

SILEX TECHNOLOGY AMERICA, INC. TEST REPORT FOR THE

WIRELESS ETHERNET BRIDGE, XRX-610

FCC PART 15 SUBPART C SECTION 15.407 & RSS-210 ISSUE 7

TESTING

DATE OF ISSUE: OCTOBER 27, 2009

PREPARED FOR: PREPARED BY:

Silex Technology America, Inc.

Mary Ellen Clayton
CKC Laboratories, Inc.
Midvale, UT 84047

South

Mary Ellen Clayton
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

P.O. No.: 3354-00 Date of test: September 11-29, 2009

W.O. No.: 89951

Report No.: FC09-180

This report contains a total of 67 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
FCC 15.31(m) Number Of Channels	5
FCC 15.33(a) Frequency Ranges Tested	5
EUT Operating Frequency	5
Temperature And Humidity During Testing	5
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	
Measurement Uncertainties	6
Report of Emissions Measurements	6
Testing Parameters	
FCC 15.407(a)(1) RF Output Power	8
FCC 15.407(a)(3) RF Output Power	11
FCC 15.407(a)(5) Peak Power Spectral Density	14
FCC 15.407(a)(6) Peak Excursion	20
FCC 15.407(b)(1) OATS Spurious Emissions	24
FCC 15.407(b)(4) OATS Spurious Emissions	27
FCC 15.407(b)(6)/15.207 Conducted Emissions	30
FCC 15.407(b)(6)/15.209 Radiated Emissions	37
FCC 15.407(b)(7)/15.205 Undesirable Emissions Limits	45
FCC 15.407(g) Frequency Stability	53
Bandedge	
26dB Bandwidth	
RSS-210 99% Bandwidth	64

Page 2 of 67 Report No.: FC09-180

Steve Behm, Director of Engineering Services

ADMINISTRATIVE INFORMATION

DATE OF TEST: September 11-29, 2009	DATE OF RECEIPT: September 11, 2009			
REPRESENTATIVE: Ron Tozaki				
MANUFACTURER: Silex Technology America, Inc.	TEST LOCATION: CKC Laboratories, Inc.			
157 West 7065 South Midvale, UT 84047	110 Olinda Place Brea, CA 92823			
TEST METHOD: ANSI C63.4 (2003), RSS-210 1	Issue 7 and RSS GEN Issue 2			
PURPOSE OF TEST: To perform the testing of the Wireless Ethernet Bridge, XRX-610 with the requirements for FCC Part 15 Subpart C Section 15.407 and RSS-210 devices.				
APPROVALS				
QUALITY ASSURANCE:	TEST PERSONNEL:			
	Store			

Eddie Wong, Senior EMC Engineer

SUMMARY OF RESULTS

Test	Specification/Method	Results
RF Output Power (5.15-5.25 GHz)	FCC 15.407(a)(1)	Pass
RF Output Power (5.25-5.35GHz)	FCC 15.407(a)(3)	Pass
Peak Power Spectral Density	FCC 15.407(a)(5)	Pass
Peak Excursion	FCC 15.407(a)(6)	Pass
OATS Spurious Emissions (5.15-5.25 GHz)	FCC 15.407(b)(1)	Pass
OATS Spurious Emissions (5.725-5.825GHz)	FCC 15.407(b)(4)	Pass
Conducted Emissions	FCC 15.407(b)(6)/FCC 15.207	Pass
Radiated Emissions	FCC 15.407(b)(6)/FCC15.209	Pass
Undesirable Emissions Limits	FCC 15.407(b)(7)/FCC15.205	Pass
Frequency Stability	FCC 15.407(g)	Pass
Bandedge	ITU-R 55/1	Pass
26dB Bandwidth		Pass
99% Bandwidth	RSS-210 Issue 7/RSS GEN Issue 2	Pass
Site File No.	FCC: 90473 IC: 3082D-1	

CONDITIONS DURING TESTING

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to the antenna cable.

Page 4 of 67 Report No.: FC09-180

FCC 15.31(m) Number Of Channels

This device was tested on three channels.

FCC 15.33(a) Frequency Ranges Tested

15.207 Conducted Emissions: 150 kHz – 30 MHz 15.209/15.407 Radiated Emissions: 9 kHz – 40 GHz

EUT Operating Frequency

The EUT was operating at 5.15 - 5.25GHz and 5.725 - 5.825GHz.

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C.

The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

EQUIPMENT UNDER TEST

Power SupplyWireless 802.11 a/b/g Ethernet BridgeManuf: APDManuf: Silex Technology America, Inc.

Model: DA-24F12 Model: XRX-610

Serial: NA Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Ethernet Hub 802.11 a/b/g Wireless Access Point

Manuf: Netgear Manuf: 3-Com Model: DS108 Model: WL-526 Serial: NA Serial: NA

<u>Laptop</u> <u>Laptop</u>

Manuf: Sony Manuf: HP

Model: PCG-982L Model: Omnibook XE3 Serial: 8323330 Serial: TW13113065

> Page 5 of 67 Report No.: FC09-180

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 6 of 67 Report No.: FC09-180

	SAMPLE CALCULATIONS				
	Meter reading	(dBµV)			
+	Antenna Factor	(dB)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
_	Preamplifier Gain	(dB)			
=	Corrected Reading	$(dB\mu V/m)$			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Ouasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 7 of 67 Report No.: FC09-180

FCC 15.407(a)(1) RF OUTPUT POWER

Test Equipment

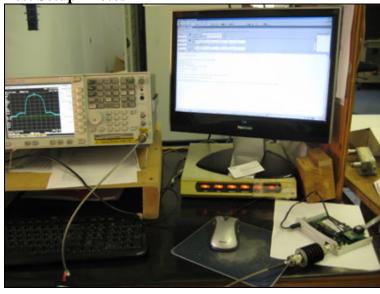
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946
Programmable Power	345AMX / UPC32	03/23/2009	03/23/2011	01695/
Source				01696

Test Conditions

The EUT is placed on the test bench. The device is set in continuous transmit mode. The RF output power is measured at the antenna port in accordance with FCC Public Notice DA 02-2138, August 30, 2002, method 1, using the Band power measurement of a spectrum analyzer.

Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

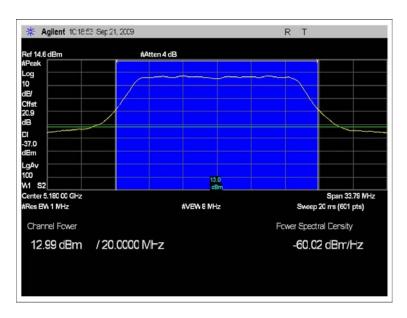

Ch 36,40,48, 149, 153, 161. Modulation: 802.11a (54 mbps) Firmware Power setting: 127 21°C, 55% relative humidity.

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to

the antenna cable.

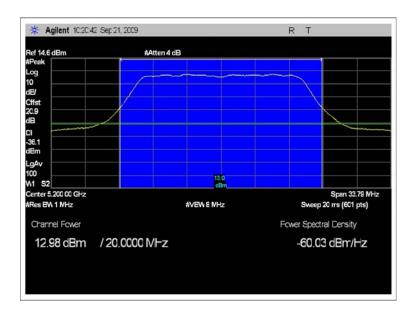
The AC supply voltage was varied + - 15 %, no variation in output power was observed.

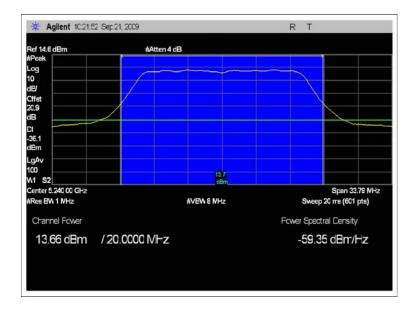
Test Setup Photos


Page 8 of 67 Report No.: FC09-180

Data

Modulation	Frequency	Power	Power
802.11a	5180 MHz	12.9 dBm	0.0195W
802.11a	5200 MHz	13.0 dBm	0.0200W
802.11a	5240 MHz	13.7 dBm	0.0234W


FCC 15.407(a)(1) PEAK POWER 802.11a - 5180MHz


Page 9 of 67 Report No.: FC09-180

FCC 15.407(a)(1) PEAK POWER 802.11a - 5200MHz

FCC 15.407(a)(1) PEAK POWER 802.11a - 5240MHz

Page 10 of 67 Report No.: FC09-180

FCC 15.407(a)(3) RF OUTPUT POWER

Test Equipment

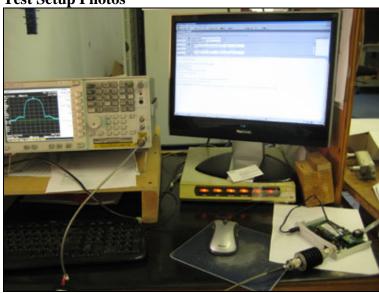
Function	S/N	Calibration Date	Cal Due Date	Asset #	
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672	
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946	
Programmable	345AMX / UPC32	03/23/2009	03/23/2011	01695/	
Power Source				01696	

Test Conditions

The EUT is placed on the test bench. The device is set in continuous transmit mode. The RF output power is measured at the antenna port in accordance with FCC Public Notice DA 02-2138, August 30, 2002, method 1, using the Band power measurement of a spectrum analyzer.

Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

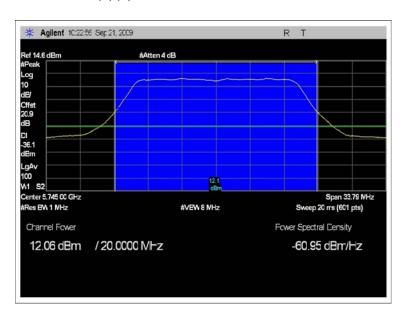

Ch 36,40,48, 149, 153, 161. Modulation: 802.11a (54 mbps), Firmware Power setting: 127 21°C, 55% relative humidity.

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to the

antenna cable.

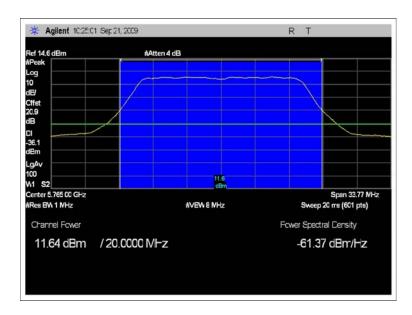
The AC supply voltage was varied + - 15 %, no variation in output power was observed.

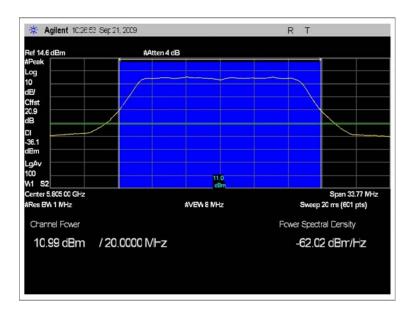
Test Setup Photos


Page 11 of 67 Report No.: FC09-180

Data

Modulation	Frequency	Power	Power
802.11a	5745 MHz	12.1 dBm	0.0162W
802.11a	5765MHz	11.6 dBm	0.0145W
802.11a	5805MHz	11.0dBm	0.0126W


FCC 15.407(a)(3) PEAK POWER 802.11a - 5745MHz


Page 12 of 67 Report No.: FC09-180

FCC 15.407(a)(3) PEAK POWER 802.11a - 5765MHz

FCC 15.407(a)(3) PEAK POWER 802.11a - 5805MHz

Page 13 of 67 Report No.: FC09-180

FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY

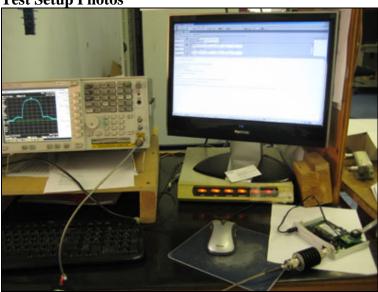
Test Equipment

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946

Test Conditions

The EUT is placed on the test bench. The device is set in continuous transmit mode, The RF output power is measured at the antenna port in accordance with Peak Power Spectral Density measurement method 1, as described in FCC Public Notice DA 02-2138, August 30, 2002.

