

Test report No.

: 32AE0138-HO-01-A

: 1 of 88

Page

Issued date FCC ID : September 14, 2011

: N6C-SXPCEGN

RADIO TEST REPORT

Test Report No.: 32AE0138-HO-01-A

Applicant

silex technology, Inc.

Type of Equipment

Wireless LAN PCI Express Mini Card Module

Model No.

: SX-PCEGN

FCC ID

N6C-SXPCEGN

Test regulation

FCC Part 15 Subpart C: 2011

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Date of test:

April 21 to August 30, 2011

1. Mimada

Representative test engineer:

Takumi Shimada Engineer of WiSE Japan, UL Verification Service

Approved by:

Takahiro Hatakeda Leader of WiSE Japan, UL Verification Service

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

Telephone

: +81 596 24 8116

Facsimile

: +81 596 24 8124

Page : 2 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN

CONTENTS	PAGE
SECTION 1: Customer information	3
SECTION 2: Equipment under test (E.U.T.)	3
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of E.U.T. during testing	
SECTION 5: Conducted Emission	
SECTION 6: Radiated Spurious Emission	
SECTION 7: Antenna Terminal Conducted Tests	
APPENDIX 1: Photographs of test setup	
Conducted Emission	
Radiated Spurious Emission	
Worst Case Position	
APPENDIX 2: Data of EMI test	
Conducted Emission	
6dB Bandwidth	19
Maximum Peak Output Power	
Radiated Spurious Emission	
The tested burst timing	42
Conducted Spurious Emission	
Conducted Emission Band Edge compliance	
Power Density	
99% Occupied Bandwidth	
APPENDIX 3: Test instruments	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN

SECTION 1: Customer information

Company Name : silex technology, Inc.

Address : 2-3-1 Hikaridai, Seika-cho, Kyoto 619-0237, Japan

Telephone Number : +81-774-98-3878
Facsimile Number : +81-774-98-3758
Contact Person : Toshiro Kometani

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Wireless LAN PCI Express Mini Card Module

Model No. : SX-PCEGN

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC3.3V Receipt Date of Sample : April 21, 2011 Country of Mass-production : Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: SX-PCEGN (referred to as the EUT in this report) is the Wireless LAN PCI Express Mini Card Module.

Equipment Type : Transceiver
Clock frequency : 40MHz
Method of Frequency Generation : Synthesizer
Operating voltage(Power Supply) : DC3.3V
Operating voltage (inner) : DC1.2V
Maximum Antenna Gain : 2.0dBi

	IEEE802.11b	IEEE802.11g	IEEE802.11n (20HT)	IEEE802.11n (40HT)
Frequency of operation	2412-2462MHz		2412 - 2462MHz	2422 - 2452MHz
Type of modulation	DSSS (CCK, DQPSK, DBPSK)	OFDM (64QAM, 16QAM, QPSK, BPSK)	OFDM (64QAM, 16QAM,	QPSK, BPSK)
Channel spacing	5MHz		5MHz	5MHz
Antenna type	Omni-directional			
Antenna Connector	U.FL Alternative connector			
type				

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2011, final revised on July 8, 2011 and effective August

8, 2011

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.4:2003 7. AC powerline Conducted Emission measurements IC: RSS-Gen 7.2.4	FCC: Section 15.207 IC: RSS-Gen 7.2.4	QP 13.8dB, 7.37945MHz, N AV 15.7dB, 7.03198MHz, L	Complied	-
6dB Bandwidth	FCC: "Guidance on Measurement of Digital Transmission Systems Operating under Section15.247" IC: RSS-Gen 4.6.2	FCC: Section 15.247(a)(2) IC: RSS-210 A8.2(a)		Complied	Conducted
		FCC: Section	-		
Maximum Peak Output Power	Digital Transmission Systems Operating under Section15.247" IC: RSS-Gen 4.8	15.247(b)(3) IC: RSS-210 A8.4(4)	See data.	Complied	Conducted
Power Density	FCC: "Guidance on Measurement of Digital Transmission Systems Operating under Section15.247" IC: -	FCC: Section 15.247 (e) IC: RSS-210 A8.2(b)		Complied	Conducted
Spurious Emission Restricted Band Edges	Digital Transmission Systems Operating under Section 15 247"	IC: RSS-210 A8.5 RSS-Gen 7.2.3	0.3dB 2483.500MHz, AV, Hori.	Complied	Conducted/ Radiated

^{*} In case any questions arise about test procedure, ANSI C63.4: 2003 is also referred.

FCC 15.31 (e)

The RF Module has own regulator.

The RF Module is constantly provided voltage through own regulator regardless of input voltage (DC3.3V).

Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

The EUT has a unique antenna connector (U.FL Alternative connector). Therefore the equipment complies with the requirement of 15.203/212.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The revision on July 8, 2011 does not affect the test specification applied to the EUT.

