

Report No. 412561-01-R00

Test Report

Product	Remote Control Radio Transceiver
Name and address of the applicant	Scanreco AB Stensätravägen 13 127 39 Stockholm, Sweden
Name and address of the manufacturer	Scanreco AB Stensätravägen 13 127 39 Stockholm, Sweden
Model	SRC-RCAN
Rating	48V _{AC/DC}
Trademark	SCANRECO
Serial number	See clause 1.1
Additional information	FHSS
Tested according to	FCC Part 15.247 Frequency Hopping Transmitters / Digital Transmission Systems Industry Canada RSS-247, Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
Order number	412561
Tested in period	2021-02-16 to 2021-03-24
Issue date	2021-10-22
Name and address of the testing laboratory	Instituttveien 6 Kjeller, Norway www.nemko.comCAB Number: FCC: NO0001 ISED: NO0470Image: Case of the second secon
	Fraction G. Subathahm. Prepared by [Frode Sveinsen] Approved by [G.Suhanthakumar] d except in full without the written approval of Nemko. Opinions and interpretations expressed within ent accreditation. This report was originally distributed electronically with digital signatures. For more

Template version: C

CONTENTS

1	INFORMATION	
1.1	Test Item	
1.2 1.3	Normal test condition Test Engineer(s)	
1.3	Antenna Requirement	
1.5	EUT Operating Modes	
1.6	Comments	
2	TEST REPORT SUMMARY	
2.1	General	
2.2	Test Summary	6
3	TEST RESULTS	7
3.1	Power Line Conducted Emissions	
3.2	20dB Bandwidth	
3.3	Pseudorandom Hopping Algorithm	
3.4	Hopping Bandwidth	
3.5	Occupancy Time	
3.6	Occupied Bandwidth (99% BW)	
3.7	Peak Power Output	
3.8	Conducted Emissions at Antenna Connector	
3.9	Restricted Bands of operation	
3.10	Radiated Emissions, Band Edge	
3.11	Radiated Emission, 30 – 1000 MHz.	
3.12	Radiated Emissions, 1-26 GHz	
4	Measurement Uncertainty	34
5	LIST OF TEST EQUIPMENT	35
6	BLOCK DIAGRAM	
6.1	Power Line Conducted Emission	
6.2	Test Site Radiated Emission	

1 INFORMATION

1.1 Test Item

Name	Scanreco
Model/version	SRC-RCAN
FCC ID	N5OSRCRCAN
ISED ID	6476A-SRCRCAN
Serial number	Sample with Int Ant: 1095200 Sample with Ext Ant: 1095184
Hardware identity and/or version	103110
Software identity and/or version	SRC-RCAN_RF-KC-0100
Frequency Range	2405–2480 MHz
Number of Channels	16
Type of Modulation	O-QPSK
Conducted Output Power	98 mW
Antenna Connector	Integral Antenna or RP-TNC connector
Number of Antennas	1
Diversity or Smart Antennas	No
Power Supply	External Power (48 – 230 V _{AC})
Antennas tested with EUT	Internal F-Antenna External Antenna: M70XC External Short Whip Antenna

Description of Test Item

The EUT is a transceiver for remote control of cranes.

This device has been tested as a Frequency Hopping system and fulfils all requirements for FHSS systems.

1.2 Normal test condition

Temperature:	20 - 24 °C
Relative humidity:	20 - 50 %
Normal test voltage:	48V 60 Hz AC (RF tests) 120V 60 Hz AC (Power Line Conducted Test)

The values are the limit registered during the test period.

1.3 Test Engineer(s)

Frode Sveinsen / Kristian Osvoll

1.4 Antenna Requirement

Does the EUT have detachable antenna(s)?	⊠ YES	
If detachable, is the antenna connector(s) non-standard?	⊠ YES	
The version with external Antenna Connector uses an RP-SMA connector.		

Requirement: FCC 15.203, 15.204

1.5 EUT Operating Modes

Description of operating modes	Continuous TX bursts on one channel or Hopping
Additional information	The following settings were used for all tests: Power Setting Internal F-Antenna: 236 Power Setting External Antenna: 220

1.6 Comments

The EUT uses Frequency Hopping with a proprietary protocol.

It was checked that power variations between 48V AC and 138V AC did not have any influence on output power.

2 TEST REPORT SUMMARY

2.1 General

All measurements are tracable to national standards.

The tests were conducted for demonstrating compliance with FCC CFR 47 Part 15, paragraph 15.247 and Industry Canada RSS-247 Issue 2 and RSS-GEN Issue 5.

Tests were performed in accordance with ANSI C63.4-2014 and and ANSI C63.10-2013.

Radiated tests were made in a semi-anechoic chamber at measuring distances of 1m and 3m.

A description of the test facility is on file with FCC and ISED.

New Submission

Class II Permissive Change

DSS Equipment Code

Production Unit
Pre-production Unit
Family Listing

THIS TEST REPORT APPLIES ONLY TO THE ITEM(S) AND CONFIGURATIONS TESTED.

Deviations from, additions to, or exclusions from the test specifications are described in "Summary of Test Data".

Nemko Group authorizes the client to reproduce this report provided it is reproduced in its entirety and for use by the entity's employees only. Any reproduction of parts of this report requires approval in writing from Nemko Group.

Any use that a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Group accepts no responsibility for damages suffered by any third party caused by decisions made or actions based on this report.

2.2 Test Summary

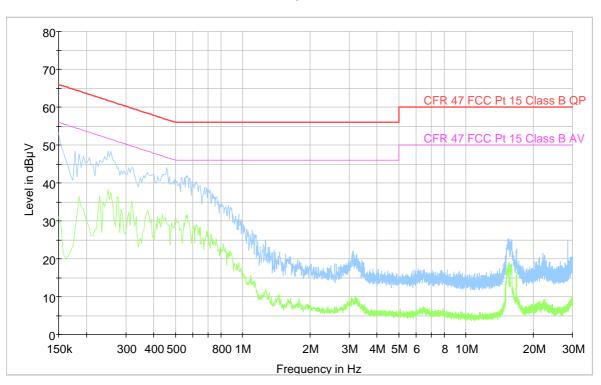
Name of test	FCC Part 15 reference	RSS-247 Issue 2, RSS-GEN Issue 5 reference	ANSI C63.10-2013 Reference	Result	
Supply Voltage Variations	15.31(e)	6.11 (RSS-GEN)	5.13	Complies	
Antenna Requirement	15.203	6.8 (RSS-GEN)	5.8	Complies	
Power Line Conducted Emission	15.207(a)	7.2 / 8.8 (RSS-GEN)	6.2	Complies	
Channel Separation and 20 dB BW	15.247(a)(1)	5.1 (4) (RSS-247)	7.8.2 (FHSS)	Complies	
Number of Hopping Frequencies	15.31(m)	5.1 (6) (RSS-247)	7.8.3 (FHSS)	Complies	
Pseudorandom Hopping Algorithm	15.247(a)(1)	5.1 (3) (RSS-247)	N/A (FHSS)	Complies	
Time of Occupancy (dwell time)	15.247(a)(1)(iii)	5.1 (5) (RSS-247)	7.8.4 (FHSS)	Complies	
Occupied Bandwidth	15.247(a)(1)	5.1 (7) (RSS-247)	6.9.2 FHSS)	Complies	
Occupied Bandwidth (99% BW)	N/A	6.7 (RSS-GEN)	6.9.3	Complies	
Peak Power Output	15.247(b)	5.4 (RSS-247)	11.9.1.1	Complies	
Spurious Emissions (Antenna Conducted)	15.247(c)	5.5 (RSS-247)	6.7 7.8.6 (FHSS) 7.8.8 (FHSS)	Complies	
Spurious Emissions (Radiated)	15.247(c) 15.109(a) 15.209(a)	5.5 (RSS-247) 7.3 (RSS-GEN) 8.9 (RSS-GEN)	6.3, 6.5, 6.6, 6.10	Complies	