Two plots at each frequency point were captured, with the second plots spanned at 1 MHz and video triggered to capture the true peak signal.

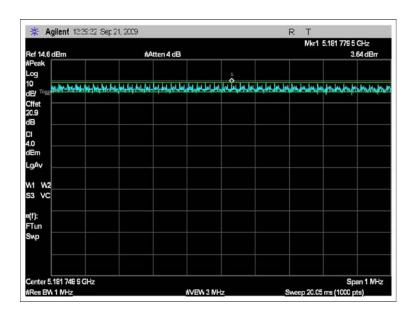

Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

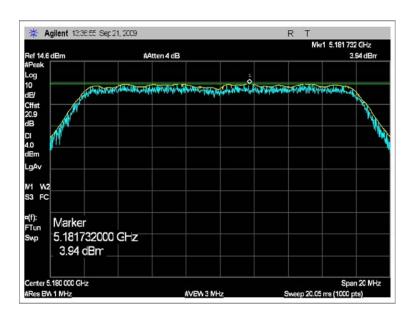
Ch 36,40,48, 149, 153, 161. Modulation: 802.11a (54 mbps). Firmware Power setting: 127 21°C, 55% relative humidity.

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to the antenna cable.

Test Setup Photos

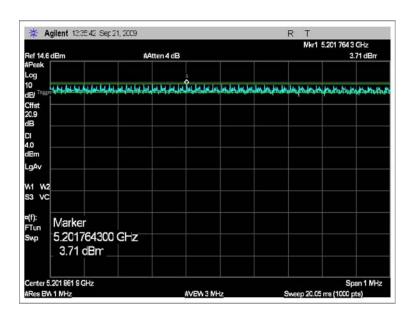


Page 14 of 67 Report No.: FC09-180

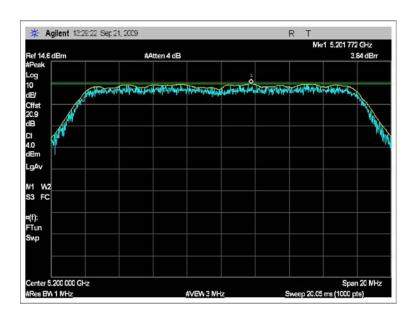


Plots

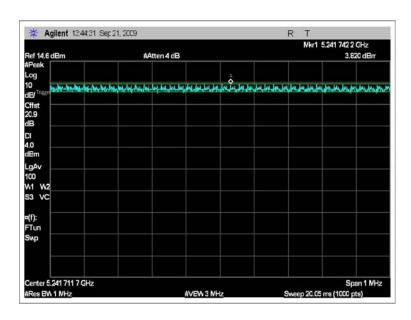
FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY 802.11a - 5180MHz



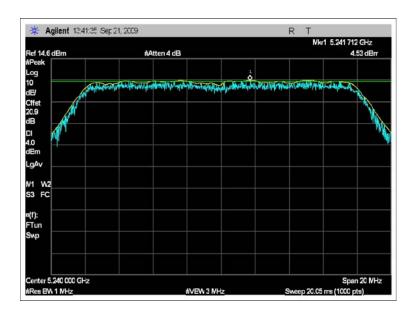
FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY 802.11a - 5180MHz RAW



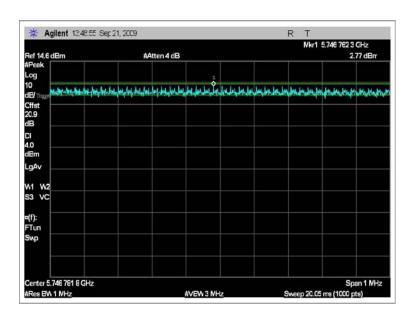
FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY 802.11a - 5200MHz



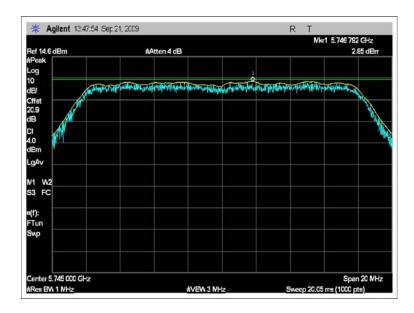
FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY 802.11a - 5200MHz RAW



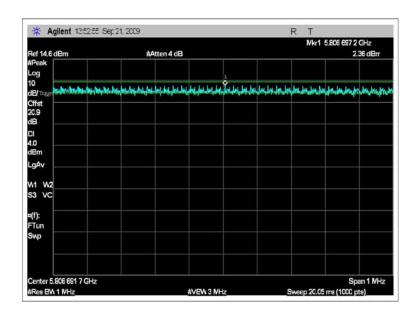
FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY 802.11a - 5240MHz



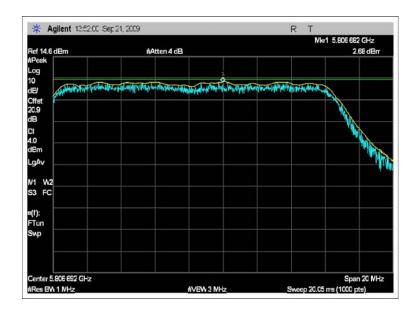
FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY 802.11a - 5240MHz RAW



FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY 802.11a - 5245MHz



FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY 802.11a - 5245MHz RAW



FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY 802.11a - 5805MHz

FCC 15.407(a)(5) PEAK POWER SPECTRAL DENSITY 802.11a - 5805MHz RAW

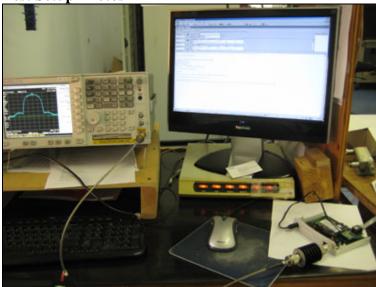
FCC 15.407(a)(6) PEAK EXCURSION

Test Equipment

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946

Test Conditions

The EUT is placed on the test bench. The device is set in continuous transmit mode, The RF output power is measured at the antenna port in accordance with Peak excursion measurement method as described in FCC Public Notice DA 02-2138, August 30, 2002,

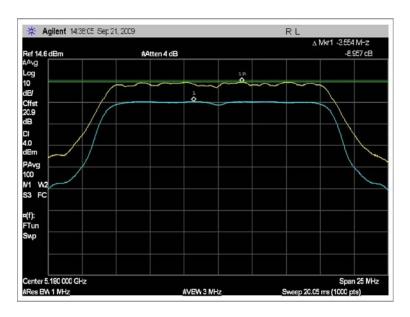

Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

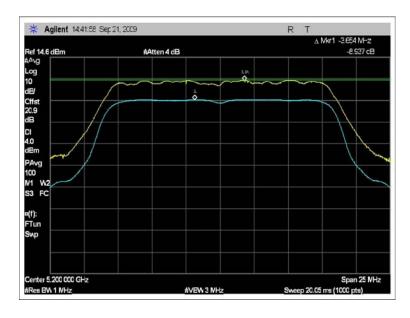
Ch 36,40,48, 149, 153, 161. Modulation: 802.11a (54 mbps) Firmware Power setting: 127 21°C, 55% relative humidity.

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to the antenna cable.

Test Setup Photos

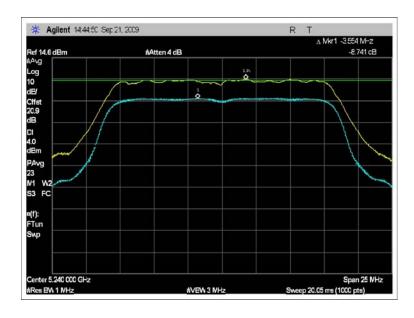


Page 20 of 67 Report No.: FC09-180



Plots

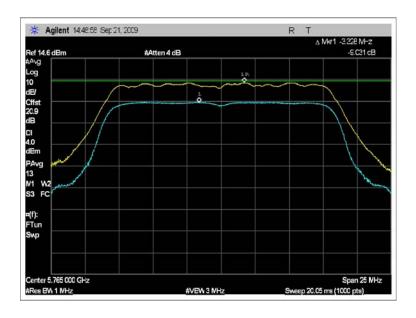
FCC 15.407(a)(6) PEAK EXCURSION 802.11a - 5180MHz

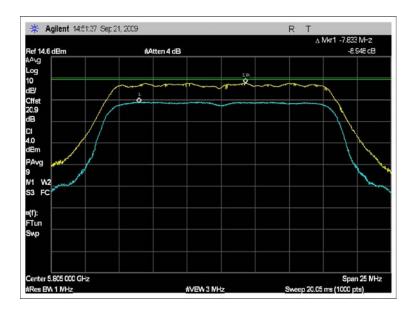


FCC 15.407(a)(6) PEAK EXCURSION 802.11a - 5200MHz



FCC 15.407(a)(6) PEAK EXCURSION 802.11a - 5240MHz


FCC 15.407(a)(6) PEAK EXCURSION 802.11a - 5745MHz


Page 22 of 67 Report No.: FC09-180

FCC 15.407(a)(6) PEAK EXCURSION 802.11a - 5765MHz

FCC 15.407(a)(6) PEAK EXCURSION 802.11a - 5805MHz

Page 23 of 67 Report No.: FC09-180

FCC 15.407(b)(1) OATS SPURIOUS EMISSIONS

Test Setup Photos

Page 24 of 67 Report No.: FC09-180

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: Silex Technology, America, Inc.

Specification: FCC 15.407 (b)(1)

Work Order #: 89951 Date: 9/18/2009
Test Type: Radiated Scan Time: 11:42:19
Equipment: Wireless 802.11 a/b/g Ethernet Bridge Sequence#: 22
Manufacturer: Silex Technology America, Inc. Tested By: E. Wong

Model: XRX-610 S/N: NA

Test Equipment:

1 est Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Loop Antenna	2014	06/16/2008	06/16/2010	00314
Pre amp to SA Cable	Cable #10	04/16/2009	04/16/2011	P05050
Cable	Cable15	01/05/2009	01/05/2011	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565
18-26GHz Horn	942126-003	11/12/2008	11/12/2010	01413
26.5-40GHz Horn	1012	01/08/2008	01/08/2010	02045
Antenna				
2'-40GHz cable	NA	09/14/2009	09/14/2011	P02947
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946
5.8 GHz HPF	1	03/25/2008	03/25/2010	02755
AMP 50GHz	3332A00309	11/13/2008	11/13/2010	02115

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power Supply	APD	DA-24F12	NA
Wireless 802.11 a/b/g	Silex Technology America,	XRX-610	NA
Ethernet Bridge*	Inc.		

Support Devices:

with a contract			
Function	Manufacturer	Model #	S/N
Ethernet Hub	Netgear	DS108	NA
Laptop	HP	Omnibook XE3	TW13113065
802.11 a/b/g Wireless	3-Com	WL-526	NA
Access Point			
Laptop	Sony	PCG-982L	8323330

Page 25 of 67 Report No.: FC09-180

Test Conditions / Notes:

The EUT is placed on the wooden table lined with a Styrofoam surface of 5 cm thickness. The ethernet port is connected to remote laptop computer via a support ethernet hub.

Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

Ch 36,40,48, 149, 153, 161. Modulation: 802.11 a (54 mbps), Firmware Power setting: 127 Power: 13.7 dBm 0.0230 watt

Antenna Gain: 2.1 dBi @ 5.825GHz (linear gain = 1.62)

The antenna is orientated in upright position.

21°C, 55% relative humidity.

Limit eirp =-27dBm/MHz = 70.3 dBuV/m @3meter, antenna gain of 2.1 dBi

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to antenna cable.