Page : 5 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen 4.6.1	IC: RSS-Gen 4.6.1	N/A	-	Conducted
Bandwidth					
Receiver Spurious Emission	IC: RSS-Gen 4.10	IC: RSS-Gen 6	11.0dB	Complied	Radiated
-			2489.907MHz, AV,	•	
			Vert.		

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room	Conducted emission
(semi-	(<u>+</u> dB)
anechoic	150kHz-30MHz
chamber)	
No.1	3.1dB
No.2	3.3dB
No.3	3.7dB
No.4	3.2dB

Test room	Radiated emission								
(semi-		(3m*)((<u>+</u> dB)		(1m*))(<u>+</u> dB)	$(0.5\text{m}^*)(\underline{+}\text{dB})$		
anechoic	9kHz	30MHz	300MHz	1GHz	10GHz	18GHz	26.5GHz		
chamber)	-30MHz	-300MHz	-1GHz	-10GHz	-18GHz	-26.5GHz	-40GHz		
No.1	3.5dB	5.1dB	5.2dB	4.8dB	5.1dB	4.4dB	4.3dB		
No.2	4.0dB	5.1dB	5.2dB	4.8dB	5.0dB	4.3dB	4.2dB		
No.3	4.2dB	4.7dB	5.2dB	4.8dB	5.0dB	4.5dB	4.2dB		
No.4	4.0dB	5.0dB	5.1dB	4.8dB	5.0dB	5.1dB	4.2dB		

^{*3}m/1m/0.5m = Measurement distance

Power meter (<u>+</u> dB)							
Below 1GHz	Above 1GHz						
1.0dB	1.0dB						

Antenna terminal conducted emission and Power density (±dB)		Antenna terminal (Channel power (<u>+</u> dB)		
Below 1GHz	1GHz-3GHz	3GHz-18GHz	18GHz-26.5GHz	26.5GHz-40GHz	
1.0dB	1.1dB	2.7dB	3.2dB	3.3dB	1.5dB

Conducted Emission test

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test(3m)

(Transmitter Spurious Emission)The data listed in this report meets the limits unless the uncertainty is taken into consideration. (Receiver Spurious Emission) The data listed in this test report has enough margin, more than the site margin.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN

3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

	FCC Registration Number	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms
No.1 semi-anechoic chamber	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
No.6 measurement room	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	-	8.0 x 4.5 x 2.8m	2.0 x 2.0m	-
No.10 measurement room	-	-	2.6 x 2.8 x 2.5m	2.4 x 2.4m	-
No.11 measurement room	-	-	3.1 x 3.4 x 3.0m	2.4 x 3.4m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test set up, Data of EMI, and Test instruments

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

Mode	Remarks*
IEEE 802.11b (11b)	11Mbps (Long), PN9
IEEE 802.11g (11g)	9Mbps, PN9
IEEE 802.11n MIMO 20MHz BW (11n-20)	MCS 13, PN9
IEEE 802.11n MIMO 40MHz BW (11n-40)	MCS 8, PN9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

Power settings:

ch	1	2	3	4	5	6	7	8	9	10	11
11b	15dBm	15dBm	15dBm	15dBm	15dBm	15dBm	15dBm	15dBm	15dBm	15dBm	15dBm
11g	13dBm	15dBm	15dBm	15dBm	15dBm	15dBm	15dBm	15dBm	15dBm	15dBm	11.5dBm
11n-20	9dBm	12dBm	12dBm	12dBm	12dBm	12dBm	12dBm	12dBm	12dBm	12dBm	11dBm
11n-40	-	-	8dBm	12.5dBm	12.5dBm	12.5dBm	12.5dBm	12.5dBm	8dBm	-	-

Software: 9K Atheros Radio test

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s)

Test Item	Operating Mode	Tested Antenna	Tested frequency
Conducted Emission	11n-40 Tx *1)	0+1	2437MHz *1)
Transmitter Spurious Emission (Radiated / Conducted) 6dB Bandwidth Maximum Peak Output Power Power Density 99% Occupied Bandwidth	11b Tx 11g Tx	0	2412MHz 2437MHz 2462MHz
99% Occupied Bandwidth	11n-20 Tx	0+1	2412MHz 2437MHz 2462MHz
	11n-40 Tx	0+1	2422MHz 2437MHz 2452MHz
Receiver Spurious Emission (Radiated / Conducted)	11b Rx	0	2437MHz

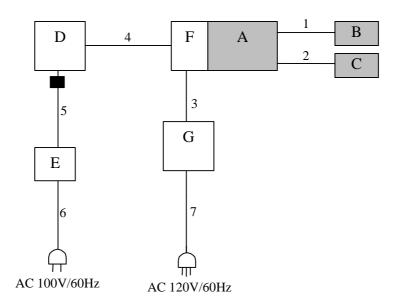
^{*1)} The mode and the tested frequency were used for the test as a representative, because they had the highest power at Maximum Peak Output Power test.

UL Japan, Inc.

Head Office EMC Lab.