Revision history

Revision	Date	Comment	Sign
00	2021-09-09	First edition	FS

3 TEST RESULTS

3.1 Power Line Conducted Emissions


FCC Part 15.207

ISED RSS-GEN Issue 5, Clause 7.2/8.8

Measurement procedure:	ANSI C63.4-2014 using 50 μ H/50 ohms LISN.
Test Results:	Complies
Measurement Data:	See attached plots. Tested with 48 V 60 Hz AC

Highest measured value (L1 and N):

F	Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter

Full Spectrum

3.2 20dB Bandwidth

FCC Part 15.247(a)(1)

ISED RSS-247 Issue 2, Clause 5.1 (b)

Measurement procedure: ANSI C63.10-2013 Clause 7.8.2

Test Results: Complies

Measurement Data:

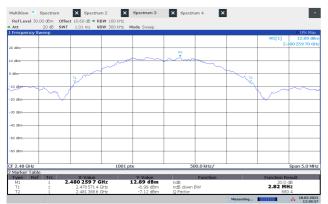
20dB Bandwidth						
2405 MHz 2440 MHz 2480 MHz						
2.81 MHz	2.82 MHz	2.82 MHz				
Channel Separation: 5.0 MHz						

See attached plots.

Requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

or:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or twothirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the system operates with an output power no greater than 125 mW.

Att	20 dBm Offse 20 dB SWT	t 10.60 dB • R 1.01 ms V	BW 100 kHz M	Aode Sweep					
1 Frequency	Sweep								O 1Pk Max
								M1[1] 2,	16.13 dBm 405 239 80 GHz
20 d8m					H1 T				
			and	m	nn	m			
LO dBm			~						
) d8m-		- M	1				\sim		
2 G2011		J.					N.C.		
10 08m	man	7						<u> </u>	m
	0.00							04	
-20 dBm									
-30 dBm				-					-
-40 dBm									
-SD dBm									
50 UBM									
-60 dBm									
CF 2.405 GHz			1001 p		50	0.0 kHz/			Span 5.0 MHz
Marker Tab			1001 p			10.0 10.12/			opan 5to Mila
Type Re	f Trc	X-Value		Y-Value		Function		Function R	
M1 T1	1 2.	405 239 8 0 2.403 601 4		16.13 dBm -4.06 dBm	ndB ndB down	BW		20.0 2.81 M	dB Hz
T2	i	2.406 408 6		-3.80 dBm	Q Factor			854	

20dB Bandwidth 2405 MHz

20dB Bandwidth 2480 MHz

20dB Bandwidth 2440 MHz

3.3 Pseudorandom Hopping Algorithm

FCC Part 15.247 (a)(1)

ISED Canada RSS-247 Issue 2, Clause 5.1

Test Results: Complies

Requirements:

The channel frequencies shall be selected from a pseudorandom ordered list of hopping frequencies. Each frequency must be used equally by the transmitter.

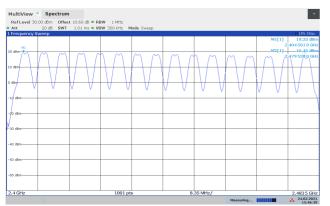
3.4 Hopping Bandwidth

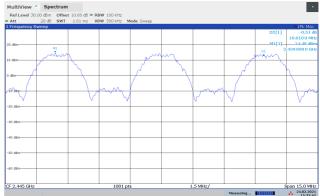
FCC Part 15.247 (a)(1)(iii)

ISED Canada RSS-247 Issue 2, Clause 5.1

Measurement procedure: ANSI C63.10-2013 Clause 6.9.2 / 7.8.3

Test Results: Complies


Measurement Data:


Number of RF Channels in use	16
Channel Centre Frequencies	2405 to 2480 MHz
Channel Separation	5.0 MHz

See attached plots.

Requirements:

Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15 non-overlapping channels. No requirements for bandwidth for this frequency band.

RF Channels in Use, Basic Rate

Channel Separation

3.5 Occupancy Time

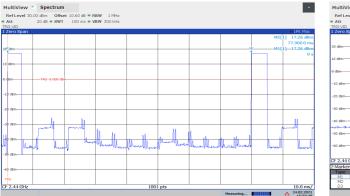
FCC Part 15.247 (a)(1)(iii) ISED Canada RSS-247 Issue 2, Clause 5.1 (c) Measurement procedure: ANSI C63.10-2013 Clause 7.8.4

Test Results: Complies

Measurement Data:

Burst Length	Frame Length	Time of Occupancy	Verdict
(ms)	(ms)	(ms)	
4.83	77.9	396.8	Complies

Time between RF burst on same channel = Frame Length * Number of Channels


Time of occupancy = (Burst Length * Number of Channels * 400 ms) / Time Between Burst on Same Channel = (4.83ms * 16 *400ms) / 77.9ms = 396.8 ms


Number of RF channels is 16.

See attached plots.

Requirements:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Frame Length

Burst Length

3.6 Occupied Bandwidth (99% BW)

FCC Part 15.247 (a)(1)(iii)

ISED Canada RSS-247 Issue 2, Clause 5.1

ISED Canada RSS-GEN Issue 5, Clause 6.7

Measurement procedure: ANSI C63.10-2013 Clause 6.9.3 / 7.8.3

Test Results: Complies

Measurement Data:

Carrier Frequency	Occupied Bandwidth (99% BW)
2405 MHz	2.592 MHz
2440 MHz	2.571 MHz
2480 MHz	2.569 MHz

See attached plots.

Requirements:

No requirement for 99% BW, reported for information only.

MultiView	Spectrum	× Spectru	m 2 🗙	Spectrum 3	× Spectre	um 4 🗙			•
	.00 dBm Offset								
🖷 Att	20 dB SWT	1.01 ms VE	3W 300 kHz N	lode Sweep					
1 Occupied Ba	ndwidth			1		1			O1Pk Max
								M1[1]	16.24 dBm
20 dBm					M1-			27	405 244 80 GHz
					. X	_			
10 dBm			m	$\sim \sim$	and and	ma			
10 0811			\sim						
0 dBm-		T1					12 MZ		
U dBm-		and the second s					- m		
m	~	ſ							ha.
~10 dBm	\sim							\sim	-
								~	
-20 dBm									
-30 dBm									
-40 dBm									
-50 d8m									
-60 dBm-									
CF 2.405 GHz			1001 pt	s	50	0.0 kHz/			Span 5.0 MHz
2 Marker Table Type Ref		X-Value		Y-Value		Function		Function R	a mult
Type Ref M1		.405 244 8 C	GHZ 1	L6.24 dBm	Occ Bw	runction		2.592 602 3	14 MHz
T1	i -	2.40369697		0.22 dBm	Occ Bw Ce	ntroid	•	2.404993	
T2	1	2.406 289 57	GHz	0.53 dBm	Occ Bw Fre	eq Offset		-6.72926	
							Measuring		18.02.2021 12:31:28

