoic chamber and with a receiver at the OATS. The list of test instrumentation used to perform the testing is shown in Appendix C.

7.4 Field Strength Calculation

The field strength was calculated by adding the antenna factor and cable factor, and subtracting the amplifier gain (when used) from the measured reading. The basic equation with a sample calculation is provided below:

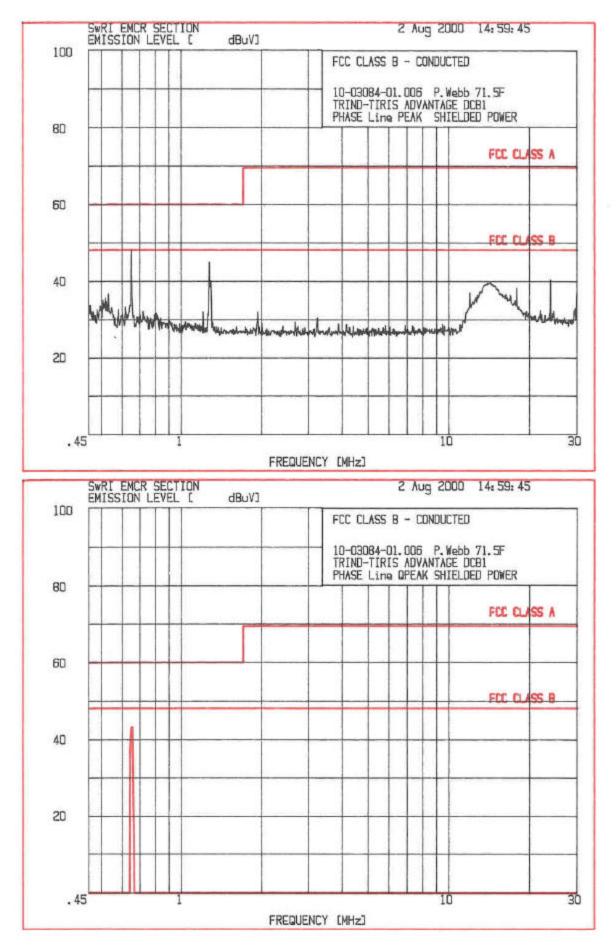
 $\begin{array}{rcl} FS = RA + AF + CF - AG \\ Where & FS &= & Field Strength \\ RA &= & Receiver Amplitude \\ AF &= & Antenna Factor \\ CF &= & Cable Attenuation \\ AG &= & Amplifier Gain \end{array}$

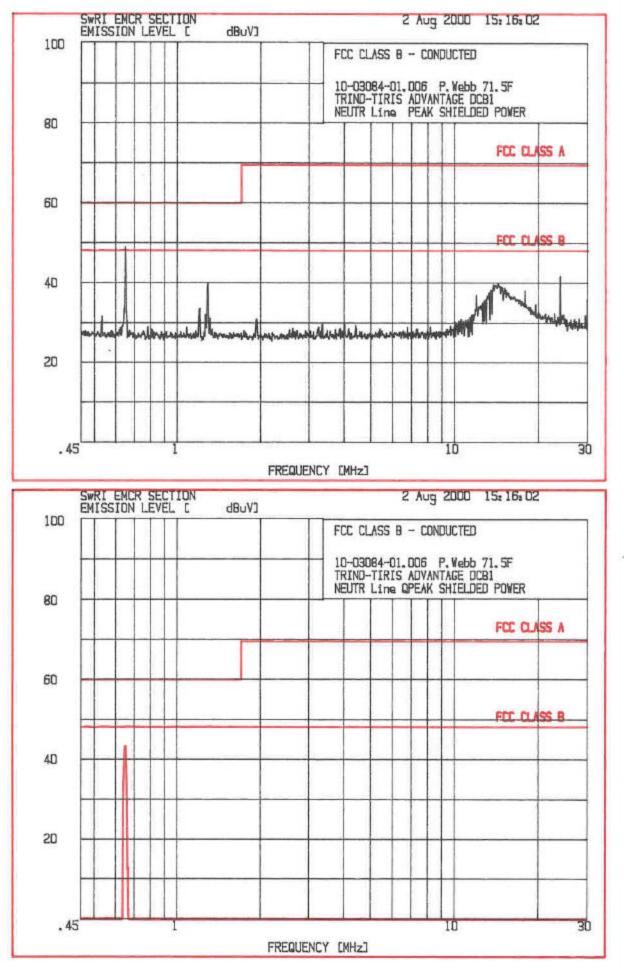
For example, reducing the first row of the enclosed radiated data sheet on page 27 (36 MHz):