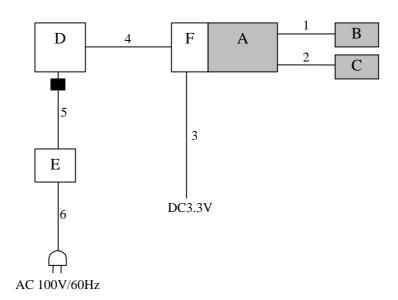
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Power of the EUT was set by the software as follows;


^{*} Any conditions under the normal use do not exceed the condition of setting.

Page : 8 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN


4.2 Configuration and peripherals

[Conducted emission test]

: Standard Ferrite Core

[Radiated emission test]

: Standard Ferrite Core

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Page : 9 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
	Wireless LAN PCI	SX-PCEGN	008092-011870 *1)	silex technology,	EUT
Α	Express Mini Card		008092-011871 *2)	Inc.	
	Module				
В	Antenna	ANTB18-119	001	silex technology,	EUT
				Inc.	
C	Antenna	ANTB18-119	002	silex technology,	EUT
C				Inc.	
D	Laptop PC	7661-CB9	L3-R2056 07/12	lenovo	-
Е	AC Adapter	92P1213	11S92P1213Z1ZBGK7AH	lenevo	-
			11F		
F	Jig board	-	-	silex technology,	-
Г				Inc.	
G	DC Power Supply	6654A	MY40000510	Agilent	-

^{*1)} Used for Antenna Terminal Conducted tests

List of cables used

List of capies used							
No.	Name	Length (m)	Shield		Remarks		
			Cable	Connector			
1	Antenna Cable	0.1	Shielded	Shielded	-		
2	Antenna Cable	0.1	Shielded	Shielded	-		
3	DC Cable	1.5	Unshielded	Unshielded	-		
4	Signal Cable	0.3	Shielded	Shielded	-		
5	DC Cable	1.8	Unshielded	Unshielded	-		
6	AC Cable	1.0	Unshielded	Unshielded	-		
7	AC Cable	1.8	Unshielded	Unshielded	-		

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Spurious Emission tests and Conducted Emission test

Page : 10 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0m by 1.5m, raised 0.8m above the conducting ground plane. The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from a Line Impedance Stabilization Network (LISN)/ Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30cm to 40cm long and were hanged at a 40cm height to the ground plane. All unused 50ohm connectors of the LISN(AMN) were resistivity terminated in 50ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and AV
Measurement range : 0.15-30MHz
Test data : APPENDIX
Test result : Pass

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 11 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "2. Radiated emission test" of "Guidance on Measurement of Digital Transmission Systems Operating under Section15.247".

EUT was placed on a urethane platform of nominal size, 0.5m by 1.0m, raised 0.8m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

The height of the measuring antenna varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30MHz	30MHz to 300MHz	300MHz to 1GHz	Above 1GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

In any 100kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20dBc was applied to the frequency over the limit of FCC 15.209 / Table 5 of RSS-Gen 7.2.5(IC) and outside the restricted band of FCC15.205 / Table 3 of RSS-Gen 7.2.2 (IC).

Frequency	Below 1GHz	Above 1GHz		20dBc				
Instrument used	Test Receiver	ceiver Spectrum Analyzer		Spectrum Analyzer				
Detector	QP	PK	AV	PK				
IF Bandwidth	BW 120kHz(T/R)	RBW: 1MHz	RBW: 1MHz	RBW: 100kHz				
		VBW: 3MHz VBW: 10Hz		VBW: 300kHz (S/A)				
Test Distance	3m	3m (below 10GHz),		3m (below 10GHz),				
		1m*1) (above 10GHz)		1m*1) (above 10GHz)				

^{*1)} Distance Factor: $20 \times \log (3.0 \text{m}/1.0 \text{m}) = 9.5 \text{dB}$

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30M-25GHz
Test data : APPENDIX
Test result : Pass

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 12 of 88

Issued date : September 14, 2011 FCC ID : N6C-SXPCEGN

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	20MHz / 40MHz	100kHz	300kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth	Enough width to display 20dB Bandwidth	1 to 3% of Span	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak	-	Power Meter (Sensor: 50MHz BW)
Peak Power Density	18MHz / 38MHz	30kHz	100kHz	600sec / 1267sec	Peak	Max Hold	Spectrum Analyzer *1) *2)
Conducted Spurious Emission *3)	Range: 9kHz-150kHz	200Hz	620Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission 3)	Range: 150kHz-30MHz	9.1kHz	27kHz				
	Range: 30MHz-25GHz (Less or equal to 5GHz)	100kHz	300kHz				

^{*1)} PSD Option 1 of "Guidance on Measurement of Digital Transmission Systems Operating under Section15.247".

(9kHz-150kHz:RBW=200Hz, 150kHz-30MHz:RBW=9.1kHz)

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} The test was not performed at RBW:3kHz however the measurement is to be performed with RBW:3kHz in the regulation,

because, the measurement value with RBW:3kHz is less than the value of RBW:30kHz and the test data met the limit with RBW:30kHz.

^{*3) *} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.