2. Photograph for the worst case configuration

3. Sample Calculation

The emission level measured in decibels above one microvolt ($dB\mu V$) was converted into microvolt (μV) as shown in following sample calculation.

For example:

+	Measured Value at 0.45MHz Cable Losses *	35.0 dB ₄ V 0.0 dB
=	Conducted Emission	35.0 dB μ V (= 56.2 μ V)

* In case of RG214/ μ RF cable 15Ft, the loss is about 0.17dB at the frequency of 30MHz which is negligible.

2. Photograph for the worst case configuration

3. Sample Calculation

The emission level measured in decibels above one microvolt $(dB\mu V)$ was converted into microvolt per meter $(\mu V/m)$ as shown in following sample calculation.

For example:

	Measured Value at 129.4MHz	19.5 dB _p V
, +	Antenna Factor	11.0 dB
+	Cable Loss	2.1 dB
-	Preamplifier	0.0 dB
-	Distance Correction Factor *	0.0 dB
=	Radiated Emission	32.6 dB/W/m
		$(= 42.7 \ \mu V/m)$

^{*} Extrapolated from the measured distance(1.5m) to the specified distance(3m) by an inverse linear distance extrapolation.