99% Occupied BW, 2405 MHz

Ref Level 30 Att	20 dB SWT	t 10.60 dB = RI 1.01 ms VI	3WF 100 kHz 3WF 300 kHz - N	Inda Succes					
I Occupied Ba		1.01 ms	544 500 KHZ 14	lode Sweep					• 1Pk Max
								M1[1]	14.66 dBr 439 735 30 GH
20 dBm				M1 ¥	0.0				
10 dBm		т1	~~~		<u>r</u>	and the	T2		
0 dBm		7					- A		
10-d8m	man ,	/						m	-
-20 dBm								\sim	+
30 dBm									
40 dBm									
50 d8m									
-60 dBm									
CF 2.44 GHz			1001 pt	s	50	0.0 kHz/			Span 5.0 MH;
Marker Tab									
Type Rel M1 T1 T2		X-Value .439 735 3 0 2.438 708 01 2.441 279 48	GHz	Y-Value L4.66 dBm -0.37 dBm 0.35 dBm	Occ Bw Occ Bw Ce Occ Bw Fre				tesult 15 MHz 3 745 GHz 60 419 kHz

99% Occupied BW, 2440 MHz

99% Occupied BW, 2480 MHz

3.7 Peak Power Output

FCC Part 15.247 (b) ISED Canada RSS-247 Issue 2, Clause 5.4 Measurement procedure: ANSI C63.10-2013 Clause 11.9.1.2 Test Results: Complies

Measurement Data:

Power Level 236, Internal F-Antenna

Carrier Frequency (MHz)	Conducted Power (dBm)	Conducted Power (mW)	Field Strength (dBµV/m)	EIRP (mW)	Antenna gain (dBi)
2405	19.9	97.7	116.6	137.1	1.5
2440	18.8	75.9	115.4	104.0	1.4
2480	17.0	50.1	113.9	73.6	1.7

Power Level 220, External Antenna M70XC

Carrier Frequency (MHz)	Conducted Power (dBm)	Conducted Power (mW)	Field Strength (dBµV/m)	EIRP (mW)	Antenna gain (dBi)
2405	19.3	84.9	111.9	46.4	-2.6
2440	18.3	67.6	111.5	41.9	-2.1
2480	16.5	44.4	109.4	26.3	-2.3

Power Level 220, External Whip Antenna

Carrier Frequency (MHz)	Conducted Power (dBm)	Conducted Power (mW)	Field Strength (dBµV/m)	EIRP (mW)	Antenna gain (dBi)
2405	19.3	84.9	116.5	134.3	2.0
2440	18.3	67.6	116.9	147.3	3.4
2480	16.5	44.4	116.0	118.6	4.3

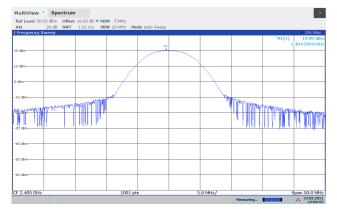
Output Power reported is Maximum Peak Power.

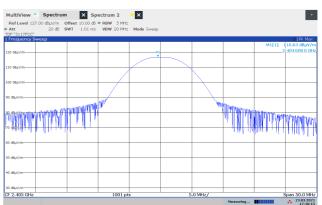
Radiated Power was calculated from measured Field Strength using the method described in FCC KDB 412172 D01.

Antenna Gain is less than 6 dBi.

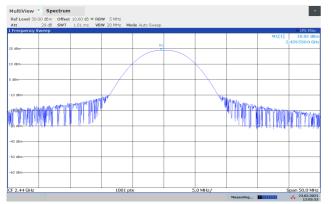
See attached plots.

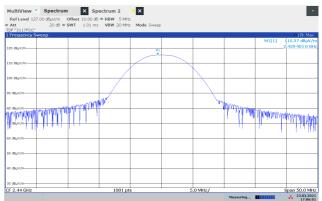
Requirements:

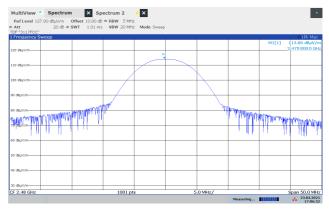

The maximum peak output power shall not exceed the following limits:


For frequency hopping systems employing at least 75 hopping channels: 1 Watt

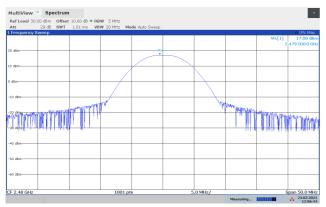
For all other frequency hopping systems in the 2400 - 2483.5 MHz band: 0.125 Watts


If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced below the stated value above by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

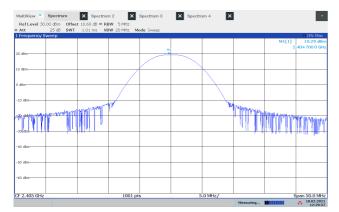



Peak Power, 2405 MHz, PLev 236

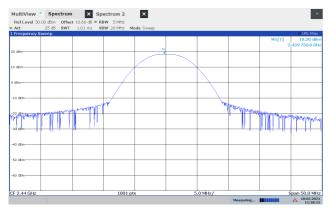
Maximum Field Strength, 2405 MHz, PLev 236, Int F-Ant



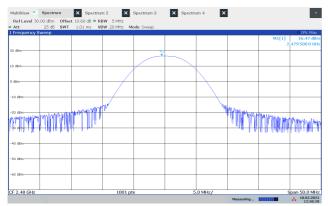
Maximum Field Strength, 2440 MHz, PLev 236, Int F-Ant


Maximum Field Strength, 2480 MHz, PLev 236, Int F-Ant

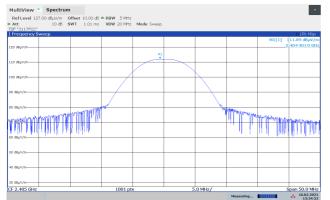
Peak Power, 2440 MHz, PLev 236



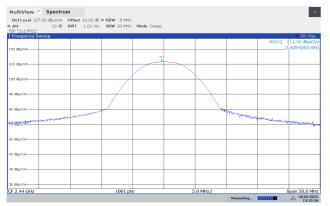
Peak Power, 2480 MHz, PLev 236

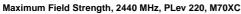


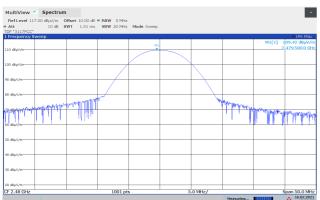
Peak Power, 2405 MHz, PLev 220

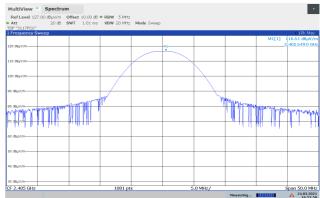


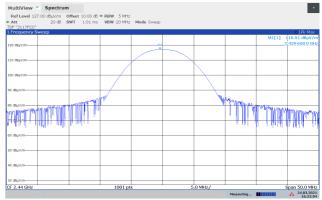
Peak Power, 2440 MHz, PLev 220

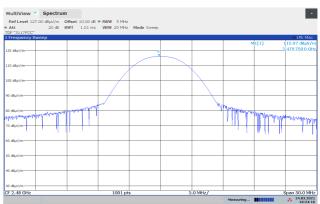



Peak Power, 2480 MHz, PLev 220








Maximum Field Strength, 2480 MHz, PLev 220, M70XC

Maximum Field Strength, 2440 MHz, PLev 220, External Whip Ant

Maximum Field Strength, 2480 MHz, PLev 220, External Whip Ant

3.8 Conducted Emissions at Antenna Connector

FCC Part 15.247 (d)

