RF Exposure / MPE Calculation

No.	14178415H
Customer	silex technology, Inc.
Description of EUT	Embedded Wireless Module
Model Number of EUT	SX-USBAC
FCC ID	N6C-USBAC

silex technology, Inc. declares that Model: SX-USBAC complies with FCC radiation exposure requirement specified in the FCC Rule 2.1091 (for mobile).

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided with the "SX-USBAC" as calculated from (B) Limits for General Population / Uncontrolled Exposure of TABLE 1- LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) of §1.1310 Radiofrequency radiation exposure limits.

[WLAN 2.4 GHz band part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm^2 uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 101.86 mW (Maximum average output power) $\Box \text{ Time average was used for the above value in consideration of 6-minutes time-averaging}$ Burst power average was used for the above value in consideration of worst condition. G = 2.113 Numerical Antenna gain; equal to 3.25dBi r = 20 cm (Separation distance)

Power Density Result $S = 0.04283 \text{ mW/cm}^2$

[Bluetooth (BT LE) part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm^2 uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times \pi}$$

Where

 $4 \times \pi \times r^2$

P = 1.20 mW (Maximum average output power)

 \Box Time average was used for the above value in consideration of 6-minutes time-averaging

Burst power average was used for the above value in consideration of worst condition.

G = 2.113 Numerical Antenna gain; equal to 3.25dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00050 \text{ mW/cm}^2$

[Bluetooth (BR/EDR) part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm^2 uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

 $P \equiv$

1.99 mW (Maximum average output power)

■ Time average was used for the above value in consideration of 6-minutes time-averaging

□ Burst power average was used for the above value in consideration of worst condition.

G = 2.113 Numerical Antenna gain; equal to 3.25 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00084 \text{ mW/cm}^2$

[WLAN 5 GHz band part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm^2 uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 25.41 mW (Maximum average output power)
□ Time average was used for the above value in consideration of 6-minutes time-averaging
■ Burst power average was used for the above value in consideration of worst condition.

G =

3.162 Numerical Antenna gain; equal to 5 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.01599 \text{ mW/cm}^2$

Even taking into account the tolerance, this device can be satisfied with the limits.

Therefore, if Bluetooth (BR/EDR) + WLAN 5 GHz transmit simultaneously, S=0.00084 mW/cm² + 0.01599 mW/cm² =0.01683 mW/cm²