Frequency range of measurement = 9 kHz - 40 GHz.

Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz- 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz - 40000 MHz RBW=1 MHz, VBW=1 MHz.

Transducer Legend:

Transancer Begena.	
T1=Heliax Cable 54' ANP05565 090410	T2=HF_pre AMP-1-26GHz_AN00786-072810.TRN
T3=Horn Ant AN00849 060610	T4=Hi-Freq_40GHz_2ft_AN02947 0911411
T5=HPF 6GHz-AN02755-032510	

E				argin.						
Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5								
MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
0480.000	33.2	+8.9	-36.2	+38.0	+0.9	+0.0	45.1	70.3	-25.2	Vert
M		+0.3								
ve								802.11a 52	240MHz	
0480.000	41.9	+8.9	-36.2	+38.0	+0.9	+0.0	53.8	70.3	-16.5	Vert
M		+0.3								
								802.11a 52	240MHz	
0360.000	32.6	+8.8	-36.2	+38.0	+0.9	+0.0	44.4	70.3	-25.9	Vert
M		+0.3								
ve								802.11a 51	80MHz	
0360.000	41.5	+8.8	-36.2	+38.0	+0.9	+0.0	53.3	70.3	-17.0	Vert
M		+0.3								
								802.11a 51	80MHz	
0400.000	32.5	+8.8	-36.2	+38.0	+0.9	+0.0	44.3	70.3	-26.0	Vert
M		+0.3								
ve								802.11a 52	200MHz	
0400.000	41.1	+8.8	-36.2	+38.0	+0.9	+0.0	52.9	70.3	-17.4	Vert
M		+0.3								
								802.11a 52	200MHz	
	MHz 0480.000 M 0480.000 M 0360.000 M 0400.000 M 0400.000 M	MHz dBμV 0480.000 33.2 M 0480.000 41.9 M 0360.000 32.6 M 0400.000 41.5 M 0400.000 32.5 M	T5 MHz dBµV dB 0480.000 33.2 +8.9 M +0.3 76 0480.000 41.9 +8.9 M +0.3 0360.000 32.6 +8.8 M +0.3 76 0400.000 41.5 +8.8 M +0.3 0400.000 32.5 +8.8 M +0.3	MHz dBμV dB dB 0480.000 33.2 +8.9 -36.2 M +0.3 0480.000 41.9 +8.9 -36.2 M +0.3 0360.000 32.6 +8.8 -36.2 M +0.3 0400.000 41.5 +8.8 -36.2 M +0.3 0400.000 32.5 +8.8 -36.2 M +0.3 0400.000 41.1 +8.8 -36.2	T5 MHz dBμV dB dB dB 0480.000 33.2 +8.9 -36.2 +38.0 M +0.3 0360.000 41.9 +8.9 -36.2 +38.0 M +0.3 0360.000 32.6 +8.8 -36.2 +38.0 M +0.3 0400.000 41.5 +8.8 -36.2 +38.0 M +0.3 0400.000 32.5 +8.8 -36.2 +38.0 M +0.3	T5 MHz dBμV dB dB dB dB 0480.000 33.2 +8.9 -36.2 +38.0 +0.9 M +0.3 0360.000 41.9 +8.9 -36.2 +38.0 +0.9 M +0.3 0360.000 32.6 +8.8 -36.2 +38.0 +0.9 M +0.3 0400.000 41.5 +8.8 -36.2 +38.0 +0.9 M +0.3 0400.000 32.5 +8.8 -36.2 +38.0 +0.9 M +0.3 0400.000 41.1 +8.8 -36.2 +38.0 +0.9	T5 MHz dBμV dB dB dB dB dB Table 0480.000 33.2 +8.9 -36.2 +38.0 +0.9 +0.0 M +0.3 0480.000 41.9 +8.9 -36.2 +38.0 +0.9 +0.0 M +0.3 0360.000 32.6 +8.8 -36.2 +38.0 +0.9 +0.0 M +0.3 080.000 41.5 +8.8 -36.2 +38.0 +0.9 +0.0 M +0.3 0400.000 32.5 +8.8 -36.2 +38.0 +0.9 +0.0 M +0.3 0400.000 41.1 +8.8 -36.2 +38.0 +0.9 +0.0	T5 MHz dBμV dB dB dB dB dB Table dBμV/m 0480.000 33.2 +8.9 -36.2 +38.0 +0.9 +0.0 45.1 M +0.3 0480.000 41.9 +8.9 -36.2 +38.0 +0.9 +0.0 53.8 M +0.3 0360.000 32.6 +8.8 -36.2 +38.0 +0.9 +0.0 44.4 M +0.3 0400.000 41.5 +8.8 -36.2 +38.0 +0.9 +0.0 53.3 M +0.3 0400.000 32.5 +8.8 -36.2 +38.0 +0.9 +0.0 44.3 M +0.3 0400.000 41.1 +8.8 -36.2 +38.0 +0.9 +0.0 52.9	T5 MHz dBμV dB dB dB dB dB Table dBμV/m dBμV/m 0480.000 33.2 +8.9 -36.2 +38.0 +0.9 +0.0 45.1 70.3 M +0.3 Ne 802.11a 52 0480.000 41.9 +8.9 -36.2 +38.0 +0.9 +0.0 53.8 70.3 M +0.3 M +0.3 Ne 802.11a 52 0360.000 32.6 +8.8 -36.2 +38.0 +0.9 +0.0 44.4 70.3 Ne 802.11a 51 0360.000 41.5 +8.8 -36.2 +38.0 +0.9 +0.0 53.3 70.3 M +0.3 Ne 802.11a 51 0400.000 32.5 +8.8 -36.2 +38.0 +0.9 +0.0 44.3 70.3 Ne 802.11a 51 0400.000 32.5 +8.8 -36.2 +38.0 +0.9 +0.0 44.3 70.3 Ne 802.11a 51 0400.000 32.5 +8.8 -36.2 +38.0 +0.9 +0.0 52.9 70.3 Ne 802.11a 52 0400.000 41.1 +8.8 -36.2 +38.0 +0.9 +0.0 52.9 70.3 Ne 802.11a 52	T5 MHz dBμV dB dB dB dB dB Table dBμV/m dBμV/m dB 0480.000 33.2 +8.9 -36.2 +38.0 +0.9 +0.0 45.1 70.3 -25.2 M +0.3 Ne 802.11a 5240MHz 0480.000 41.9 +8.9 -36.2 +38.0 +0.9 +0.0 53.8 70.3 -16.5 M +0.3 Ne 802.11a 5240MHz 0360.000 32.6 +8.8 -36.2 +38.0 +0.9 +0.0 44.4 70.3 -25.9 M +0.3 Ne 802.11a 5180MHz 0360.000 41.5 +8.8 -36.2 +38.0 +0.9 +0.0 53.3 70.3 -17.0 M +0.3 Ne 802.11a 5180MHz 0400.000 32.5 +8.8 -36.2 +38.0 +0.9 +0.0 53.3 70.3 -17.0 M +0.3 Ne 802.11a 5180MHz 0400.000 32.5 +8.8 -36.2 +38.0 +0.9 +0.0 44.3 70.3 -26.0 M +0.3 Ne 802.11a 5180MHz 0400.000 32.5 +8.8 -36.2 +38.0 +0.9 +0.0 52.9 70.3 -17.4

Page 26 of 67 Report No.: FC09-180

FCC 15.407(b)(4) OATS SPURIOUS EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: Silex Technology, America, Inc.

Specification: FCC 15.407 (b)(4)

Work Order #: 89951 Date: 9/18/2009
Test Type: Radiated Scan Time: 11:42:19
Equipment: Wireless 802.11 a/b/g Ethernet Bridge Sequence#: 22
Manufacturer: Silex Technology America, Inc. Tested By: E. Wong

Model: XRX-610 S/N: NA

Test Equipment:

1 est Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Loop Antenna	2014	06/16/2008	06/16/2010	00314
Pre amp to SA Cable	Cable #10	04/16/2009	04/16/2011	P05050
Cable	Cable15	01/05/2009	01/05/2011	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565
18-26GHz Horn	942126-003	11/12/2008	11/12/2010	01413
26.5-40GHz Horn	1012	01/08/2008	01/08/2010	02045
Antenna				
2'-40GHz cable	NA	09/14/2009	09/14/2011	P02947
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946
5.8 GHz HPF	1	03/25/2008	03/25/2010	02755
AMP 50GHz	3332A00309	11/13/2008	11/13/2010	02115

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power Supply	APD	DA-24F12	NA
Wireless 802.11 a/b/g	Silex Technology America,	XRX-610	NA
Ethernet Bridge*	Inc.		

Support Devices:

~ ·· FF ··· · = · · · · · · · · ·			
Function	Manufacturer	Model #	S/N
Ethernet Hub	Netgear	DS108	NA
Laptop	HP	Omnibook XE3	TW13113065
802.11 a/b/g Wireless	3-Com	WL-526	NA
Access Point			
Laptop	Sony	PCG-982L	8323330

Page 28 of 67 Report No.: FC09-180

Test Conditions / Notes:

The EUT is placed on the wooden table lined with a Styrofoam surface of 5 cm thickness. The ethernet port is connected to remote laptop computer via a support ethernet hub.

Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

Ch 36,40,48, 149, 153, 161. Modulation: 802.11 a (54 mbps), Firmware Power setting: 127 Power: 13.7 dBm 0.0230 watt

Antenna Gain: 2.1 dBi @ 5.825GHz (linear gain = 1.62)

The antenna is orientated in upright position.

21°C, 55% relative humidity.

Limit eirp =-27dBm/MHz = 70.3 dBuV/m @3meter, antenna gain of 2.1 dBi

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to antenna cable.

Frequency range of measurement = 9 kHz - 40 GHz.

Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 30

MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz - 40000 MHz RBW=1 MHz, VBW=1 MHz.

Transducer Legend:

T1=Heliax Cable 54' ANP05565 090410 T2=HF_pre AMP-1-26GHz_AN00786-072810.TRN
T3=Horn Ant AN00849 060610 T4=Hi-Freq_40GHz_2ft_AN02947 0911411
T5=HPF_6GHz-AN02755-032510

Measi	ırement Data:	Re	eading list	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	11609.990	30.5	+9.6	-35.9	+38.8	+1.0	+0.0	44.4	70.3	-25.9	Vert
	M		+0.4								
	Ave								802.11a 58	805MHz	
^	11609.990	40.2	+9.6	-35.9	+38.8	+1.0	+0.0	54.1	70.3	-16.2	Vert
	M		+0.4								
									802.11a 58	05MHz	
3	11490.000	30.5	+9.6	-35.9	+38.8	+0.9	+0.0	44.3	70.3	-26.0	Vert
	M		+0.4								
	Ave								802.11a 57	54MHz	
^	11490.000	39.6	+9.6	-35.9	+38.8	+0.9	+0.0	53.4	70.3	-16.9	Vert
	M		+0.4								
									802.11a 57	54MHz	

Page 29 of 67 Report No.: FC09-180

FCC 15.407(b)(6)/15.207 CONDUCTED EMISSIONS

Test Setup Photos

Page 30 of 67 Report No.: FC09-180

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: Silex Technology, America, Inc. Specification: FCC 15.207 COND [AVE]

Work Order #: **89951** Date: 9/16/2009
Test Type: **Conducted Emissions** Time: 1:51:07 PM

Equipment: Wireless 802.11 a/b/g Ethernet Bridge Sequence#: 11

Manufacturer: Silex Technology America, Inc. Tested By: E. Wong

Model: XRX-610 110V 60Hz

S/N: NA

Test Equipment:

1 cst Equipment				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
LISN	1104	12/09/2008	12/09/2010	00847
6dB Attenuator	None	10/14/2008	10/14/2010	P05886
150kHz HPF	G7755	01/09/2008	01/09/2010	02610
Conducted Emission	Cable #21	05/12/2008	05/12/2010	P04358
Cable				

Equipment Under Test (* = EUT):

(— · - / ·		
Function	Manufacturer	Model #	S/N
Power Supply	APD	DA-24F12	NA
Wireless 802.11 a/b/g	Silex Technology America,	XRX-610	NA
Ethernet Bridge*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Ethernet Hub	Netgear	DS108	NA
Laptop	HP	Omnibook XE3	TW13113065
802.11 a/b/g Wireless	3-Com	WL-526	NA
Access Point			
Laptop	Sony	PCG-982L	8323330

Test Conditions / Notes:

The EUT is placed on the wooden table. The ethernet port is connected to remote laptop computer via a support ethernet hub.