ISED Canada RSS-247 Issue 2, Clause 5.5

Measurement procedure: ANSI C63.10-2013 Clause 11.11

Test Results: Complies

Measurement Data:

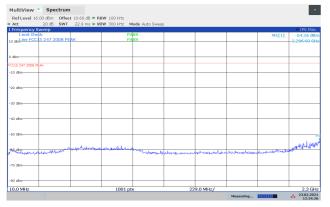
Carrier Frequency	Highest Value (dBc)	Margin (dB)	Verdict
2405 MHz	> 50	> 30	Complies
2440 MHz	> 50	> 30	Complies
2480 MHz	> 60	> 40	Complies

Measured with Peak Detector

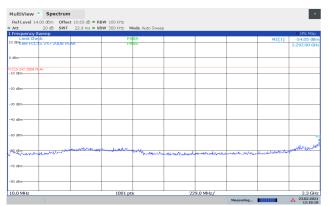
RF conducted power to 25 GHz: see attached plots.

Limit

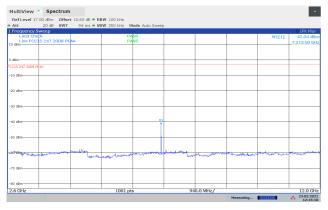
Peak measurement	RMS averaging
20 dBc or more in 100 kHz bandwidth	30 dBc or more in 100 kHz bandwidth

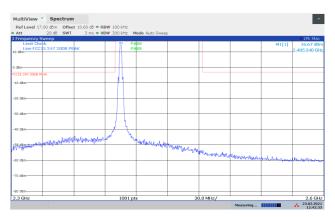

Detector type shall be the same as used for measuring Output Power.

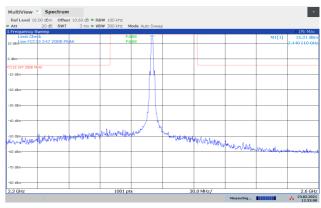
Attenuation below the general limits specified in part 15.209(a) is not required.

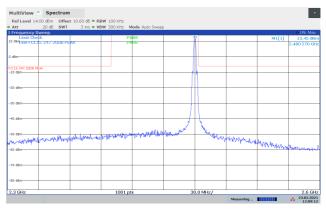


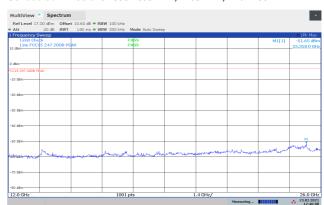
MultiView Spectrum								
Ref Level 17:00 dBm Offset	10.60 dB • RBW	100 kHz						
	22.9 ms • VBW	300 kHz M	ode Auto Sweep					
1 Frequency Sweep								O 1Pk Max
Limit Check Line FCC15 247 2008 PE		PA					M1[1]	-52.62 dBm
10 dBm	NK .	PA	55					2.29430 GH
) d8m-								
CC15 247 2008 PEAK								
10 dBm								
20 dBm								
-30 dBm								
40 dBm								
S0 dBm								
	. Anne in							where where
60 dBm			Warnerhunde	مصرداتها والمصاميات	وداداد بروسيلار ورداناتهم	molenderplanter	the set of a hard a work that the	
70 dBm								
-80 dBm-								
10.0 MHz		1001 pts		22	9.0 MHz/			2.3 GH
						Measuring		23.02.2021
								12:43:5


Conducted Emissions 10-2300 MHz, 2405 MHz, PLev 236


Conducted Emissions 10-2300 MHz, 2440 MHz, PLev 236

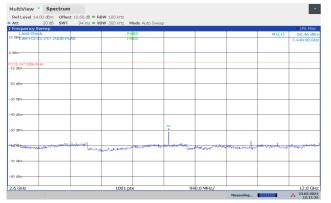

Conducted Emissions 10-2300 MHz, 2480 MHz, PLev 236


Conducted Emissions 2600-12000 MHz, 2405 MHz, PLev 236

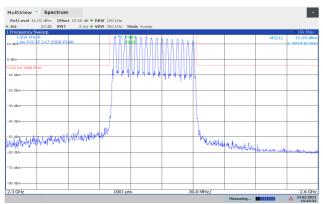

Conducted Emissions 2300-2600 MHz, 2405 MHz, PLev 236

Conducted Emissions 2300-2600 MHz, 2440 MHz, PLev 236

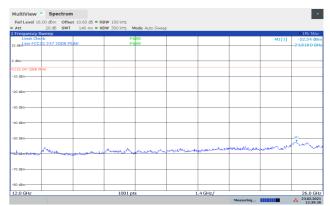
Conducted Emissions 2300-2600 MHz, 2480 MHz, PLev 236

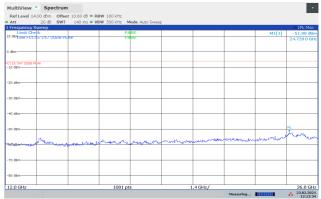


Conducted Emissions 12000 -26000 MHz, 2405 MHz, PLev 236



Frequency Sweep								O1Pk Max
Limit Check			SS				M1[1]	-45.65 dBr
dBmLine FCC15 247 2008	PEAK	PA	ss					-7.318 80 GH
d&m								
15 247 2008 PEAK								
0 dBm								
D UBIN								
		1						
) dBm								
) dBm								
dBm-								
				1				
) dBm-								
0-88 formed great when a	al and a second	amarkamar	Anenswerster	Langer line of ways	and guide the day	madrictario	Walnut Martin	a mary and
) dBm-								
		1						


Conducted Emissions 2600-12000 MHz, 2440 MHz, PLev 236


Conducted Emissions 2600-12000 MHz, 2480 MHz, PLev 236

Conducted Emissions 2300-2600 MHz, Hopping, PLev 236

Conducted Emissions 12000 -26000 MHz, 2440 MHz, PLev 236

Conducted Emissions 12000 -26000 MHz, 2480 MHz, PLev 236

3.9 Restricted Bands of operation

Restricted Bands of operation for FCC and ISED are defined in FCC Part 15.205 and ISED RSS-GEN, Issue 5 clause 8.10.

Generally, no fundamentals are allowed in the restricted bands and all emissions must comply with the limits in FCC 15.209 or RSS-GEN, Issue 5, clause 8.9.