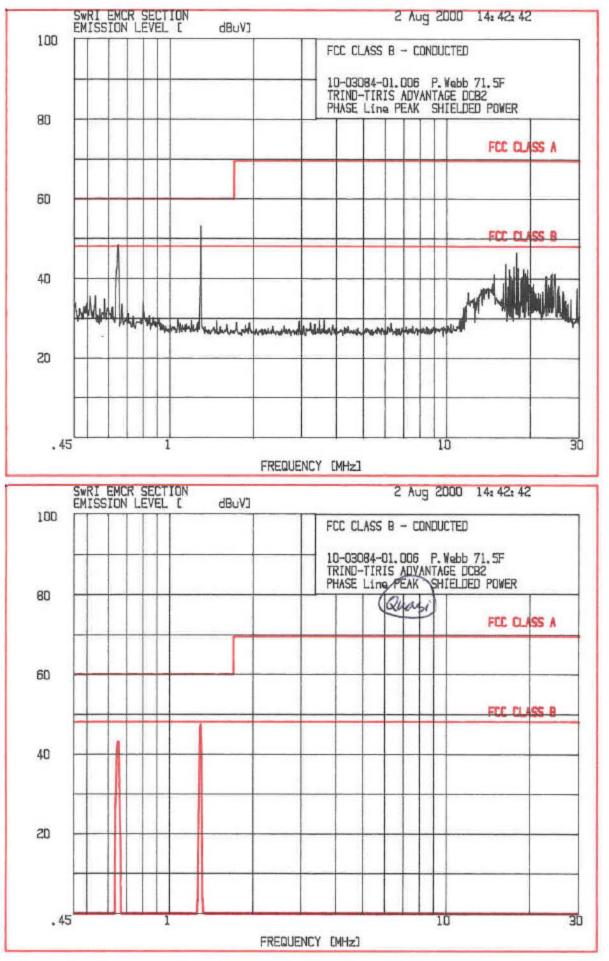
$$15.3 \text{ dB}(\text{uV})$$

$$19.2 \text{ dB}(1/\text{m})$$

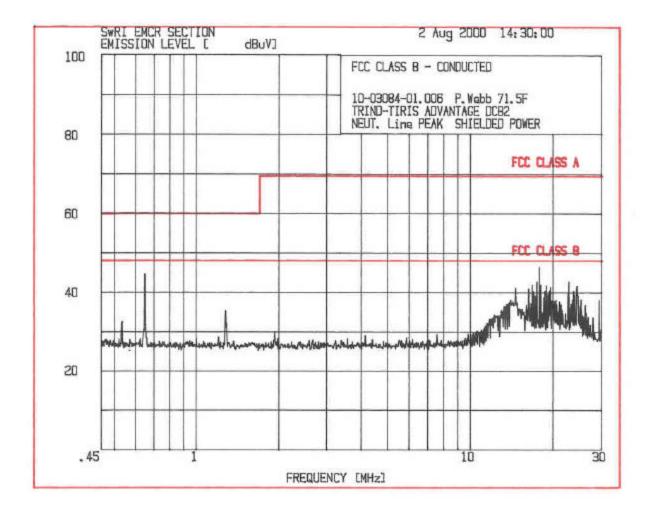
$$2.4 \text{ dB} (CF/AG FACTOR)$$

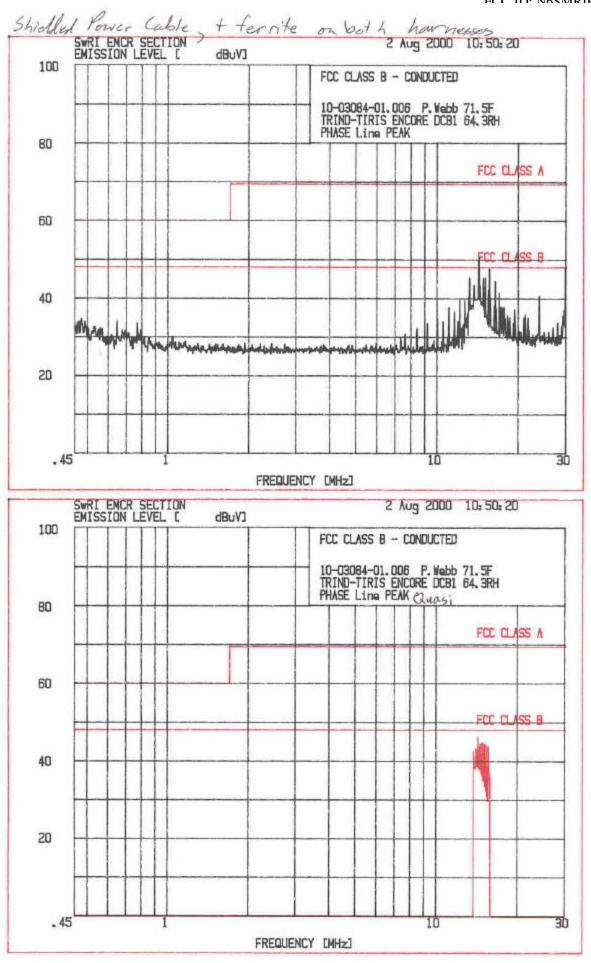

$$FS = 36.9 \text{ dB}(\text{uV/m})$$

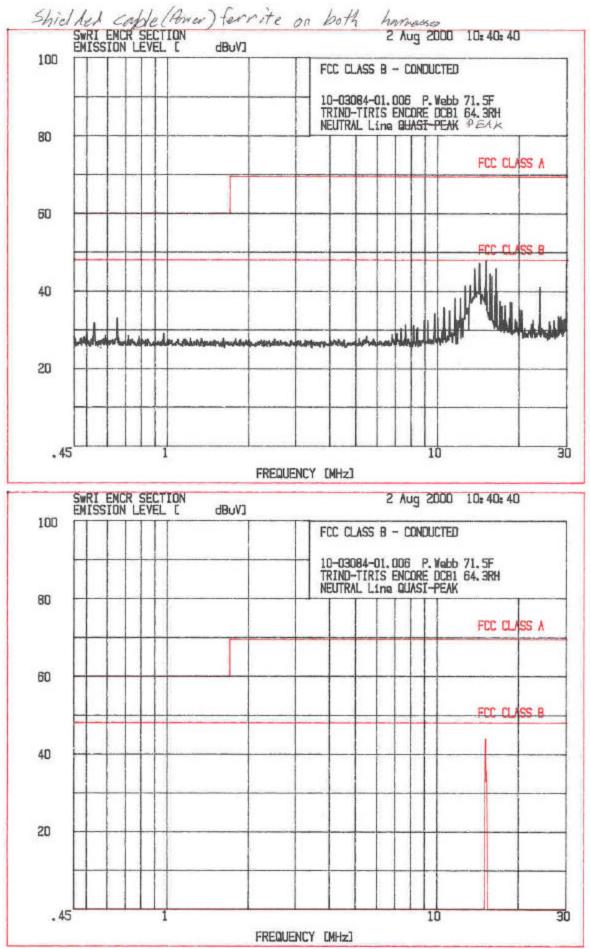

To convert the dB(uV/m) value to its corresponding level in uV/m is as follows:

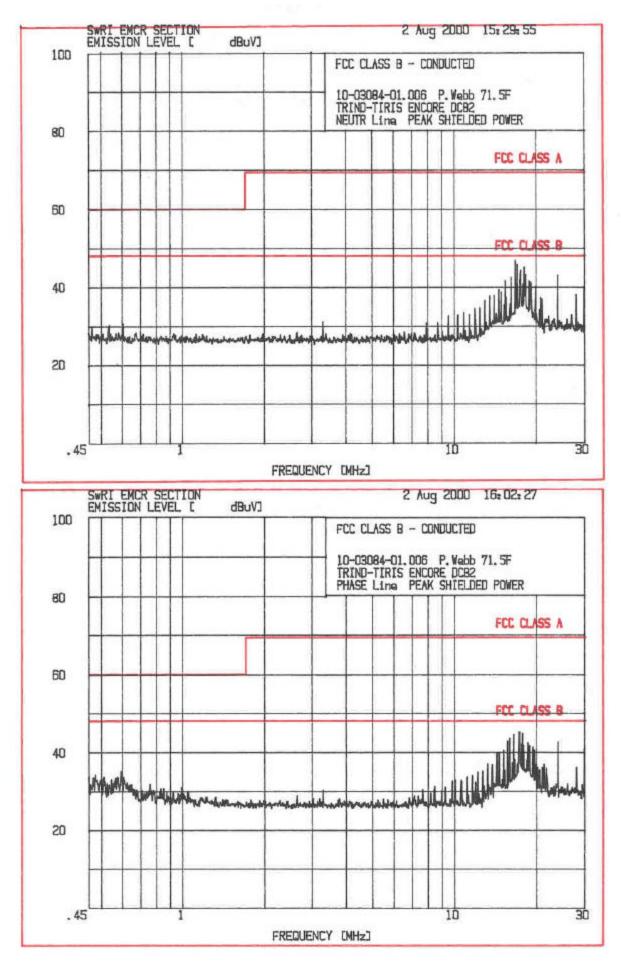

Level in uV/m Common Antilogarithm [(36.9 dBuV/m)/20] = 69.98 uV/m

APPENDIX A


CONDUCTED MEASUREMENT PLOTS







²⁰ of 35

APPENDIX B

RADIATED MEASUREMENT DATA SHEETS

EDEOLIENCY (MH-)										
	0,134	0.134	.403	504.		0.134	0.134			
[RANSDUCER €	Emco	6512		A		EMCO	6512			
TRANSDUCER DIST. from EUT(m)/HEIGHT(m)	2-	2-	3-1-	m	X	0-	0	$\left<\right>$	\sum	\langle
POLARIZATION (V,H) AMBIENT NOISE (A)	Paralle 1 FuT			*	\wedge	Parallel	A	Parallol to Had high ast	to But of Emissions	(n)
SIGNAL DIRECTION	° L1Z	217 0	217 0	217 0	° /	193 °	193 0	• •	٥	0
RECEIVER ATTENUATION (dB)					\langle			Funda monta L could not be	· .	Signah ger 2
METER READING (dB μ V)	27.8	19.7	6.8	- 3.4	1	35.9	16.3	at 30	0 meters	
TRANSDUCER FACTOR (dB)	64.3	64.3	64,3	643	_	64.3	64.3			
EXTERNAL GAIN/ CABLE LOSS (dB)	4.0	2.0	0.1	4.0	_	0.4	0.4			
CORRECTED LEVEL (dBµV/m)	92.5	8 4.4	2112	G1.3		1001	0.18			
LIMIT (dBµV/m)	125	105	125	105		10-4-00 Lab	85			
Date: 4 Aug 00	9	(2) Detect	Detection Method: _	O CISPR	PEAK	D PEAKAVERAGE	0 Other			
OPRIASSI: C Hate		EUT A.	duanta	EUT Advantage and MPD-3	MPU	5-	0682			
Runof		Notes, D	Peak Mea	ine ment	2 Ave	cage meas	urement (Notes. D Peak Measurement @ Average Measurement @ P Meusurement	ur e ment	+
Project No.: 10-030 84 .01.00 G	15, 15.		Yeak Limi 25 ch Byulm 3 motors	E at 30 m	eton = s imitat 3 u/m . G	<u> Э Реак Limit at 30 metors = 85dbµU/m, at lo</u> <u>=125dbµu/m (D AVG Limit at 30metors = 65 db</u> at 3 metors = 105dbµu/m . @ Door Antonna О · 1 л	at loma 65 dout tonna (2 1.0 1	naton = 104 dout/m at U/m, at 10 maton = 84 (D) Ouwhaad Antonno	O Peak Limit at 30 meters = 85abpulm, at 10 maters = 104 ab µl/m at 3 maters =125 a Bµu/m BAVE Limit at 30 maters = 65 dBµl/m, at 10 maters = 84 ab µu/m, at 3 moters = 105 dBµu/m. @ Door Antonna BOurhaad Antonne Dour 3 moters = 105 dBµu/m.	meter bull
Time, Temp., & % r.H.: 11:10, 84°, 6170	048 C	6190			Approved:	1	Land Killermy	Low		

TRANSDUCER ξ MLC 6512 30 30 30 TRANSDUCER DIST. 30 1 1 1 1 1 TRANSDUCER DIST. 30 30 30 30 30 30 TRANSDUCER DIST. 30 30 30 30 30 30 EUT(m)HEIGHT(m) 30 $3c$ $3c$ $3c$ $3c$ $3c$ PULARIZATION (V.H) $64T$ $Freematule$ $Freematule$ $Freematule$ $Translewale NMBERT NOUSE (A) 64T Freematule Freematule Translewale Translewale SIGNAL DIRECTION 3co 3co 3co 3co 3co 3co SIGNAL DIRECTION 3co 3co 3co 3co 3co 3co SIGNAL DIRECTION 3co 3co 3co 3co 3co 3co NECENTER Frantine Frantine Frantine Frantine Trainine MATER NADION (dB) -cc -7 -cc -7 -cc RECENTER 3r 2r 2r 2r 2r 2r RECENTER 3r <$	FREQUENCY (MHz)	3	30	б	30	м	30				
NSDUCER DIST. 30 <	TRANSDUCER	EMCO	6512				A				
ARIZATION (V.H) Ranultation Performation Performation <t< td=""><td>TRANSDUCER DIST. from EUT(m)/HEIGHT(m)</td><td>30</td><td>30</td><td>30</td><td>30</td><td>30</td><td>30</td><td></td><td></td><td>\backslash</td><td>\backslash</td></t<>	TRANSDUCER DIST. from EUT(m)/HEIGHT(m)	30	30	30	30	30	30			\backslash	\backslash