Frequency: 2.4 - 2.4845GHz, 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx/Rx Frequency: 5.8 GHz Modulation: 802.11 a Power: 15dBm

To evaluate the non-intentional and intentional radiator portion of the device, the EUT is operating in loop back mode via ethernet port and WiFi simultaneously. The EUT receives data via ethernet port and transmits the received data to remote wireless access point.

5.8 GHz Receiver portion of the RF circuit is active.

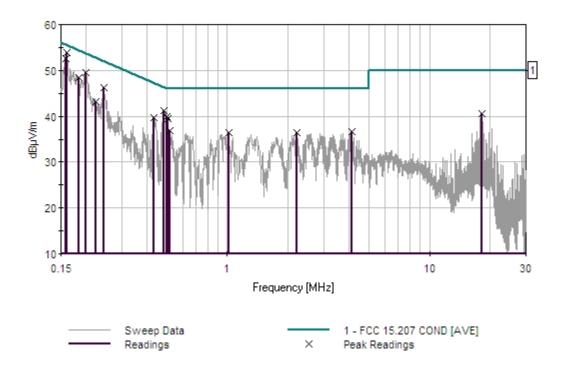
The antenna is orientated in upright position.

21°C, 55% relative humidity.

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to antenna cable.

Page 31 of 67 Report No.: FC09-180

Transducer Legend:


T1=150kHz HPF AN02610_010910	T2=6dB atten-P05886-101410.TRN
T3=Cable #21 -P04358- Site A 05/12/10	T4=L1 Insertion Loss AN00847_120910

Measurement Data: Reading listed by margin.			Test Lead: Black								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	160.181k	47.1	+0.6	+6.1	+0.0	+0.0	+0.0	53.8	55.5	-1.7	Black
2	158.727k	45.7	+0.8	+6.1	+0.0	+0.0	+0.0	52.6	55.5	-2.9	Black
3	198.723k	43.3	+0.2	+6.1	+0.0	+0.0	+0.0	49.6	53.7	-4.1	Black
4	482.333k	34.9	+0.2	+6.1	+0.0	+0.0	+0.0	41.2	46.3	-5.1	Black
5	243.810k	40.0	+0.2	+6.1	+0.0	+0.0	+0.0	46.3	52.0	-5.7	Black
6	184.179k	42.1	+0.3	+6.1	+0.0	+0.0	+0.0	48.5	54.3	-5.8	Black
7	501.241k	33.6	+0.2	+6.1	+0.0	+0.0	+0.0	39.9	46.0	-6.1	Black
8	504.877k	33.2	+0.2	+6.1	+0.0	+0.0	+0.0	39.5	46.0	-6.5	Black
9	435.065k	33.5	+0.2	+6.1	+0.0	+0.0	+0.0	39.8	47.2	-7.4	Black
10	516.512k	30.6	+0.2	+6.1	+0.0	+0.0	+0.0	36.9	46.0	-9.1	Black
11	4.139M	30.1	+0.2	+6.1	+0.1	+0.1	+0.0	36.6	46.0	-9.4	Black
12	18.247M	32.9	+0.3	+6.1	+0.3	+1.0	+0.0	40.6	50.0	-9.4	Black
13	223.448k	36.9	+0.2	+6.1	+0.0	+0.0	+0.0	43.2	52.7	-9.5	Black
14	2.217M	30.1	+0.2	+6.1	+0.1	+0.0	+0.0	36.5	46.0	-9.5	Black
15	1.013M	29.9	+0.3	+6.1	+0.1	+0.0	+0.0	36.4	46.0	-9.6	Black

Page 32 of 67 Report No.: FC09-180

CKC Laboratories, Inc. Date: 9/16/2009 Time: 1:51:07 PM Silex Technology, America, Inc. WO#: 89951 FCC 15.207 COND [AVE] Test Lead: Black 110V 60Hz Sequence#: 11 XRX 610

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: Silex Technology, America, Inc. Specification: FCC 15.207 COND [AVE]

Work Order #: 89951 Date: 9/16/2009
Test Type: Conducted Emissions Time: 1:48:23 PM

Equipment: Wireless 802.11 a/b/g Ethernet Bridge Sequence#: 10

Manufacturer: Silex Technology America, Inc. Tested By: E. Wong

Model: XRX-610 Tested By: 110V 60Hz

S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
LISN	1104	12/09/2008	12/09/2010	00847
6dB Attenuator	None	10/14/2008	10/14/2010	P05886
150kHz HPF	G7755	01/09/2008	01/09/2010	02610
Conducted Emission	Cable #21	05/12/2008	05/12/2010	P04358
Cable				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power Supply	APD	DA-24F12	NA
Wireless 802.11 a/b/g	Silex Technology America,	XRX-610	NA
Ethernet Bridge*	Inc.		

Support Devices:

Support Devices.				
Function	Manufacturer	Model #	S/N	
Ethernet Hub	Netgear	DS108	NA	
Laptop	HP	Omnibook XE3	TW13113065	
802.11 a/b/g Wireless	3-Com	WL-526	NA	
Access Point				
Laptop	Sony	PCG-982L	8323330	

Test Conditions / Notes:

The EUT is placed on the wooden table. The ethernet port is connected to remote laptop computer via a support ethernet hub.

Frequency: 2.4 - 2.4845GHz, 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx/Rx Frequency: 5.8 GHz Modulation: 802.11 a Power: 15dBm

To evaluate the non-intentional and intentional radiator portion of the device, the EUT is operating in loop back mode via ethernet port and WiFi simultaneously. The EUT receives data via ethernet port and transmits the received data to remote wireless access point.

5.8 GHz Receiver portion of the RF circuit is active.

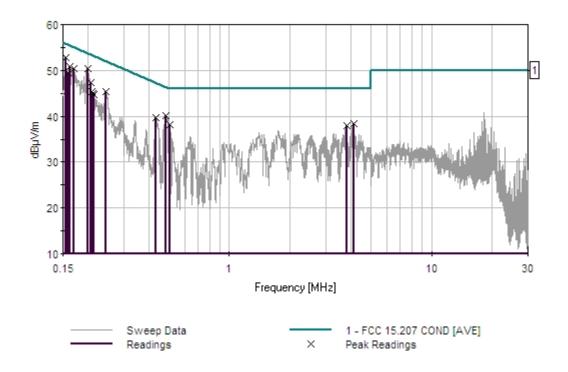
The antenna is orientated in upright position.

21°C, 55% relative humidity.

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to antenna cable.

Page 34 of 67 Report No.: FC09-180

Transducer Legend:


T1=150kHz HPF AN02610_010910	T2=6dB atten-P05886-101410.TRN				
T3=Cable #21 -P04358- Site A 05/12/10	T4=L2 Insertion Loss AN00847_120910				

Measurement Data: Reading listed by margin.					Test Lead: White						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	155.090k	45.3	+1.4	+6.1	+0.0	+0.0	+0.0	52.8	55.7	-2.9	White
2	198.723k	44.1	+0.2	+6.1	+0.0	+0.1	+0.0	50.5	53.7	-3.2	White
3	162.363k	44.1	+0.6	+6.1	+0.0	+0.0	+0.0	50.8	55.3	-4.5	White
		40.0									
4	170.362k	43.9	+0.4	+6.1	+0.0	+0.0	+0.0	50.4	54.9	-4.5	White
	150 7271	42.7	.00	1	. 0. 0	. 0. 0	. 0. 0	10.6	55.5	5.0	33.71. 14 .
5	158.727k	42.7	+0.8	+6.1	+0.0	+0.0	+0.0	49.6	55.5	-5.9	White
6	205.995k	40.9	+0.2	+6.1	+0.0	+0.1	+0.0	47.3	53.4	-6.1	White
0	203.993K	40.9	+0.2	+0.1	+0.0	+0.1	+0.0	47.3	33.4	-0.1	Willia
7	485.242k	33.8	+0.2	+6.1	+0.0	+0.0	+0.0	40.1	46.2	-6.1	White
,	103.2 121	23.0	10.2	10.1	10.0	10.0	10.0	10.1	10.2	0.1	*** 11110
8	245.264k	39.0	+0.2	+6.1	+0.0	+0.0	+0.0	45.3	51.9	-6.6	White
9	433.610k	33.3	+0.2	+6.1	+0.0	+0.0	+0.0	39.6	47.2	-7.6	White
10	4.139M	31.7	+0.2	+6.1	+0.1	+0.2	+0.0	38.3	46.0	-7.7	White
11	505.604k	31.8	+0.2	+6.1	+0.0	+0.0	+0.0	38.1	46.0	-7.9	White
12	208.177k	38.9	+0.2	+6.1	+0.0	+0.1	+0.0	45.3	53.3	-8.0	White
1.2	2.0023.4	21.2	.0.0	1	. 0. 1	.0.2	. 0. 0	27.0	46.0	0.1	3371 '.
13	3.803M	31.3	+0.2	+6.1	+0.1	+0.2	+0.0	37.9	46.0	-8.1	White
14	210.358k	38.6	+0.2	+6.1	+0.0	+0.1	+0.0	45.0	53.2	-8.2	White
14	210.336K	36.0	+0.2	+0.1	+0.0	+0.1	+0.0	45.0	33.2	-0.2	w mie
15	212.540k	38.3	+0.2	+6.1	+0.0	+0.1	+0.0	44.7	53.1	-8.4	White
	212.5 TOR	30.3	10.2	10.1	10.0	10.1	10.0	11.7	55.1	0. r	77 11100

Page 35 of 67 Report No.: FC09-180

CKC Laboratories, Inc. Date: 9/16/2009 Time: 1:48:23 PM Silex Technology, America, Inc. WO#: 89951 FCC 15.207 COND [AVE] Test Lead: White 110V 60Hz Sequence#: 10 XRX 610

FCC 15.407(b)(6)/15.209 RADIATED EMISSIONS

Test Setup Photos

Page 37 of 67 Report No.: FC09-180

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: Silex Technology, America, Inc. Specification: FCC 15.407 (b)(6) / (15.209)

Work Order #: 89951 Date: 9/18/2009
Test Type: Radiated Scan Time: 11:42:19
Equipment: Wireless 802.11 a/b/g Ethernet Bridge Sequence#: 22
Manufacturer: Silex Technology America, Inc. Tested By: E. Wong

Model: XRX-610 S/N: NA

Test Equipment:

1 cst Equipment:				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Loop Antenna	2014	06/16/2008	06/16/2010	00314
Pre amp to SA Cable	Cable #10	04/16/2009	04/16/2011	P05050
Cable	Cable15	01/05/2009	01/05/2011	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565
18-26GHz Horn	942126-003	11/12/2008	11/12/2010	01413
26.5-40GHz Horn	1012	01/08/2008	01/08/2010	02045
Antenna				
2'-40GHz cable	NA	09/14/2009	09/14/2011	P02947
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946
5.8 GHz HPF	1	03/25/2008	03/25/2010	02755
AMP 50GHz	3332A00309	11/13/2008	11/13/2010	02115

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power Supply	APD	DA-24F12	NA
Wireless 802.11 a/b/g	Silex Technology America,	XRX-610	NA
Ethernet Bridge*	Inc.		