FCC (MHz)	ISED Canada (MHz)	FCC (GHz)	ISED Canada (GHz)
0.090-0.110		0.96-1.24 1.3-1.427	0.96-1.427
0.495-0.505		1.435-1.6265	
2.1735-2.1905		1.6455-1.6465	
	3.020-3.026	1.660-1.710	
4.125-4.128		1.7188-1.7222	
4.17725-4.17775		2.2-2.3	
4.20725-4.20775		2.31-2.39	
	5.677-5.683	2.4835-2.5	
6.215-6.218		2.69-2.9	2.655-2.9
6.26775-6.26825		3.26-3.267	
6.31175-6.31225		3.332-3.339	
8.291-8.294		3.3458-3.358	
8.362-8.366		3.6-4.4	3.5-4.4
8.37625-8.38675		4.5-5.15	
8.41425-8.41475		5.35-5.46	
12.29-12.293		7.25-7.75	
12.51975-12.52025		8.025-8.5	
12.57675-12.57725		9.0-9.2	
13.36-13.41		9.3-9.5	
16.42-16.423		10.6-12.7	
16.69475-16.69525		13.25-13.4	
16.80425-16.80475		14.47-14.5	
25.5-25.67		15.35-16.2	
37.5-38.25		17.7-21.4	
73-74.6		22.01-23.12	
74.8-75.2		23.6-24.0	
108-121.94 123-138	108-138	31.2-31.8	
149.9-150.05		36.43-36.5	
156.52475-156.52525		Above 38.6	
156.7-156.9			
162.0125-167.17			
167.72-173.2			
240-285			
322-335.4			
399.9-410			
608-614			

Frequencies in **Bold** text are specific for FCC or ISED, all other frequencies are common.

3.10 Radiated Emissions, Band Edge

FCC Part 15.205, 15.209 (a)

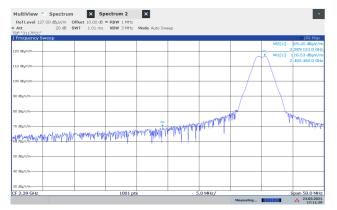
ISED Canada RSS-GEN Issue 5, Clause 7.3 / 8.9

Measurement procedure: ANSI C63.10-2013 Clause 11.12

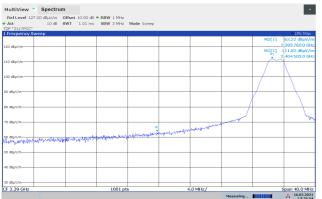
Test Results: Complies

Measurement Data:

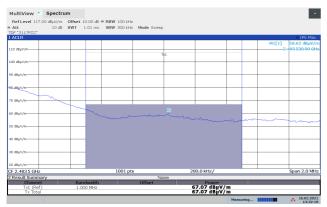
Antenna	Carrier	Band Edge	Measured Fi	eld Strength	Li	mit	Ма	argin
	Frequency	Frequency	(dBµ	(dBµV/m)		ιV/m)	(dB)
			Peak Detector	Average Detector	Peak Det	Average Det	Peak Det	Average Det
Int F-Ant	2405 MHz	2390 MHz	69.5	49.5	74	54	4.5	4.5
	2480 MHz	2483.5 MHz	71.8	51.8			2.2	2.2
Ext M70XC	2405 MHz	2390 MHz	63.2	43.2	74	54	10.8	10.8
Ant	2480 MHz	2483.5 MHz	67.1	47.1			6.9	6.9
Ext Short	2405 MHz	2390 MHz	66.9	46.9	74	54	7.1	7.1
Whip Ant	2480 MHz	2483.5 MHz	73.8	53.8			0.2	0.2

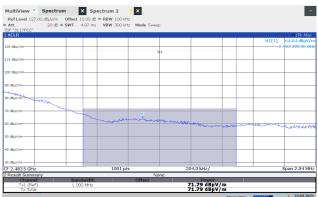

Average Detector values are measured with Peak Detector and corrected for Duty Cycle. See attached plots.

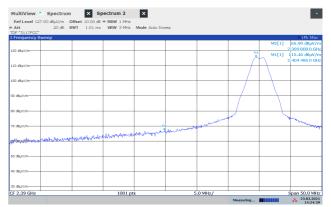
Duty Cycle Correction Factor Calculation:


Duty Cycle = (Number of slots per 100ms) *4.83ms / 100ms = 2*4.83ms / 100ms = 0.0966 Duty Cycle Correction factor = $-20 \times \log_{10}(0.0966) = 20.3 \text{ dB}$

Maximum Duty Cycle Correction Factor according to Para 15.35 (b): 20 dB




Band Edge 2405 MHz, GFSK, Peak, PowLev 236, Int F-Ant


Band Edge 2405 MHz, GFSK, Peak, PowLev 220, M70XC Ant

Band Edge 2480 MHz, GFSK, Peak, PowLev 220, M70XC Ant

Band Edge 2480 MHz, GFSK, Peak, PowLev 236, Int F-Ant

Band Edge 2405 MHz, GFSK, Peak, PowLev 220, Ext Whip Ant

Band Edge 2480 MHz, GFSK, Peak, PowLev 220, Ext Whip Ant

3.11 Radiated Emission, 30 – 1000 MHz.

FCC Part 15.209 (a) ISED Canada RSS-GEN Issue 5, Clause 7.3/8.9 Measurement procedure: ANSI C63.10-2013 Clause 11.12 Test Results: Complies

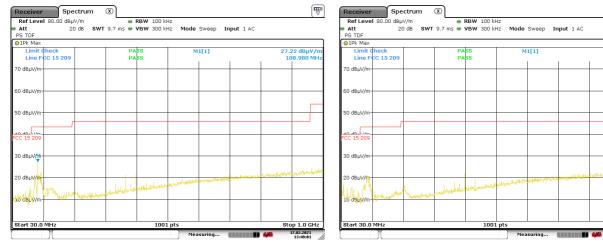
Measurement Data:

Detector: Peak (found frequencies were measured with Quasi-Peak Detector)

Measuring distance 3m

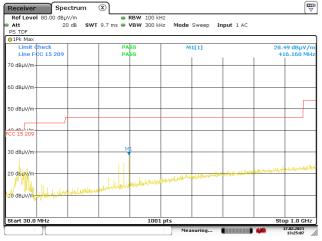
Tested in test mode with active connection.

Measured Frequency (MHz)	Carrier Frequency (MHz)	Measured Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
30 – 88	Any	< 30	40.0	> 10
88 – 216	Any	< 30	43.5	> 13.5
216 – 960	Any	< 30	46.0	> 16
960 - 1000	Any	< 30	54.0	> 24


See attached plots.

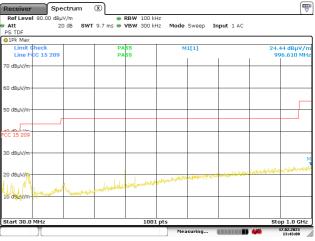
A LowPass filter with cut-off at 1 GHz was used for this test.