AL DIRECTION $3 \iota \circ$ <		Paraller to E4T	A	Perpendicula TU Elet	1	Parallol To .	A				
EIVER EIVER EIVATION (dB) -6.7 -6.6 -7.7 -6.6 -7.1 -7.1 ER READING -6.7 -6.6 -7.7 -6.6 -7.6 -7.1 -7.1 NSDUCER 38.2 33.5 33.5 33.5 33.5 33.5 33.5 NSDUCER 38.2 33.2 23.2 23.7 27.2 27.2 23.5 TOR (dB) 0.7 0.7 2.2 27.5 28.5 28.5 T (dB, Vim) 29.5 29.5 29.5 28.5 28.5 28.5 28.5 T (dB, Vim) 29.5 29.5 28.5 28.5 28.5 28.5 T (dB, Vim) 29.5 29.5 28.5 28.5 28.5 28.5 T (dB, Vim) 29.5 28.5	SIGNAL DIRECTION						100	0	0	0	0
ER READING $-c.7$ -6.6 -7.7 -6.6 -7.7 -6.6 -7.1 -7.6 </td <td>RECEIVER ATTENUATION (dB)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\$</td> <td></td> <td></td> <td></td> <td></td>	RECEIVER ATTENUATION (dB)						\$				
NSDUCER 3 \pounds , 2 33 , \pounds 39 , \pounds 33 , \pounds 23 , \pounds 23 , 22 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 24 , 53 , 24 , 53 , 24 , 53 , 24 , 54 ,	METER READING $(dB\mu V)$	- 6.7		2.6-		- 7.6	- 7.1				
ERNAL GAIN/ LE LOSS (dB) 0.7 2.2 0.7 2.2 0.7 2.2 0.7 2.2 RECTED LEVEL 33.2 29.3 32.2 29.4 32.3 28.5 29.5 <td< td=""><td>TRANSDUCER FACTOR (dB)</td><td>04</td><td>33.8</td><td>39.2</td><td>33.8</td><td></td><td>33.5</td><td></td><td></td><td></td><td></td></td<>	TRANSDUCER FACTOR (dB)	04	33.8	39.2	33.8		33.5				
RECTED LEVEL 33.2 $2.9.3$ 32.2 $2.9.4$ 32.3 $2.8.4$ V/m) $2.9.5$	EXTERNAL GAIN/ CABLE LOSS (dB)	0.7	2.2	0.7	2.2	6.2	2.2				
$ T (dB_{\mu}V/m) 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5$	CORRECTED LEVEL (dBµV/m)	33.2	29.3	3 2.2	29.4	32,3	28.82				
HAugoo O O O O O VAugoo O Detection Method: X CISPR PEAK AVER. Aret. Hal EUT Odvantage and MPD-3 Aret. Notes. HL 3 orthegonal pluns Into: 10-03084.01.00 F 134 kdie Tro 300 kdie Arabash Notes. ALA 300 kdie Into: 10-03084.01.00 F D Andresk only Aret. 13 Nuly Aret. Andresk only Aret. Andresk only	LIMIT (dB μ V/m)	29.5	29.5	29.5	2 9.5	29.5	29.5				
Ast: Hal EUT CALCantage and MPD-3 Run of Notes, HL 3 orthegonal planes t No: 10-03084.01,00 b 134 kde TU 30 MMz ategory: ELL Part 15 15209 Temp. & & r.H.: 14:00 810 80070 Approved: Approved:	Date: 4Aug 00	a	Detect	() Method:	C & CISPR	PEAK		Other			
Run of Notes, 44, 3 orthegonal plunes of 01 Notes, 44, 3 orthegonal plunes t No: 10-03084.01,00 h Mask TN 30 MHz ategory: ELL Part 15 15209 Temp. & & r.H.: 14:00 810 80070 Approved: Approved:	OPRIASSL: Hal		BUT	duanta	ar and	UMPD		82			
1 No:: 10-03084.01,00 6 134 кн. 72 30 11 1/2 ategory: FLL Part 15 15201 Temp., & R.H.: 17:00 81° 8070 Andread Approved:	Run	1	Notes, A		the ga	ral ph		5 60 11 04	Fram		
15 15209 Course OnLy Approved	Project No.: 10 - 03 08	4.01,00	1	134 KHE	C	al Hz					
810 8-00 970 Approved:	Test Category: FCC Po	15	15209		LINO MAS						
	Time Temn & % r.H.: /4.	13				Approv		Paris a Carm	June		
						11			0		