Support Devices:

with a contract			
Function	Manufacturer	Model #	S/N
Ethernet Hub	Netgear	DS108	NA
Laptop	HP	Omnibook XE3	TW13113065
802.11 a/b/g Wireless	3-Com	WL-526	NA
Access Point			
Laptop	Sony	PCG-982L	8323330

Page 38 of 67 Report No.: FC09-180

Test Conditions / Notes:

The EUT is placed on the wooden table lined with a Styrofoam surface of 5 cm thickness. The ethernet port is connected to remote laptop computer via a support ethernet hub.

Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

Ch 36,40,48, 149, 153, 161. Modulation: 802.11 a (54 mbps), Firmware Power setting: 127 Power: 13.7 dBm 0.0230 watt

Antenna Gain: 2.1 dBi @ 5.825GHz (linear gain = 1.62)

The antenna is orientated in upright position.

21°C, 55% relative humidity.

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to antenna cable.

Frequency range of measurement = 9 kHz- 40 GHz.

Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz - 40000 MHz RBW=1 MHz, VBW=1 MHz.

Transducer Legend:

Meası	ırement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	3	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	666.717M	45.5	+20.4	+0.5	+4.8	-27.2	+0.0	44.0	46.0	-2.0	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	666.717M	46.5	+20.4	+0.5	+4.8	-27.2	+0.0	45.0	46.0	-1.0	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
3	800.067M	42.3	+22.5	+0.4	+5.3	-27.2	+0.0	43.3	46.0	-2.7	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	800.067M	44.6	+22.5	+0.4	+5.3	-27.2	+0.0	45.6	46.0	-0.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
5	533.383M	46.7	+18.8	+0.4	+4.2	-27.7	+0.0	42.4	46.0	-3.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
6	400.033M	50.0	+16.0	+0.4	+3.6	-27.8	+0.0	42.2	46.0	-3.8	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
7	666.722M	43.6	+20.4	+0.5	+4.8	-27.2	+0.0	42.1	46.0	-3.9	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 39 of 67 Report No.: FC09-180

8	950.097M	38.4	+24.1	+0.7	+5.9	-27.2	+0.0	41.9	46.0	-4.1	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
9	950.080M	37.6	+24.1	+0.7	+5.9	-27.2	+0.0	41.1	46.0	-4.9	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
10	400.017M	48.1	+16.0	+0.4	+3.6	-27.8	+0.0	40.3	46.0	-5.7	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
11	950.117M	36.7	+24.1	+0.7	+5.9	-27.2	+0.0	40.2	46.0	-5.8	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
12	533.367M	44.4	+18.8	+0.4	+4.2	-27.7	+0.0	40.1	46.0	-5.9	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
13	750.055M	39.0	+21.6	+0.4	+5.1	-27.0	+0.0	39.1	46.0	-6.9	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
14	360.000M	47.8	+15.0	+0.3	+3.4	-27.8	+0.0	38.7	46.0	-7.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
15	750.083M	38.6	+21.6	+0.4	+5.1	-27.0	+0.0	38.7	46.0	-7.3	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
16	159.967M	50.6	+10.6	+0.3	+2.1	-27.9	+0.0	35.7	43.5	-7.8	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
17	260.017M	49.9	+12.7	+0.3	+2.8	-27.7	+0.0	38.0	46.0	-8.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
10	000 0001 (25.2	+0.0	0.7		27.2	0.0	27.0	460	0.0	T 7 .
18	900.083M	35.3	+23.3	+0.7	+5.7	-27.2	+0.0	37.8	46.0	-8.2	Vert
			+0.0	+0.0	+0.0	+0.0					
10	110.02016	40.0	+0.0		1.0	25.0	0.0	240	42.7	0.6	** '
19	119.933M	49.2	+11.6	+0.2	+1.8	-27.9	+0.0	34.9	43.5	-8.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
20	10490 000	22.2	+0.0	ΙΔ Δ	ΙΔ Δ	ΙΔΩ	100	<i>AF</i> 1	540	9.0	17
20	10480.000	33.2	+0.0	+0.0	+0.0	+0.0	+0.0	45.1	54.0	-8.9	Vert
	M Avo		+8.9	-36.2	+38.0	+0.9			802.11a 524	40 M U	
	Ave 10480.000	41.0	+0.3	ι Ο Ο	ι Ο Ο	ι Ο Ο	100	52 0			Vast
		41.9	+0.0	+0.0	$+0.0 \\ +38.0$	+0.0	+0.0	53.8	54.0	-0.2	Vert
	M		+8.9 +0.3	-36.2	+38.0	+0.9			802.11a 524	40 M U	
22	374.983M	45.5	+15.4	+0.4	+3.5	-27.8	+0.0	37.0	46.0	-9.0	Vert
	314.703W	43.3	+13.4	+0.4	+3.3	-27.8 +0.0	+0.0	37.0	40.0	-9.0	v ert
			+0.0	±0.0	+0.0	+0.0					
23	11609.990	30.5	+0.0	+0.0	+0.0	+0.0	+0.0	44.4	54.0	-9.6	Vert
23	11009.990 M	50.5	+0.0 +9.6	-35.9	+38.8	+0.0	+0.0	74.4	J4.U	-2.0	v CI t
	Ave		+0.4	-33.7	130.0	11.0			802.11a 580)5MH ₂	
	11609.990	40.2	+0.4	+0.0	+0.0	+0.0	+0.0	54.1	54.0	+0.1	Vert
	M	70.2	+9.6	-35.9	+38.8	+1.0	10.0	J ⊤. 1	27.0	10.1	v C11
	141		+0.4	33.7	1 30.0	11.0			802.11a 580)5MH ₂	
			1 U.T						502.11a 500	JJIVIIIL	

Page 40 of 67 Report No.: FC09-180

25	10360.000	32.6		+0.0		+0.0	+0.0	44.4	54.0	-9.6	Vert
	M		+8.8	-36.2	+38.0	+0.9					
	Ave		+0.3						802.11a 51		
^	10360.000	41.5	+0.0		+0.0	+0.0	+0.0	53.3	54.0	-0.7	Vert
	M		+8.8	-36.2	+38.0	+0.9					
			+0.3						802.11a 51		
27	250.017M	48.3	+12.6	+0.3	+2.8	-27.7	+0.0	36.3	46.0	-9.7	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
28	110.250M	49.0	+10.9	+0.1	+1.7	-27.9	+0.0	33.8	43.5	-9.7	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
29	11490.000	30.5	+0.0	+0.0	+0.0	+0.0	+0.0	44.3	54.0	-9.7	Vert
	M		+9.6	-35.9	+38.8	+0.9					
	Ave		+0.4						802.11a 57		
^	11490.000	39.6	+0.0		+0.0	+0.0	+0.0	53.4	54.0	-0.6	Vert
	M		+9.6	-35.9	+38.8	+0.9					
			+0.4						802.11a 57		
31	10400.000	32.5	+0.0	+0.0	+0.0	+0.0	+0.0	44.3	54.0	-9.7	Vert
	M		+8.8	-36.2	+38.0	+0.9					
	Ave		+0.3						802.11a 52	00MHz	
^	10400.000	41.1	+0.0		+0.0	+0.0	+0.0	52.9	54.0	-1.1	Vert
	M		+8.8	-36.2	+38.0	+0.9					
			+0.3						802.11a 52	00MHz	
33	325.017M	46.3	+14.0	+0.3	+3.2	-27.8	+0.0	36.0	46.0	-10.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
34	919.967M	32.9	+23.6	+0.7	+5.8	-27.2	+0.0	35.8	46.0	-10.2	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
35	839.983M	33.7	+22.8	+0.6	+5.5	-27.0	+0.0	35.6	46.0	-10.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
36	200.000M	49.2	+9.1	+0.3	+2.4	-28.0	+0.0	33.0	43.5	-10.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
37	325.017M	45.6	+14.0	+0.3	+3.2	-27.8	+0.0	35.3	46.0	-10.7	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
38	260.017M	47.2	+12.7	+0.3	+2.8	-27.7	+0.0	35.3	46.0	-10.7	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
39	480.033M	40.6	+17.8	+0.4	+4.0	-27.8	+0.0	35.0	46.0	-11.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
40	266.683M	46.5	+12.8	+0.3	+2.9	-27.8	+0.0	34.7	46.0	-11.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
41	300.017M	45.8	+13.2	+0.3	+3.0	-27.8	+0.0	34.5	46.0	-11.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 41 of 67 Report No.: FC09-180

42	700.033M	35.6	+20.7	+0.5	+4.9	-27.3	+0.0	34.4	46.0	-11.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
43	124.983M	46.0	+11.8	+0.2	+1.8	-27.9	+0.0	31.9	43.5	-11.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
44	11530.000	28.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	54.0	-11.6	Vert
	M		+9.6	-35.9	+38.8	+1.0			902 11 . 574	CEN ATT	
	Ave	20.1	+0.4	· O O	+ O O	.00	. 0. 0	52.0	802.11a 576		N/ a set
	11530.000 M	38.1	+0.0 +9.6	+0.0 -35.9	$+0.0 \\ +38.8$	$+0.0 \\ +1.0$	+0.0	52.0	54.0	-2.0	Vert
	IVI		+9.6	-33.9	+30.0	+1.0			802.11a 576	55MH ₇	
16	359.983M	42.8	+15.0	+0.3	+3.4	-27.8	+0.0	33.7		-12.3	Vert
40	339.903IVI	42.0	+0.0	+0.0	+0.0	+0.0	+0.0	33.1	40.0	-12.3	VCIT
			+0.0	10.0	10.0	10.0					
47	320.017M	44.1	+13.8	+0.3	+3.1	-27.8	+0.0	33.5	46.0	-12.5	Horiz
''	320.01/111	1	+0.0	+0.0	+0.0	+0.0	10.0	55.5	.0.0	12.5	110112
			+0.0		. 0.0						
48	240.017M	46.0	+12.0	+0.3	+2.7	-27.8	+0.0	33.2	46.0	-12.8	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
49	900.030M	30.3	+23.3	+0.7	+5.7	-27.2	+0.0	32.8	46.0	-13.2	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
50	488.933M	38.0	+18.0	+0.4	+4.0	-27.8	+0.0	32.6	46.0	-13.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
51	725.047M	33.0	+21.2	+0.4	+5.0	-27.1	+0.0	32.5	46.0	-13.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
52	833.363M	30.7	+22.8	+0.6	+5.4	-27.1	+0.0	32.4	46.0	-13.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
53	711.163M	33.3	+20.9	+0.5	+4.9	-27.2	+0.0	32.4	46.0	-13.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
E 1	202 4223 #	44.0	+0.0	10.2	.20	27.0	.0.0	22.4	46.0	12.6	TT '-
54	283.433M	44.0	+13.0	+0.3	+2.9	-27.8	+0.0	32.4	46.0	-13.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
5.5	200.000\#	12.7	+0.0	10.2	12.0	27.0	+0.0	22.4	46 D	12.6	Vont
55	300.000M	43.7	$+13.2 \\ +0.0$	+0.3 +0.0	$+3.0 \\ +0.0$	-27.8 +0.0	+0.0	32.4	46.0	-13.6	Vert
			+0.0 +0.0	+0.0	+0.0	+0.0					
56	5360.000M	36.4	+0.0	+0.0	+0.0	+0.0	+0.0	40.2	54.0	-13.8	Vert
50	Ave	JU. 4	+6.1	-36.6	+33.7	+0.6	10.0	+∪.∠	data from b		v CI t
	1110		+0.0	50.0	1 33.1	10.0			plot	anacage	
٨	5360.000M	50.3	+0.0	+0.0	+0.0	+0.0	+0.0	54.1	54.0	+0.1	Vert
	2200.000111	20.3	+6.1	-36.6	+33.7	+0.6	10.0	2 1.1	data from b		, 510
			+0.0	- 0.0					plot		
58	333.383M	42.2	+14.2	+0.3	+3.2	-27.8	+0.0	32.1	46.0	-13.9	Vert
	-		+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 42 of 67 Report No.: FC09-180