Requirements/Limit


FCC	Part 15.209 @ frequencies defined in §15.205					
ISED	RSS-GEN Issue 5, Clause 8.9 @ frequencies defined in clause 8.10					
Frequency	Radiated emission limit @3 meters					
30 – 88 MHz	100 μV/m 40.0 dBμV/m					
88 – 216 MHz	150 μV/m	43.5 dBµV/m				
216 – 960 MHz	200 μV/m	46.0 dBµV/m				
960 – 1000 MHz	500 µV/m 54.0 dBµV/m					
	Limits above are with Quasi Peak Detector	or				

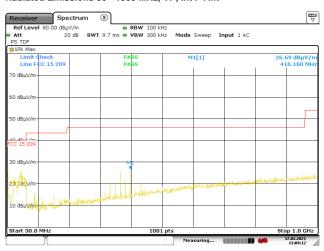
Date: 17.FEB.2021 13:49:02

Radiated Emissions 30 - 1000 MHz, HP, Int F-Ant

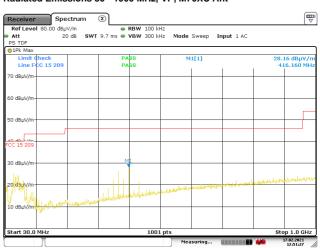


Date: 17.FEB.2021 13:25:08

Radiated Emissions 30 - 1000 MHz, HP, M70XC Ant



Radiated Emissions 30 - 1000 MHz, HP, Ext Short Whip Ant


Date: 17.FEB.2021 13:43:08

Radiated Emissions 30 - 1000 MHz, VP, Int F-Ant

Date: 17.FEB.2021 13:09:12

Radiated Emissions 30 - 1000 MHz, VP, M70XC Ant

Date: 17.FEB.2021 12:51:27

Radiated Emissions 30 - 1000 MHz, VP, Ext Short Whip Ant

3.12 Radiated Emissions, 1-26 GHz

FCC Part 15.205, 15.209 (a)

ISED Canada RSS-GEN Issue 5, Clause 7.3/8.9

Measurement procedure: ANSI C63.10-2013 Clause 11.12

Test Results: Complies

Measurement Data:

Internal F-Ant, RBW / VBW = 1MHz / 3MHz

Carrier freq. (MHz)	Measured Frequency (GHz)	Measured Emission (dBµV/m) Limit Marg (dBµV/m) (dE				•	
		Peak	Average	Peak	Average	Peak	Average
4880	2440	63.3	43.3	74	54	10.7	10.7
7230	2410	70.7	50.7	74	54	3.3	3.3
7320	2440	71.6	51.6	74	54	2.4	2.4
7440	2480	67.1	47.1	74	54	6.9	6.9
12200	2440	57.5	37.5	74	54	16.5	16.5
14640	2440	61.1	41.1	74	54	12.9	12.9
17080	2440	59.0	39.0	74	54	15.0	15.0
19240	2405	55.2	35.2	74	54	18.8	18.8
19520	2440	55.5	35.5	74	54	18.5	18.5

External M70XC Ant, RBW / VBW = 1MHz / 3MHz

Carrier freq. (MHz)	Measured Frequency (GHz)	Measured Emis	sion (dBµV/m)	Lim (dBµ\		Margin (dB)	
		Peak	Average	Peak	Average	Peak	Average
4880	2440	63.0	43.0	74	54	11.0	11.0
7215	2405	65.0	45.0	74	54	9.0	9.0
7320	2440	65.3	45.3	74	54	8.7	8.7
7440	2480	63.5	43.5	74	54	10.5	10.5
12200	2440	55.9	35.9	74	54	18.1	18.1
14640	2440	59.4	39.4	74	54	14.6	14.6
17080	2440	56.4	36.4	74	54	17.6	17.6
19520	2440	54.7	34.7	74	54	19.3	19.3

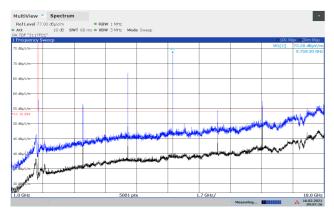
External Short Whip Ant, RBW / VBW = 1MHz / 3MHz

Carrier freq. (MHz)	Measured Frequency (GHz)	Measured Emis					irgin JB)
		Peak	Average	Peak	Average	Peak	Average
4880	2440	63.3	43.3	74	54	10.7	10.7
7230	2410	72.0	52.0	74	54	2.0	2.0
7320	2440	72.4	52.4	74	54	1.6	1.6
7440	2480	69.0	49.0	74	54	5.0	5.0
12200	2440	57.4	37.4	74	54	16.6	16.6
14640	2440	60.3	40.3	74	54	13.7	13.7
19240	2405	55.4	35.4	74	54	18.6	18.6
19520	2440	56.1	36.1	74	54	17.9	17.9
19840	2480	55.4	35.4	74	54	18.6	18.6

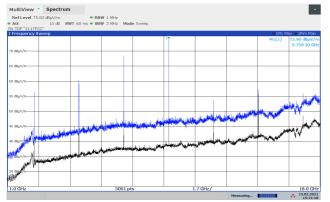
Average Detector values are calculated from Peak values by Duty Cycle Correction Factor.

A Band Reject Filter was used for measurements from 1 GHz to 18 GHz.

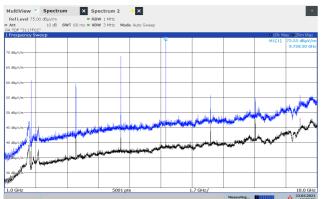
Antenna factor, amplifier gain and cable loss are included in spectrum analyzer "Transducer factor".

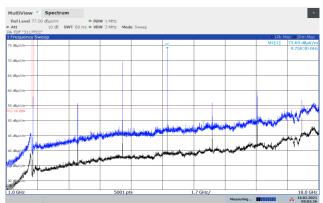

Internal F-Ant was tested with Power Level 236.

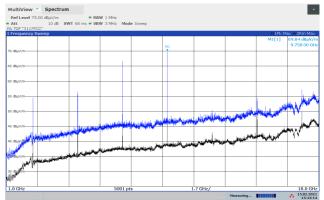
External M70XC and Short Whip Antennas were tested with Power Level 220. See plots.

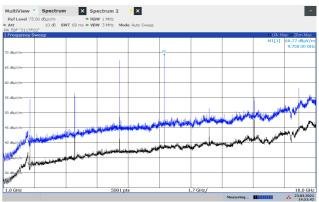

Requirements/Limit

FCC	Part 15.209 @ frequencies defined in §15.205				
ISED	RSS-GEN Issue 5, clause 8.9 @ frequencies defined in clause 8.10				
	Radiated emission limit @3 meters				
Frequency	Average Detector Peak Detector				
1 – 26 GHz	54.0 dBμV/m	74.0 dBµV/m			



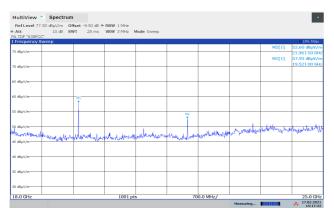



Radiated Emissions 1 - 18 GHz, 2440 MHz, HP, M70XC Ant

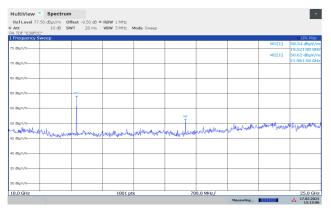

Radiated Emissions 1 - 18 GHz, 2440 MHz, HP, Ext Short Whip Ant

Radiated Emissions 1 - 18 GHz, 2440 MHz, VP, Int F-Ant

Radiated Emissions 1 - 18 GHz, 2440 MHz, VP, M70XC Ant

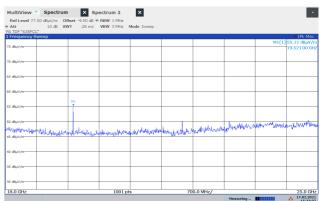


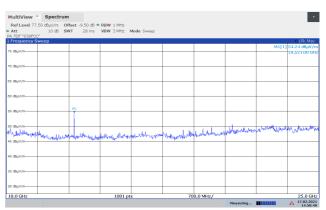
Radiated Emissions 1 - 18 GHz, 2440 MHz, VP, Ext Short Whip Ant



	weep								O1Pk Max
5 dBµV/m								M1[1]	56.74 dBµV/n 19.521 00 GH
0 d8u/v/m									
i d8µV/m									
d8µW/m		Ma							
i d8µV/m		Ĩ							
) dBµV/m									
aparate to page	Maryanahour	Anone	hubble	open the same strike	al you want with	andependences	homospilan	WARD AND RANAGE	Manun
dBµV/m-									
d8µ/v/m									
i d8µV/m									