	rest Stantaru(optionary innu); Test Standard(optional linni); Test Sponsor: Test Technician: Temn.(°F)/Humiditv(%);	Test Standard(primary limit): Test Standard(optional limit): Test Sponsor: Test Technician: Temn.(°FV)Humiditv(%):		8/4/00 11:10 FCC Class A Marconi Charles Hale 84/61	8/4/00 11:10 FCC Class A, Part 15 (10 m radiated) Marconi Charles Hale 84/61	Advantage And MPD-3 DCB2 8/4/00 11:10 FCC Ctass A, Part 15 (10 m ra Marconi Charles Hale 84/61	CB2 m radia	(ted)	Detection	Detection Method: Test Receiver: Antenna:		ction Method: QP EUT Mode: Power On Test Receiver: Rohde&Schwarz ESS EMI sn: DE31157 Antenna: 3: BDA255 sn:535 (primary) 5: T2 sn:L178 (primary) 7: T3 sn:L108 (primary) Ferrite added to cable Harness Assembly leading to O'head Antennas.
FREQ Orient.	4	A	Antenna		UnCorr'd Level	Correction Factors (dB)	sction S (dB)	Corr'd Level	Primary Limit	Optional		Comments (** denotes a measurement above the primary limit)
θ	I.D.		Ht(m)	Pol. Ht(m) Dis(m)			Cable	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	Note: Cable factor includes preamplifier gain at frequencies above 200 MHz.
36.000 360	0 3	Λ	1.42	10	15.3	19.2	2.4	36.9	39.0		-2.1	Digital Emission
48.000 360	0 3	N	1.42	10	20.4	12.6	2.8	35.8	39,0		-3.2	Digital Emission
60.000 360	0 3	>	1.42	10	17.4	7.2	3.3	27.9	39.0		-11.1	
66.000 3	34 3	>	1.52	10	16.6	7.2	3.5	27.3	39.0		-11.7	
69.921 358	8 3	>	1.61	10	14.7	7.4	3.6	25.7	39.0		-13.3	
72.035	3	N	1.42	10	22.5	7.5	3.7	33.6	39.0		-5.4	Digital Emission
150.000	-3	>	1.42	10	8.0	15.9	5.8	29.6	43.5		-13.9	Ambient
119.995 179	9 3	Η	4.01	10	12.4	13.8	5.0	31.2	43.5		-12.3	
203.991 183	5	Η	4.01	10	31.3	19.4	-20.9	29.9	43.5		-13.6	
221.991 253	3 5	H	3.15	10	30.7	20.2	-20.6	30.2	46.5		-16.3	
203.990 5	53 5	N	1.04	10	32.3	19.4	-20.9	30.8	43.5		-12.7	
224.000 6	69 5	>	1.00	10	25.8	20.2	-20.5	25.5	46.5		-21.0	
524.100 6	69 7	2	1.82	10	22.0	25.6	-15.4	32.2	46.5		-14.3	Ambient
960.000 6	69 7	>	1.82	10	16.6	35.9	-11.1	41.3	49.5		-8.2	Ambient
960.000 6	69 7	Η	1.82	10	16.6	35.9	-11.1	41.4	49.5		-8.1	Ambient
524.000	0 7	H	1.82	10	24.3	25.7	-15.4	34.6	46.5		-11.9	Ambient
216.000 6	65 5	H	2.68	10	29.5	20.5	-20.7	29.3	46.5		-17.2	
275.991 363	3 5	Η	2.82	10	25.8	21.2	-19.7	27.3	46.5		-19.2	
304.001 3	30 5	>	2.03	10	28.9	18.4	-19.1	28.2	46.5		-18.3	
320.000 3	30 5	>	2.03	10	29.4	18.5	-18.7	29.2	46.5		-17.3	
-	+											
	-											
												and the second sec
	-						1					