	5380.000M Ave	36.1	+0.0 +6.2 +0.0	+0.0 -36.6	+0.0 +33.8	+0.0 +0.6	+0.0	40.1	54.0 data from b	-13.9 pandedge	Vert
٨	5380.000M	47.9	+0.0	+0.0	+0.0	+0.0	+0.0	51.9	54.0	-2.1	Vert
	2300.0001,1	.,.,	+6.2	-36.6	+33.8	+0.6	10.0	51.7	data from b		, 611
			+0.0	20.0		. 0.0			plot	Juniorage	
61	208.000M	44.7	+9.7	+0.3	+2.5	-28.0	+0.0	29.2	43.5	-14.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
62	239.983M	44.4	+12.0	+0.3	+2.7	-27.8	+0.0	31.6	46.0	-14.4	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
63	768.100M	30.9	+22.0	+0.4	+5.2	-27.1	+0.0	31.4	46.0	-14.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
64	519.950M	35.9	+18.6	+0.4	+4.2	-27.7	+0.0	31.4	46.0	-14.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
65	366.750M	40.3	+15.2	+0.3	+3.4	-27.8	+0.0	31.4	46.0	-14.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
66	125.050M	42.2	+11.8	+0.2	+1.8	-27.9	+0.0	28.1	43.5	-15.4	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
67	533.383M	34.8	+18.8	+0.4	+4.2	-27.7	+0.0	30.5	46.0	-15.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
	.== 1001 5		+0.0								
68	975.100M	34.2	+24.4	+0.7	+6.1	-27.3	+0.0	38.1	54.0	-15.9	Vert
			+0.0	+0.0	+0.0	+0.0					
<i>(</i> 0	0.60.05514	22.2	+0.0	.07		27.2	. 0. 0	27.0	540	17.0	TT
69	960.055M	33.3	+24.2	+0.7	+6.0	-27.2	+0.0	37.0	54.0	-17.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
70	408.017M	26.5	+0.0	.0.4	12.6	27.0	.00	20.0	46.0	-17.1	Horiz
70	408.01/M	36.5	$+16.2 \\ +0.0$	+0.4 +0.0	+3.6 +0.0	-27.8 +0.0	+0.0	28.9	46.0	-1/.1	попх
			+0.0	+0.0	+0.0	+0.0					
71	275.017M	40.4	+12.9	+0.3	+2.9	-27.8	+0.0	28.7	46.0	-17.3	Vert
/ 1	2/3.01/101	- ∪.+	+0.0	+0.0	+0.0	+0.0	10.0	20.7	+0.0	-1/.3	v CI t
			+0.0	10.0	10.0	10.0					
72	425.067M	35.8	+16.6	+0.3	+3.7	-27.8	+0.0	28.6	46.0	-17.4	Horiz
12	123.00/101	33.0	+0.0	+0.0	+0.0	+0.0	10.0	20.0	70.0	17.7	110112
			+0.0	10.0	10.0	10.0					
73	274.983M	40.3	+12.9	+0.3	+2.9	-27.8	+0.0	28.6	46.0	-17.4	Horiz
, 5	00111		+0.0	+0.0	+0.0	+0.0	. 0.0	_0.0			
			+0.0								
74	425.017M	35.8	+16.6	+0.3	+3.7	-27.8	+0.0	28.6	46.0	-17.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
75	466.700M	34.5	+17.5	+0.3	+3.9	-27.8	+0.0	28.4	46.0	-17.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 43 of 67 Report No.: FC09-180

76	444.467M	35.1	+17.0 +0.0	+0.3 +0.0	+3.8 +0.0	-27.8 +0.0	+0.0	28.4	46.0	-17.6	Horiz
			+0.0 +0.0	+0.0	+0.0	+0.0					
77	975.080M	31.8	+24.4	+0.7	+6.1	-27.3	+0.0	35.7	54.0	-18.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
78	416.017M	34.9	+16.4	+0.4	+3.7	-27.8	+0.0	27.6	46.0	-18.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 44 of 67 Report No.: FC09-180

FCC 15.407(b)(7)/15.205 UNDESIRABLE EMISSIONS LIMITS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: Silex Technology, America, Inc. Specification: FCC 15.407 (b)(7) / (15.205)

Work Order #: 89951 Date: 9/18/2009
Test Type: Radiated Scan Time: 11:42:19
Equipment: Wireless 802.11 a/b/g Ethernet Bridge Sequence#: 22
Manufacturer: Silex Technology America, Inc. Tested By: E. Wong

Model: XRX-610 S/N: NA

Test Equipment:

1 cst Equipment:				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Loop Antenna	2014	06/16/2008	06/16/2010	00314
Pre amp to SA Cable	Cable #10	04/16/2009	04/16/2011	P05050
Cable	Cable15	01/05/2009	01/05/2011	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565
18-26GHz Horn	942126-003	11/12/2008	11/12/2010	01413
26.5-40GHz Horn	1012	01/08/2008	01/08/2010	02045
Antenna				
2'-40GHz cable	NA	09/14/2009	09/14/2011	P02947
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946
5.8 GHz HPF	1	03/25/2008	03/25/2010	02755
AMP 50GHz	3332A00309	11/13/2008	11/13/2010	02115

Equipment Under Test (* = EUT):

Equipment Charles 1 cst (- 2 0 1)•		i and the second se
Function	Manufacturer	Model #	S/N
Power Supply	APD	DA-24F12	NA
Wireless 802.11 a/b/g	Silex Technology America,	XRX-610	NA
Ethernet Bridge*	Inc.		

Support Devices:

Support Serveest			
Function	Manufacturer	Model #	S/N
Ethernet Hub	Netgear	DS108	NA
Laptop	HP	Omnibook XE3	TW13113065
802.11 a/b/g Wireless	3-Com	WL-526	NA
Access Point			
Laptop	Sony	PCG-982L	8323330

Page 46 of 67 Report No.: FC09-180

Test Conditions / Notes:

The EUT is placed on the wooden table lined with a Styrofoam surface of 5 cm thickness. The ethernet port is connected to remote laptop computer via a support ethernet hub.

Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

Ch 36,40,48, 149, 153, 161. Modulation: 802.11 a (54 mbps), Firmware Power setting: 127 Power: 13.7 dBm 0.0230 watt

Antenna Gain: 2.1 dBi @ 5.825GHz (linear gain = 1.62)

The antenna is orientated in upright position.

21°C, 55% relative humidity.

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to antenna cable.

Frequency range of measurement = 9 kHz- 40 GHz.

Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz - 40000 MHz RBW=1 MHz, VBW=1 MHz.

Transducer Legend:

Transmitter Etgenar	
T1=Bilog-AN01995 BILOG_012110	T2=Cable #10 ANP05050 041611
T3=Cable #15_05198_ Site A, 010511	T4=Pre_amp_HP8447D-AN00309-050210
T5=Heliax Cable 54' ANP05565 090410	T6=HF_pre AMP-1-26GHz_AN00786-072810.TRN
T7=Horn Ant AN00849 060610	T8=Hi-Freq_40GHz_2ft_AN02947 0911411
T9=HPF_6GHz-AN02755-032510	

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	400.033M	50.0	+16.0	+0.4	+3.6	-27.8	+0.0	42.2	46.0	-3.8	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2	400.017M	48.1	+16.0	+0.4	+3.6	-27.8	+0.0	40.3	46.0	-5.7	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
3	260.017M	49.9	+12.7	+0.3	+2.8	-27.7	+0.0	38.0	46.0	-8.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
4	119.933M	49.2	+11.6	+0.2	+1.8	-27.9	+0.0	34.9	43.5	-8.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
5	11609.990	30.5	+0.0	+0.0	+0.0	+0.0	+0.0	44.4	54.0	-9.6	Vert
	M		+9.6	-35.9	+38.8	+1.0					
	Ave		+0.4						802.11a 58	805MHz	
٨	11609.990	40.2	+0.0	+0.0	+0.0	+0.0	+0.0	54.1	54.0	+0.1	Vert
	M		+9.6	-35.9	+38.8	+1.0					
			+0.4						802.11a 58	805MHz	
7	110.250M	49.0	+10.9	+0.1	+1.7	-27.9	+0.0	33.8	43.5	-9.7	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 47 of 67 Report No.: FC09-180

8	11490.000	30.5	+0.0			+0.0	+0.0	44.3	54.0	-9.7	Vert
	M		+9.6	-35.9	+38.8	+0.9					
	Ave		+0.4						802.11a 57		
^	11490.000	39.6	+0.0		+0.0	+0.0	+0.0	53.4	54.0	-0.6	Vert
	M		+9.6	-35.9	+38.8	+0.9					
			+0.4						802.11a 57	54MHz	
10	250.017M	48.3	+12.6	+0.3	+2.8	-27.7	+0.0	36.3	46.0	-9.7	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
11	325.017M	46.3	+14.0	+0.3	+3.2	-27.8	+0.0	36.0	46.0	-10.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
12	260.017M	47.2	+12.7	+0.3	+2.8	-27.7	+0.0	35.3	46.0	-10.7	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
13	325.017M	45.6	+14.0	+0.3	+3.2	-27.8	+0.0	35.3	46.0	-10.7	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
14	266.683M	46.5	+12.8	+0.3	+2.9	-27.8	+0.0	34.7	46.0	-11.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
15	124.983M	46.0	+11.8	+0.2	+1.8	-27.9	+0.0	31.9	43.5	-11.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
16	11530.000	28.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	54.0	-11.6	Vert
	M		+9.6	-35.9	+38.8	+1.0					
	Ave		+0.4						802.11a 57		
^	11530.000	38.1	+0.0		+0.0	+0.0	+0.0	52.0	54.0	-2.0	Vert
	M		+9.6	-35.9	+38.8	+1.0					
			+0.4						802.11a 57		
18	240.017M	46.0	+12.0	+0.3	+2.7	-27.8	+0.0	33.2	46.0	-12.8	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
19	283.433M	44.0	+13.0	+0.3	+2.9	-27.8	+0.0	32.4	46.0	-13.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
20	5360.000M	36.4		+0.0	+0.0	+0.0	+0.0				Vert
	Ave		+6.1	-36.6	+33.7	+0.6			data from b	oandedge	
			+0.0						plot		
^	5360.000M	50.3	+0.0	+0.0	+0.0	+0.0	+0.0	54.1	54.0	+0.1	Vert
			+6.1	-36.6	+33.7	+0.6			data from l	oandedge	
			+0.0						plot		
22	333.383M	42.2	+14.2	+0.3	+3.2	-27.8	+0.0	32.1	46.0	-13.9	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
23	5380.000M	36.1	+0.0	+0.0	+0.0	+0.0	+0.0	40.1	54.0	-13.9	Vert
	Ave		+6.2	-36.6	+33.8	+0.6			data from l	oandedge	
	#2 00 6003 5	4= ^	+0.0				0.0	# 1 0	plot		**
^	5380.000M	47.9	+0.0	+0.0	+0.0	+0.0	+0.0	51.9	54.0	-2.1	Vert
			+6.2	-36.6	+33.8	+0.6			data from l	oandedge	
			+0.0						plot		