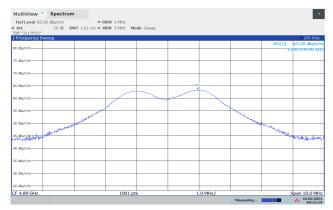
Radiated Emissions 18 - 25 GHz, 2440 MHz, HP @1m, Int F-Ant


Radiated Emissions 18 - 25 GHz, 2440 MHz, HP @ 1m, M70XC Ant

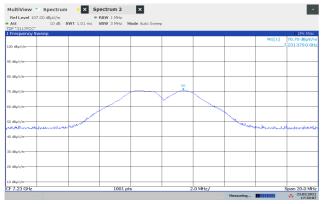

Radiated Emissions 18 - 25 GHz, 2440 MHz, HP, Ext Short Whip Ant

Ref Level 77.50									
Att	10 dB SV	VT 28 ms	VBW 3 MHz 1	Mode Sweep					
A TDF "638FCC"	2en								O 1Pk Ma
errequency one	-up		1					M1[1]	50.34 dBµV
75 d8µV/m									19.521 00 6
0 dBuV/m									
55 d8µV/m									
m/Vu8b 0									
ss d8µV/m									
50 dBµV/m		M1 7							
so uspv/m						1.1	Malasho	and March	Which draws
50 dBUV/m MMMMMMMM 45 dBUV/m	and white	alla months in	ash the entering	aby Hope of which a	higher forest	and the state of the second	Mean concern		
IS dBµV/m	with the second s	and the second second			1.001001				
40 d8µ/v/m									
IS dBu/V/m									
m/Vµ8b 0									

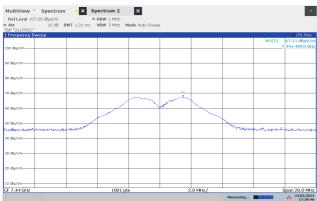
Radiated Emissions 18 - 25 GHz, 2440 MHz, VP @1m, Int F-Ant

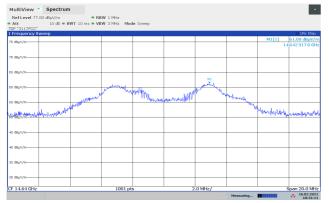


Radiated Emissions 18 - 25 GHz, 2440 MHz, VP @1m, M70XC Ant

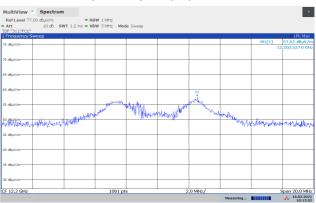


Radiated Emissions 18 - 25 GHz, 2440 MHz, VP, Ext Short Whip Ant




Emissions 4880 MHz, 2440 MHz, GFSK, VP, Int F-Ant

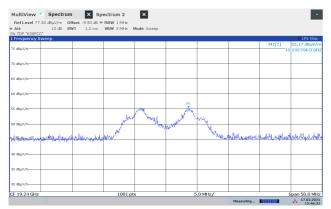
Emissions 7230 MHz, 2410 MHz, GFSK, VP, Int F-Ant


Emissions 7440 MHz, 2480 MHz, GFSK, VP, Int F-Ant

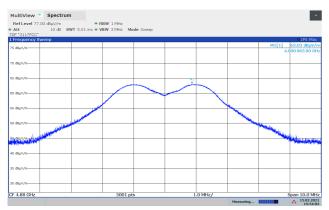
Emissions 14640 MHz, 2440 MHz, GFSK, VP, Int F-Ant

Ref Level 107.00 dBµV/m		RBW 1 MHz	×					
Att 10 dB	SWT 1.01 ms	VBW 3 MHz M	lode Auto Sweep	-				
TDF "3117FCC" I Frequency Sweep								O 1Pk Ma
							M1[1]	71.57 dBµV
100 d8µV/m							7	321 359 0 0
90 d8uV/m								
30 d8u/V/m								
su depv/m								
				N1 T				
70 d8µV/m		- /	- m	AN ANTING THE AND				
				199 ·				
50 dBµV/m	-							-
	1 1	1						
50 d8µV/m	J. J.					N.		
allow remains and here all	man					amounte	muham	am Mye
40 d8µV/m								
30 d8µ/v/m								
20 0001/m								
20 dBµ/v/m								
	1							
.0 dBµV/m	-							+
CF 7.32 GHz		1001 pt	8	2	.0 MHz/			Span 20.0 M

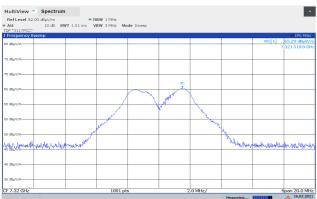
Emissions 7320 MHz, 2440 MHz, GFSK, VP, Int F-Ant

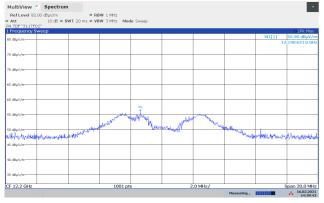


Emissions 12200 MHz, 2440 MHz, GFSK, VP, Int F-Ant

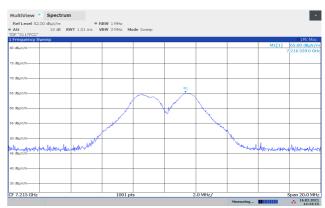


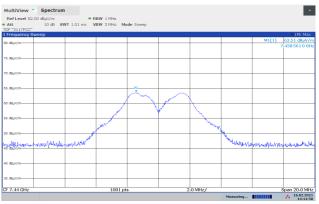
Emissions 17080 MHz, 2440 MHz, GFSK, VP, Int F-Ant

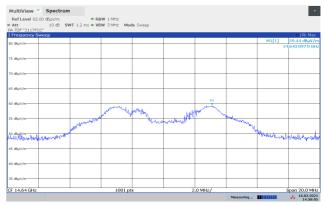



Emissions 19240 MHz, 2405 MHz, GFSK, VP @1m, Int F-Ant

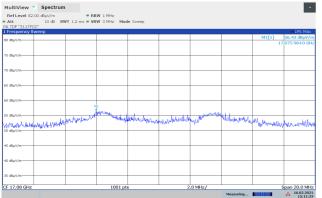




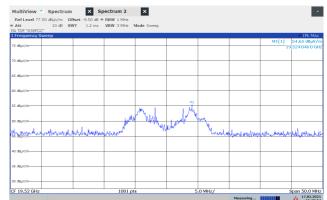

Emissions 12200 MHz, 2440 MHz, GFSK, HP, M70XC Ant



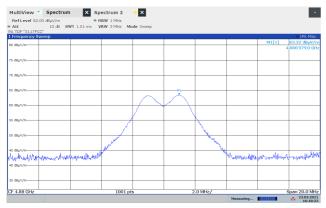
Emissions 7215 MHz, 2405 MHz, GFSK, VP, M70XC Ant



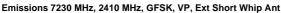
Emissions 7440 MHz, 2480 MHz, GFSK, VP, M70XC Ant