				ENISSIONS DN THE OTHER TWO H-FIELD POLOVITATIONS WERE LOWER IN LEVEL.		FUNDAMENTAL ENISSION COLLD NET BE SEEN AT BOMETERS.							4	AVERAGE MERSURENT 3 BP MENSURENEN	= 85 dbuilm; @ 3 METERS < 125 Abullin (40 dB	ROLLOFF. E) AVG LIMIT TO ZOMETERS = 65 dBu V/m; (2) 3 METERS =	(C) DOUR ANTENINA (D) OVERHEAD	9
Ð	134 KH2	Ą	101	ĵ	° O	1	13.3	64.3	6.4	78.1	85	Other		SC MEASU	Q 3 ME	30METER	ROLLOFF) @ D	the state of the
0	134 KHz		101	PARALLEL	° 0	1	35.6	64.3	<i>p.4</i>	100.3	104	AVERAGE		(2) AVERIA	5 dBulla ;	S LIMIT 2	E ROLLOFF)	1
			$\overline{\langle}$	×	o							PEAK				. D AVI	dBuv/m (40dg Pen DECNOF	wpproveu.
<i>(1)</i>	WO3KA2		m	ſ	345 °	ı	-0.1	54.6	0.1	54.3	95.5	CISPR	DCB 2	() PEAK MEASUREMENT	D PEAK LIMIT Q JOMETERS			
(G)	403 KH	1266 +	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		345 °	۱	16.3	54.6	D.4	71.3	115.5	Detection Method:	ENCORE) PEAK M	D PEAK LIM	PER DECADE		0
Q	134 KH2	5/2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		345 °	1	12.4	64.3	0.4	27.2	105 3	Detectic	EUT É	Notes. (1		l	12 2	1.0.1
9	134 KHz	ENCO 6512	m	PARALLEL	345 °	١	23.4	64.3	D.4	1.88	125 C	Θ				01.006	82 0 °E	
C	FREQUENCY (MHz)	TRANSDUCER	TRANSDUCER DIST. from EUT(m)/HEIGHT(m)	Ĥ	SIGNAL DIRECTION	RECEIVER ATTENUATION (dB)	METER READING (dBµV)	TRANSDUCER FACTOR (dB)	EXTERNAL GAIN/ CABLE LOSS (dB)	CORRECTED LEVEL (dB, V/m)	LIMIT (dBµV/m)	Date: AV6 3. 2000	OPRIASSL: C. HALE	Conf. Run of	of	Project No.: 10-03084-01.006	Test Category: FCC PART 15 , 15.209	Time, temp., & % t.n.:

FREQUENCY (MH2)	3MH	30 MHz	3mHr	ZOMHI	3MHr	30 442				
TRANSDUCER	ENLO 6	6512 S/H	1245 -			A				
TRANSDUCER DIST. from EUT(m)/HEIGHT(m)	30	35	30	30	- 2	30/	\backslash	\sum	\sum	\sum
POLARIZATION (V,H) AMBIENT NOISE (A)	Phenucen	f	RAVENDICULAR TO EUT	ULAR >>	PARALLEL GROUDD	6				
SIGNAL DIRECTION	0 °	° O	° Ø	o °	° ()	• 0	0	0	U	
RECEIVER ATTENUATION (dB)	I	ı	l	I	ţ	I				
METER READING $(dB\mu V)$	-15.6	-3.7	- 15.6	-3.3	- 16	-3.8				
TRANSDUCER FACTOR (dB)	39.2	33.8	39.2	33.8	39.2	33.8				
EXTERNAL GAIN/ CABLE LOSS (dB)	0.7	2.2	0.7	2.2	0.7	2.2				
CORRECTED LEVEL (dBµV/m)	24.3	32.3	24.3	32.7	24	32.2				
LIMIT $(dB\mu V/m)$	29.5	29.5	29.5	29.5	29.5	25.5				
Date: AUK 3. 2000	0	Detec	Detection Method: X CISPR	K CISPR	PEAK	AVERAGE	Other			
OPR/Asst. 2. HALE		BUT	ENCORE	DCB 2	: Born	OVERAGO	AND	DUDL ANT	ANTENNAS CONNECTED	MALECRED
ConfRunof		Notes,	10 ANBLENT	aut only						
Project No.: 10 -0 3084.01.006	1.01.006		Scannes	~ 134 R.H.	#2 th	30 MHZ 1	3 polarina	writin		
Test Category: HLL Phar 15.	15, 15,209						, , , , , , , , , , , , , , , , , , ,	8		
Time Tamn & Cor H .	4.5.8	F 57.17	r		American.		A U CO	man ~		