Page 48 of 67 Report No.: FC09-180

25	125.050M	42.2	+11.8	+0.2	+1.8	-27.9	+0.0	28.1	43.5	-15.4	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
26 9	975.100M	34.2	+24.4	+0.7	+6.1	-27.3	+0.0	38.1	54.0	-15.9	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
27 9	960.055M	33.3	+24.2	+0.7	+6.0	-27.2	+0.0	37.0	54.0	-17.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
28 4	408.017M	36.5	+16.2	+0.4	+3.6	-27.8	+0.0	28.9	46.0	-17.1	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
29 2	275.017M	40.4	+12.9	+0.3	+2.9	-27.8	+0.0	28.7	46.0	-17.3	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
30 2	274.983M	40.3	+12.9	+0.3	+2.9	-27.8	+0.0	28.6	46.0	-17.4	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
31 9	975.080M	31.8	+24.4	+0.7	+6.1	-27.3	+0.0	35.7	54.0	-18.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
32 1	0480.000	33.2	+0.0	+0.0	+0.0	+0.0	+0.0	45.1	80.0	-34.9	Vert
	M		+8.9	-36.2	+38.0	+0.9					
Av			+0.3						802.11a 52	40MHz	
^ 1	0480.000	41.9	+0.0	+0.0	+0.0	+0.0	+0.0	53.8	80.0	-26.2	Vert
	M		+8.9	-36.2	+38.0	+0.9					
			+0.3						802.11a 52	40MHz	
34 1	0360.000	32.6	+0.0	+0.0	+0.0	+0.0	+0.0	44.4	80.0	-35.6	Vert
	M		+8.8	-36.2	+38.0	+0.9					
	ve		+0.3						802.11a 51	80MHz	
^ 1	0360.000	41.5	+0.0	+0.0	+0.0	+0.0	+0.0	53.3	80.0	-26.7	Vert
	M		+8.8	-36.2	+38.0	+0.9					
			+0.3						802.11a 51		
36 1	0400.000	32.5	+0.0	+0.0	+0.0	+0.0	+0.0	44.3	80.0	-35.7	Vert
	M		+8.8	-36.2	+38.0	+0.9					
Av			+0.3						802.11a 52		
^ 1	0400.000	41.1	+0.0	+0.0	+0.0	+0.0	+0.0	52.9	80.0	-27.1	Vert
	M		+8.8	-36.2	+38.0	+0.9					
			+0.3						802.11a 52		
	666.717M	45.5	+20.4	+0.5	+4.8	-27.2	+0.0	44.0	80.0	-36.0	Vert
QI	P		+0.0	+0.0	+0.0	+0.0					
			+0.0								
^ 6	666.717M	46.5	+20.4	+0.5	+4.8	-27.2	+0.0	45.0	80.0	-35.0	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
	800.067M	42.3	+22.5	+0.4	+5.3	-27.2	+0.0	43.3	80.0	-36.7	Vert
				+0.0	+0.0	+0.0					
QI	P		+0.0	10.0							
			+0.0								
	P 800.067M	44.6	+0.0 +22.5	+0.4	+5.3	-27.2	+0.0	45.6	80.0	-34.4	Vert
		44.6	+0.0			-27.2 +0.0	+0.0	45.6	80.0	-34.4	Vert

Page 49 of 67 Report No.: FC09-180

42	533.383M	46.7	+18.8	+0.4	+4.2	-27.7	+0.0	42.4	80.0	-37.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
43	666.722M	43.6	+20.4	+0.5	+4.8	-27.2	+0.0	42.1	80.0	-37.9	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
44	950.097M	38.4	+24.1	+0.7	+5.9	-27.2	+0.0	41.9	80.0	-38.1	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
45	950.080M	37.6	+24.1	+0.7	+5.9	-27.2	+0.0	41.1	80.0	-38.9	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
46	950.117M	36.7	+24.1	+0.7	+5.9	-27.2	+0.0	40.2	80.0	-39.8	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0						05 -		
47	533.367M	44.4	+18.8	+0.4	+4.2	-27.7	+0.0	40.1	80.0	-39.9	Vert
			+0.0	+0.0	+0.0	+0.0					
10	750 0553 5	20.0	+0.0			25.0	0.0	20.1	00.0	40.0	TT .
48	750.055M	39.0	+21.6	+0.4	+5.1	-27.0	+0.0	39.1	80.0	-40.9	Horiz
			+0.0	+0.0	+0.0	+0.0					
40	260,0003.5	47.0	+0.0	. 0. 2	. 2. 4	27.0	.0.0	20.7	00.0	41.0	77 '
49	360.000M	47.8	+15.0	+0.3	+3.4	-27.8	+0.0	38.7	80.0	-41.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
50	750 00234	20.7	+0.0	.0.4	. 5 1	27.0	.0.0	20.7	00.0	41.2	V I4
50	750.083M	38.6	+21.6	+0.4	+5.1	-27.0	+0.0	38.7	80.0	-41.3	Vert
			$+0.0 \\ +0.0$	+0.0	+0.0	+0.0					
51	900.083M	35.3	+23.3	+0.7	+5.7	-27.2	+0.0	37.8	80.0	-42.2	Vert
31	900.065WI	33.3	+23.3 +0.0	+0.7	+0.0	+0.0	+0.0	37.0	80.0	-42.2	ven
			+0.0	+0.0	+0.0	+0.0					
52	374.983M	45.5	+15.4	+0.4	+3.5	-27.8	+0.0	37.0	80.0	-43.0	Vert
32	374.703IVI	₹3.3	+0.0	+0.0	+0.0	+0.0	10.0	37.0	00.0	- 1 3.0	VCIT
			+0.0	10.0	10.0	10.0					
53	919.967M	32.9	+23.6	+0.7	+5.8	-27.2	+0.0	35.8	80.0	-44.2	Vert
)1).)U/1 41	22.7	+0.0	+0.0	+0.0	+0.0	10.0	55.0	00.0	17.2	, 011
			+0.0	. 5.0	. 5.0	. 0.0					
54	159.967M	50.6	+10.6	+0.3	+2.1	-27.9	+0.0	35.7	80.0	-44.3	Horiz
			+0.0	+0.0	+0.0	+0.0			22.0		
			+0.0								
55	839.983M	33.7	+22.8	+0.6	+5.5	-27.0	+0.0	35.6	80.0	-44.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
56	480.033M	40.6	+17.8	+0.4	+4.0	-27.8	+0.0	35.0	80.0	-45.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
<u> </u>			+0.0								
57	300.017M	45.8	+13.2	+0.3	+3.0	-27.8	+0.0	34.5	80.0	-45.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
58	700.033M	35.6	+20.7	+0.5	+4.9	-27.3	+0.0	34.4	80.0	-45.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 50 of 67 Report No.: FC09-180

59	359.983M	42.8	+15.0	+0.3	+3.4	-27.8	+0.0	33.7	80.0	-46.3	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
60	320.017M	44.1	+13.8	+0.3	+3.1	-27.8	+0.0	33.5	80.0	-46.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
61	200.000M	49.2	+9.1	+0.3	+2.4	-28.0	+0.0	33.0	80.0	-47.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
62	900.030M	30.3	+23.3	+0.7	+5.7	-27.2	+0.0	32.8	80.0	-47.2	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
63	488.933M	38.0	+18.0	+0.4	+4.0	-27.8	+0.0	32.6	80.0	-47.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
64	725.047M	33.0	+21.2	+0.4	+5.0	-27.1	+0.0	32.5	80.0	-47.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
65	300.000M	43.7	+13.2	+0.3	+3.0	-27.8	+0.0	32.4	80.0	-47.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
66	833.363M	30.7	+22.8	+0.6	+5.4	-27.1	+0.0	32.4	80.0	-47.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
67	711.163M	33.3	+20.9	+0.5	+4.9	-27.2	+0.0	32.4	80.0	-47.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
	220 00214	44.4	+0.0	. 0. 2	. 2.7	27.0	. 0. 0	21.6	00.0	40.4	TT '
68	239.983M	44.4	+12.0	+0.3	+2.7	-27.8	+0.0	31.6	80.0	-48.4	Horiz
			+0.0	+0.0	+0.0	+0.0					
60	768.100M	30.9	+0.0	+0.4	+5.2	-27.1	+0.0	31.4	80.0	-48.6	Vont
69	706.100IVI	30.9	$+22.0 \\ +0.0$	+0.4	+0.0	+0.0	+0.0	31.4	80.0	-46.0	Vert
			+0.0	+0.0	+0.0	+0.0					
70	519.950M	35.9	+18.6	+0.4	+4.2	-27.7	+0.0	31.4	80.0	-48.6	Vert
/0	319.930W	33.9	+0.0	+0.4	+0.0	+0.0	+0.0	31.4	80.0	-40.0	Vert
			+0.0	10.0	10.0	10.0					
71	366.750M	40.3	+15.2	+0.3	+3.4	-27.8	+0.0	31.4	80.0	-48.6	Vert
'1	300.730141	10.5	+0.0	+0.0	+0.0	+0.0	. 0.0	J1.T	50.0	10.0	, 011
			+0.0	. 5.0	. 5.0	. 0.0					
72	533.383M	34.8	+18.8	+0.4	+4.2	-27.7	+0.0	30.5	80.0	-49.5	Horiz
'-	300.0001.1	2 1.0	+0.0	+0.0	+0.0	+0.0	. 0.0	23.0	55.0	.,,,	
			+0.0		,						
73	208.000M	44.7	+9.7	+0.3	+2.5	-28.0	+0.0	29.2	80.0	-50.8	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
74	425.067M	35.8	+16.6	+0.3	+3.7	-27.8	+0.0	28.6	80.0	-51.4	Horiz
			+0.0	+0.0	+0.0	+0.0					
L			+0.0								
75	425.017M	35.8	+16.6	+0.3	+3.7	-27.8	+0.0	28.6	80.0	-51.4	Vert
			+0.0	+0.0	+0.0	+0.0					
<u> </u>			+0.0								

Page 51 of 67 Report No.: FC09-180

76	444.467M	35.1	+17.0 +0.0	+0.3 +0.0	+3.8 +0.0	-27.8 +0.0	+0.0	28.4	80.0	-51.6	Horiz
			+0.0								
77	466.700M	34.5	+17.5	+0.3	+3.9	-27.8	+0.0	28.4	80.0	-51.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
78	416.017M	34.9	+16.4	+0.4	+3.7	-27.8	+0.0	27.6	80.0	-52.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 52 of 67 Report No.: FC09-180

FCC 15.407(g) FREQUENCY STABILITY

Test Equipment

E	CAI	C-11	C-1 D D	A
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Temperature Chamber	NA	08/06/2008	08/06/2010	01878
20 Ch Thermalcouple	US37603966	07/17/2008	07/17/2010	01849
module				
Temperature Data logger	US70131892	07/17/2008	07/17/2010	01620
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
2'-40GHz cable	NA	09/21/2009	09/21/2011	P2948
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565
2'-40GHz cable	NA	09/14/2009	09/14/2011	P02947

Test Conditions

Setup: The Frequency point (Fl and Fh) at which the emission crosses the radiated emission limit line was obtained from the radiated bandedge plot. To ensure the emission is maintained in the band of operation under all condition of normal operation as specified in the user manual, the device was placed in a temperature chamber and the relative frequency drift was measured and added to the measured Fl and Fh.

Band of operation:

5150 - 5250 MHz

5725 – 5825 MHz

Manufacturer declared operating temperature: 0 - 50°C.

Result: The emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

Page 53 of 67 Report No.: FC09-180

Test Setup Photos

Test Data

	Fl	Fh
Frequency:	5159.83	5249.43
Temp (C)		
0	5159.88	5249.45
10	5159.88	5249.45
20	5159.83	5249.43
30	5159.85	5249.45
40	5159.85	5249.45
50	5159.88	5249.45

	Fl	Fh
Frequency:	5735.17	5814.60
Temp (C)		
0	5735.20	5814.63
10	5735.17	5814.64
20	5735.17	5814.60
30	5735.20	5814.60
40	5735.17	5814.60
50	5735.20	5814.60

Page 54 of 67 Report No.: FC09-180

BANDEDGE

Test Equipment

Calibratian Data	CID D		
Calibration Date	Cal Due Date	Asset #	
07/23/2008	07/23/2010	02672	
06/06/2008	06/06/2010	00849	
07/28/2008	07/28/2010	00786	
09/04/2008	09/04/2010	P05565	
11/12/2008	11/12/2010	01413	
09/14/2009	09/14/2011	P02947	
	07/23/2008 06/06/2008 07/28/2008 09/04/2008 11/12/2008	07/23/2008 07/23/2010 06/06/2008 06/06/2010 07/28/2008 07/28/2010 09/04/2008 09/04/2010 11/12/2008 11/12/2010	07/23/2008 07/23/2010 02672 06/06/2008 06/06/2010 00849 07/28/2008 07/28/2010 00786 09/04/2008 09/04/2010 P05565 11/12/2008 11/12/2010 01413

Test Conditions

The EUT is placed on the wooden table lined with a Styrofoam surface of 5 cm thickness. The ethernet port is connected to remote laptop computer via a support ethernet hub.

Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

Ch 36,40,48, 149, 153, 161. Modulation: 802.11 a (54 mbps) Firmware Power setting: 127 Power: 13.7 dBm 0.0230 watts

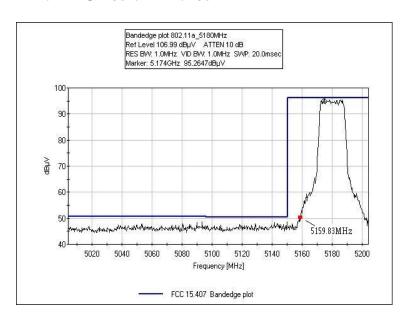
Antenna Gain: 2.1 dBi @ 5.825GHz (linear gain = 1.62)

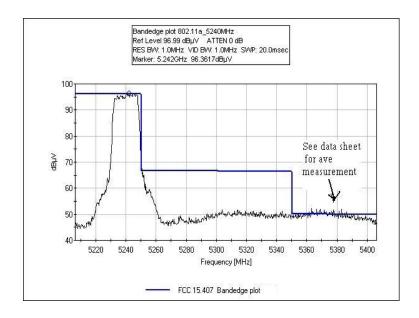
The antenna is orientated in up right position.21°C, 55% relative humidity.

Delta marker method was applied to 802.11a, 5240 MHz plots, reduced bandwith was used with amplitude correction applied. 5360 -5380 MHz, refer to data sheet for averaged measurement.

Test Setup Photos

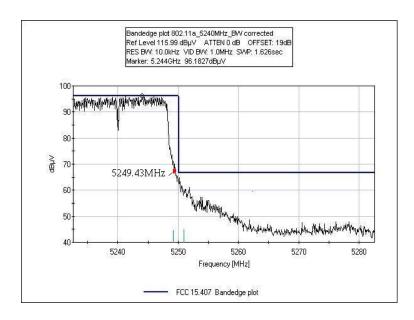
Page 55 of 67 Report No.: FC09-180

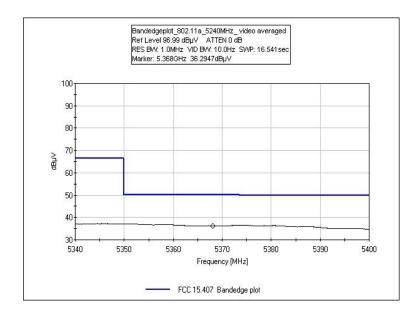




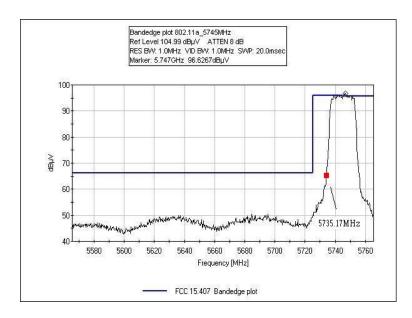
Plots

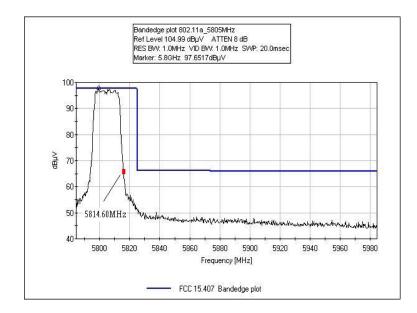
BANDEDGE 802.11A - 5180MHz


BANDEDGE 802.11A - 5240MHz


Page 57 of 67 Report No.: FC09-180

BANDEDGE 802.11A - 5240MHz BW CORRECTED


BANDEDGE 802.11A - 5240MHz VIDEO AVERAGED


Page 58 of 67 Report No.: FC09-180

BANDEDGE 802.11A - 5745MHz

BANDEDGE 802.11A - 5805MHz

Page 59 of 67 Report No.: FC09-180

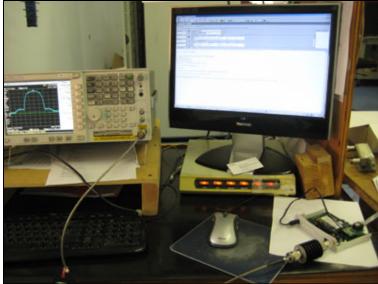
26dB BANDWIDTH

Test Equipment

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946

Test Conditions

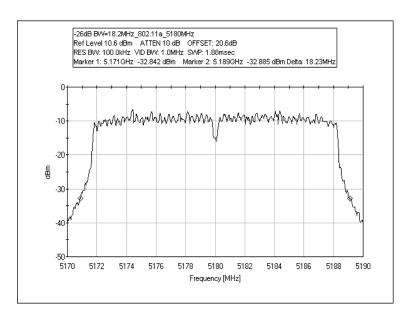
The EUT is placed on the test bench. The device is set in continuous transmit mode, the RF signal is measured at the antenna port .


Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

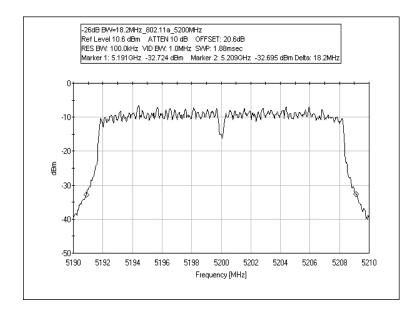
Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

Ch 36,40,48, 149, 153, 161. Modulation: 802.11a (54 mbps), Firmware Power setting: 127 21°C, 55% relative humidity.

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to the antenna cable.

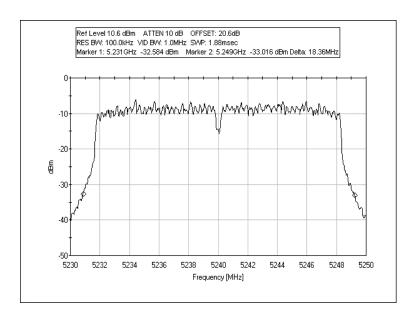


Page 60 of 67 Report No.: FC09-180

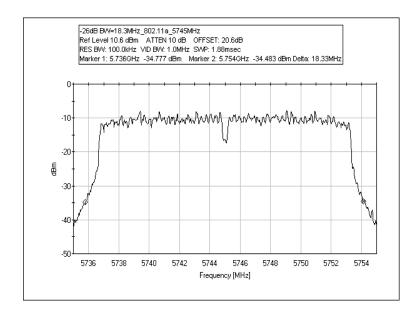


Plots

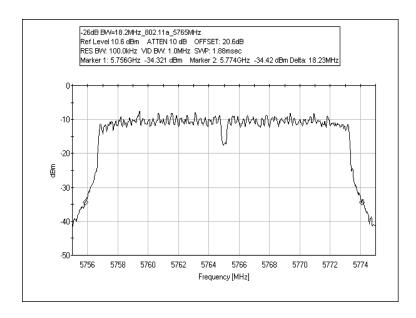
-26dB BANDWDITH = 18.2MHz 802.11A - 5180MHz

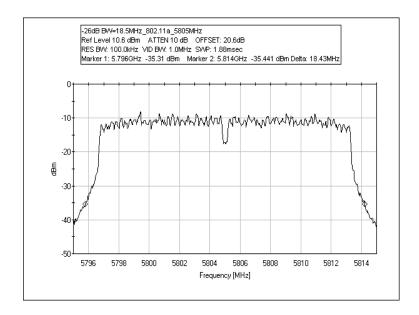


-26dB BANDWDITH = 18.2MHz 802.11A - 5200MHz



-26dB BANDWDITH = 18.4MHz 802.11A - 5240MHz


-26dB BANDWDITH = 18.3MHz 802.11A - 5745MHz


Page 62 of 67 Report No.: FC09-180

-26dB BANDWDITH = 18.2MHz 802.11A - 5765MHz

-26dB BANDWDITH = 18.5MHz 802.11A - 5805MHz

Page 63 of 67 Report No.: FC09-180

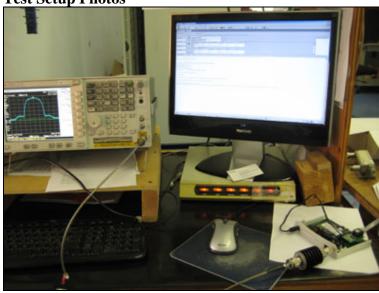
RSS-210 99% BANDWIDTH

Test Equipment

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
3'-40GHz cable	NA	09/14/2009	09/14/2011	P02946

Test Conditions

The EUT is placed on the test bench. The device is set in continuous transmit mode, the RF signal is measured at the antenna port .

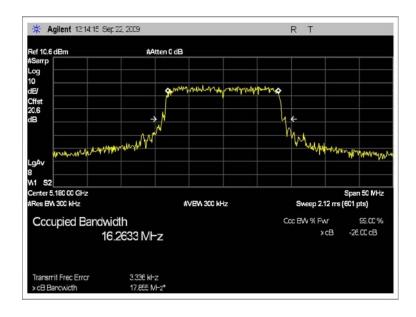

Frequency: 5.15 - 5.25GHz, 5.725 - 5.825GHz

Tx Frequency: 5180MHz, 5200MHz, 5240MHz, 5745MHz, 5765MHz, 5805MHz.

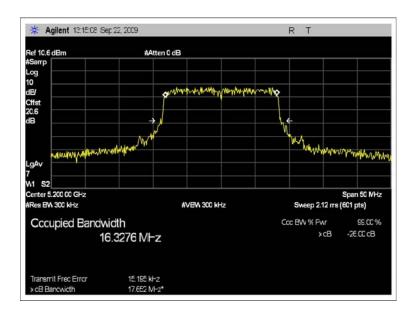
Ch 36,40,48, 149, 153, 161. Modulation: 802.11a (54 mbps), Firmware Power setting: 127 21°C, 55% relative humidity.

Modification: 30 pF shunt capacitors added to the ethernet traces. Two ferrite beads added to the antenna cable.

Test Setup Photos

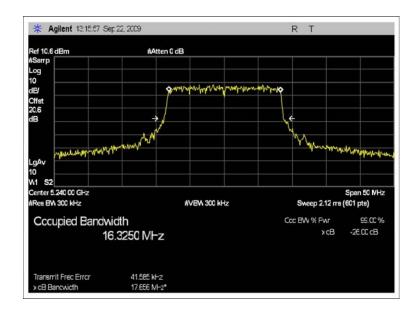


Page 64 of 67 Report No.: FC09-180



Plots

RSS-210 99% BANDWIDTH = 16.3MHz 802.11a - 5180MHz

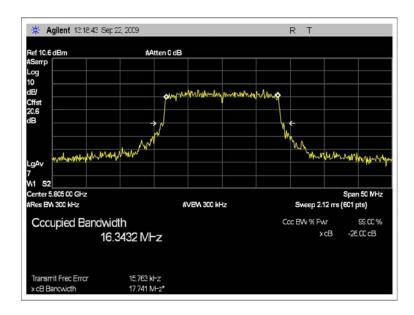


RSS-210 99% BANDWIDTH = 16.3MHz 802.11a - 5200MHz



RSS-210 99% BANDWIDTH = 16.3MHz 802.11a - 5240MHz

RSS-210 99% BANDWIDTH = 16.3MHz 802.11a - 5245MHz



RSS-210 99% BANDWIDTH = 16.3MHz 802.11a - 5265MHz

RSS-210 99% BANDWIDTH = 16.3MHz 802.11a - 5805MHz