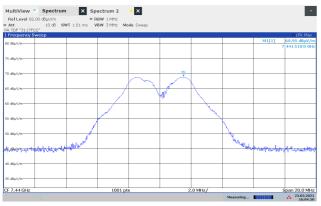


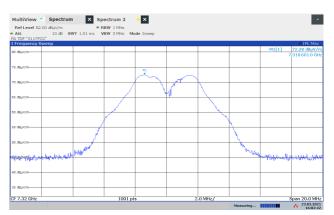
Emissions 14640 MHz, 2440 MHz, GFSK, HP, M70XC Ant

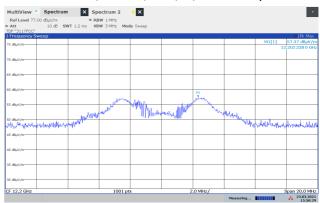



Emissions 17080 MHz, 2440 MHz, GFSK, HP, M70XC Ant

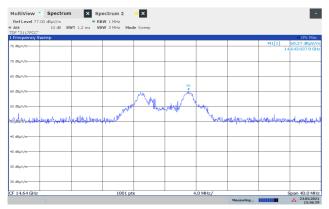



Emissions 19520 MHz, 2440 MHz, GFSK, HP @1m, M70XC Ant

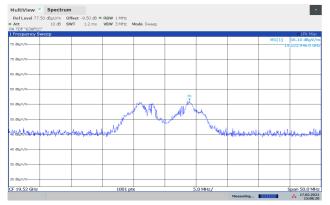

Emissions 4880 MHz, 2440 MHz, GFSK, VP, Ext Short Whip Ant



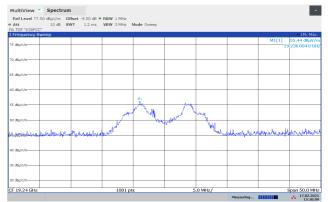
Emissions 7440 MHz, 2480 MHz, GFSK, VP, Ext Short Whip Ant

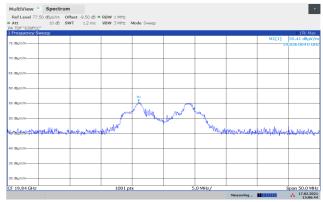


Emissions 7320 MHz, 2440 MHz, GFSK, VP, Ext Short Whip Ant



Emissions 12200 MHz, 2440 MHz, GFSK, VP, Ext Short Whip Ant




Emissions 14640 MHz, 2440 MHz, GFSK, VP, Ext Short Whip Ant

Emissions 19520 MHz, 2440 MHz, GFSK, HP @1m, Ext Short Whip Ant

Emissions 19840 MHz, 2480 MHz, GFSK, HP @1m, Ext Short Whip Ant

4 Measurement Uncertainty

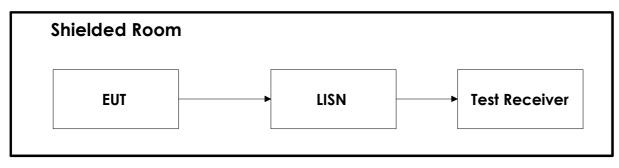
Measurement Uncertainty Values		
Test Item		Uncertainty
Output Power	±0.5 dB	
Power Spectral Density		±0.5 dB
Out of Band Emissions, Conducted	±0.6 dB	
	> 3.6 GHz	±0.9 dB
Spurious Emissions, Radiated	< 1 GHz	±2.5 dB
	> 1 GHz	±2.2 dB
Emission Bandwidth		±4 %
Power Line Conducted Emissions		+2.9 / -4.1 dB
Spectrum Mask Measurements	Frequency	±5 %
	Amplitude	±1.0 dB
Frequency Error		±0.6 ppm
Temperature Uncertainty		±1 °C

All uncertainty values are expanded standard uncertainty to give a confidence level of 95%, based on coverage factor k=2

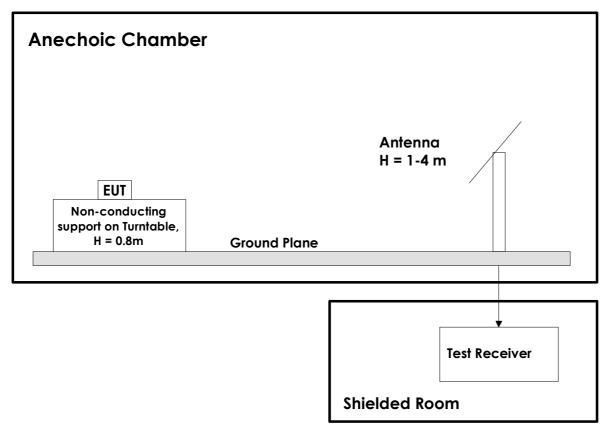
5 LIST OF TEST EQUIPMENT

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment and ancillaries are identified (numbered) by the Test Laboratory.

No.	Model number	Description	Manufacturer	Ref. no.	Cal. date	Cal. Due
1	FSW43	Spectrum Analyzer	Rohde & Schwarz	LR 1690	2020-10	2022-10
2	ESR7	Measuring Receiver	Rohde & Schwarz	LR 1675	2021-07	2023-07
3	6810.17B	Attenuator	Suhner	LR 1669	COU	
4	NO324415	Band Reject Filter	Microwave Circuits	LR 1760	COU	
5	VULB 9163	BiLog Antenna	Schwarzbech	LR 1616	2020-01	2023-01
6	317	Preamplifier	Sonoma Inst.	LR 1687	2020-08	2021-08
7	3117-PA	Horn Antenna +PreAmp	EMCO	LR 1717	2020-08	2021-08
8	8449A	Pre-amplifier	Hewlett Packard	LR 1322	2020-08	2021-08
9	WLK5-1100-1485-7000-40SS	Low Pass Filter	Wainwright Inst.	LR 1761	COU	
10	638	Antenna Horn	Narda	LR 1480	N/A	
11	Model 87V	Multimeter	Fluke	N 4672	2020-11	2022-11
12	6812B	AC Power Source	Agilent	LR 1515	2020-04	2022-04
13	ESCI	Measuring Receiver	Rohde & Schwarz	N 4259	2019-10	2021-10
14	ENV216	Two-Line V-Network	Rohde & Schwarz	LR 1665	2019-11	2021-11
15	ST18/SMA/N/36	RF Cable	Suhner	LR 1627	2020-08	2021-08


The software listed below has been used for one or more tests.

No.	Manufacturer	Name	Version	Comment
1	Rohde & Schwarz	EMC32	10.50.40	Power Line Conducted test software
2	Nemko AS	RSPlot	1.0.8.0	Screenshots from R&S Spectrum Analyzers



6 BLOCK DIAGRAM

6.1 Power Line Conducted Emission

6.2 Test Site Radiated Emission

This test setup is used for all radiated emissions tests. The measuring distance is 3m or 1m. Emissions above 1 GHz are measured with a Spectrum Analyzer and Horn Antenna. For measurements above 18 GHz the test receiver is moved inside the anechoic chamber and located next to the antenna to minimize the cable loss. All measurements at 1GHz and above were performed with turntable height 1.5m and with the ground plane covered by absorbers. A pre-amplifier is used for all measurements above 30 MHz, and a HighPass or BandStop filter is used for all harmonics. A LowPass filter is used below 1 GHz.