SwRI Open Area T Device Under Test: Date / Time:	ler Te	t Test st:	Site R	adiated Emissi Encore DCB2 3 Aug 00, 9:00	suo c	v2_2			Project Detection Test	Project Number: 10- Detection Method: QP Test Receiver: Rol	10-03084.01.006 QP Rohde&Schwarz	ESS EMI sn:	EUT Mode: Normal DE31157
Test Standard(primary limit): Test Standard(optional limit): Test Sponsor: Test Technician: Temn.(°F)/Humiditv(%)):	urd(pri urd(qri or: ician: Humi	mary li ional li litv(°	mit): mit): %):	FCC Cl none Marcon C. Hale 83.9F. 5	FCC Class A, Part 15 (10 m radiated) none Marconi Commerce Systems C. Hale 83.9F, 59.1%	15 (10 c Syster	m radia ms	(ted)		Antenna:		3: BDA25S sn:535 (primary) 5: T2 sn:L178 (primary) 8: T3 sn:L175	
FREO Orient.	nt.		Antenna		UnCorr'd	Correction Factors (dB)	s (dB)	Corr'd	Primary	Optional	Margin	Co	Comments ** denotes a measurement above the minnerv limit)
	LD.		. Ht(m)	Pol. Ht(m) Dis(m)	(dBuV)	Ant	Cable	(dBuV/m)	(dBuV/m)	(dBuV/m)	(Frumary) (dB)	Note: Cable factor includes prenn,	Note: Cable factor includes preamplifier gain at floquencies above 200 MHz.
36.000 2	266 3	>	2.34	10	15.0	19.2	2.4	36.6	39.0		-2.4	EUT Related (DIG ITAL	EMISTION)
48,000 1	160 3	>	1.62	10	8.0	12.6	2.8	23.4	39.0		-15.6	EUT Related	
68.712 2	246 3	>	2.60	10	14.3	7.4	3.5	25.3	39.0		-13.7	EUT	
80.000	-1 3	>	1.53	10	14.4	8.5	3.9	26.8	39.0		-12.2	EUT Related	
81.432 3	300 3	>	1.56	10	16.2	8.8	3.9	28.9	39.0		-10.1	EUT Related	
137.426 2	295 3	>	1.58	10	11.9	15.0	5.5	32.5	43.5		-11.0	EUT Related	
171.800	0 3	>	1.54	10	10.7	17.8	6.3	34.7	43.5		-8.8	EUT Related (DIGITAL	ENCOSION)
60.000 2	229 3	H	4.01	10	9.3	7.2	3.3	19,8	39.0		-19.2	EUT Related	
85,889 1	179 3	H	4.01	10	17.6	9.8	4.1	31.4	39.0		-7.6	EUT Related (DIGITAL	L EWISSION
103.071	182 3	H	3.46	10	21.9	12.3	4.7	38.8	43.5		4.7	EUT Related plus	
103.071	182 3	H	3.46	10	16.6	12.3	4.7	33.5	43.5		-10.0	FM station only	
108.011 3	360 3	H	4.01	10	1.91	13.0	4.8	36.9	43.5		-6.6		EW (15 toul)
119.993 3	360 3	H	4.01	10	15.1	13.8	5.0	34.0	43.5		-9.5	EUT Related (
126.000	0	H	2.71	10	10.1	14.2	5.2	29.5	43.5		-14.0	EUT Related	
131.997 3	360 3	H	4.01	10	13.0	14.6	5.4	32.9	43.5		-10.6	EUT Related	
144,000	92 3	H	4.01	10	12.2	15.5	5.7	33.4	43.5		-10.1	EUT Related	
150.000	90 3	H	4.01	10	7.3	15.9	5.8	28.9	43.5		-14.6	EUT Related	
	5 16	>	1.00	10	30.2	20.2	-20.6	29.7	46.5		-16.8	EUT Related	
257.995	81 5	>	1.00	10	23.8	21.8	-19.9	25.6	46.5		-20.9	EUT Related	
288.000 3	360 5	>	4.00	10	30.4	20.0	-19.5	30.9	46.5		-15.6	EUT Related	
304.000 1	191 5	>	4.00	10	27.8	18.4	-19.1	27.0	46.5		-19.5	EUT Related	
216.000	0 5	H	3.03	10	36.8	20.5	-20.7	36.6	46.5		6'6-	EUT Related (DIGITHI	L EMISSION)
222.000 3	360 5	H	3,01	10	32.4	20.2	-20.6	32.0	46.5		-14.5	EUT Related	
227,994	0 5	-	3.01	10	32.5	20.5	-20.5	32.5	46.5		-14.0	EUT Related	
540.000	0 8		2.35	10	13.5	24.1	-15.3	22.3	46.5		-24.2	Ambient	
700.000	0 8	2	2.35	10	11.2	27.7	-13.6	25.2	46.5		-21.3	-21.3 Ambient	

EUT Mode: Normal DE31157	nents 1 above the primary limit) 1 gain at frequencies above 200 MHz.			
ESS EMI sn: 55 (primary) rimary)	 Comments (*** denotes a measurement above the primary limit) Nose: Cable factor includes preamplifier gain at frequencies above 200 MHz. 	Ambient	Ambient	
QP Rohde&Schwarz ESS El 3: BDA25S sn:535 (prin 5: T2 sn:L178 (primary) 8: T3 sn:L175	Margin (Primary) (dB)	50	-21.4 Ambient -16.1 Ambient	
Detection Method: QP Test Receiver: Rohde&Schwarz Antenna: 3: BDA25S sn:5: 5: T2 sn:L178 (p 8: T3 sn:L175	Optional M Limit (P			
Test Ro A	Primary 0 Limit (dBuVim) 6	10.10	46.5	
	Corr'd P Level (dBaV/m) (d	0110	33.4	
15 (10 m radiated) c Systems	and the second	-10.7	-13.6	
15 (10 1 System	Correction Factors (dB) Ant Cable	35.0		
DCB2 0, 9:00 iss A, Part Commerc	9.1% UnCorr'd Level	21.8	ГП Гб	
Encore DCB2 3 Aug 00, 9:00 FCC Class A. I none Marconi Comn	1 W 1	01 01	0 0	
	t(m)	2.35	2.35	
t: ary limit mai limit	An An Pol. J	> H		T
er Tes : rd(prim rd(optic r:	tr. It.	8 0 8	8 8 0 0	
Device Under Test: Date / Time: Test Standard(primary limit): Test Sponsor: Test Sponsor:	Temp.(°F)/Humidity(%): REQ Orient. Ant AHz 0° LDI Pol. H			
Date Date Test S Test S	Temp FREQ MHz	975.000 540.000	975.000	

APPENDIX C

TEST INSTRUMENTATION

MANUFACTURER	MODEL NO.	DESCRIPTION	SERIAL NO.	CAL DATE						
	CONDU	CTED EMISSIONS								
Rhode & Schwarz	ESH2-Z5	LISN	872461/021	26 Apr 01						
SwRI		3 dB Transient Suppressor								
Rotronic	PA1	Hygrometer	60857	02 Dec 00						
Rhode & Schwarz	ESH-2	Receiver	879014/018	01 Feb 01						
HP	8566B	Spectrum Analyzer	2421A00543	27 Oct 00						
HP	85650A	Quasi-Peak Adapter	2043A00213	13 Oct 00						
	ANECH	HOIC CHAMBER								
SwRI	UTC10-221-1	RF Amplifier	9112SN15	Checked						
Hewlett Packard	8568B	Spectrum Analyzer	2152A03081	13 Oct 00						
Hewlett Packard	85650A	Quasi Peak Adapter	2043A00254	01 Sep 00						
EMCO	3121-DB3	Dipole Antenna	148	Verified						
EMCO	3121-DB4	Dipole Antenna	1097	Verified						
EMCO	3121-DB2	Dipole Antenna	147	Verified						
EMCO	6512	Passive loop Antenna	1265	Verified						
OATS										
Rhode & Schwarz	ESS	EMI Test Receiver	848588/003	16 May 01						
SwRI	2 MHz-1GHz	OATS Pre-Amp	14-82-020	Verified						
Electro Metrics	BDA-25S	Dipole Antenna	535	28 May 01						
Electro Metrics	DM-105-T2	Dipole Antenna	L-000178	30 May 01						
Electro Metrics	DM-105-T3	Dipole Antenna	L-000108	30 May 01						
EMCO	6512	Loop Antenna	0001-1265	31 Jul 01						
	VOLTA	GE VARIATION								
HP	8568B	Spectrum Analyzer	2152A03881	13 Oct 00						
EMCO	6512	Loop Antenna	1265	31 July 00						
Rhode & Schwarz	ESH 2	Test Receiver	879014/018	01 Feb 01						

APPENDIX D

PHOTOS OF TESTED EUT

The photos of the tested EUT are in the electronic file "Appendix D Photos of Tested EUT.jpg"

APPENDIX E

PHOTOS OF TEST SETUPS

The test setup photos are in the electronic file "Appendix E Test Setup Photos.jpg"

FUNCTIONAL DESCRIPTION AND BLOCK DIAGRAM

INSTALLATION INSTRUCTIONS

FCC ID LABEL

SCHEMATICS