

Date:	ESPOO 15.03.2013	Page: <u>1 (16)</u> Appendices –
Number: No. 1 / 1	224568II	Date of handing in: 23.11.2012 Tested by:
		Pekka Kälviäinen, Test Engineer
		Reviewed by:
		Timo Hietala, Test Engineer

SORT OF EQUIPMENT: 2.4 GHz Tranceiver

TRADE MARK: **SCANRECO**

G5 LP1, G5 LP2, G5 LP3, G5 LP4, G5 LP5, G5 LP6, G5 LP7, G5 LP8 TYPE:

Scanreco Industrielektronik AB MANUFACTURER:

CLIENT: Scanreco Industrielektronik AB

ADDRESS: Årsta Skolgränd 22, S – 100 74 Stockholm, Sweden

TEST LABORATORY: Nemko Oy

FCC REG. NO. 359859 October 20, 2011 IC FILE NO. 2040F-1 November 22, 2012

SUMMARY:

In regard to the performed tests the equipment under test fulfils the requirements defined in the test specifications, see page 2 for details

The test results are valid for the tested unit only. Without a written permission of Nemko Oy it is allowed to copy this report as a whole, but not partially.

Summary of performed tests and test results

Section in CFR 47	Section in RSS-GEN or RSS-210		Result
15.249 (a)	A2.9	Field strength of fundamental	PASS
15.249 (d)(e), 15.209	A2.9	Band-edge compliance of RF emissions	PASS
15.249 (d)(e), 15.209	A2.9	Spurious radiated emissions	PASS
15.207	7.2.2	AC power line conducted emissions	N.A.

Explanations:

PASS The EUT passed that particular test. FAIL The EUT failed that particular test.

N.A. The test not applicable, battery operated equipment

X The measurement was done, but there is no applicable performance criteria.

Contents

Sι	ummary of performed tests and test results	2
1.	EUT and Accessory Information	4
	1.1 EUT description	4
	1.2 EUT and accessories	4
	1.3 Additional information related to testing	4
2.	Test setups	5
3.	Standards and measurement methods	6
4.	Test results	6
	4.1 Field strength of fundamental	6
	4.1.1 EUT operation mode	
	4.1.2 Test method and limit	
	4.2 Band-edge compliance of RF emissions	
	4.2.1 EUT operation mode	
	4.2.2 Test method and limit	8
	4.2.3 Test results	9
	4.3 Spurious radiated emission	12
	4.3.1 EUT operation mode	
	4.3.2 Test method and limit	12
	4.3.3 Test results	14
5.	List of test equipment	15
6	Photographs	16

1. EUT and Accessory Information

1.1 EUT description

2.4 GHz transceiver, Digital modulated, 16 channels Type: G5 LP1, G5 LP2, G5 LP3, G5 LP4, G5 LP5, G5 LP6, G5 LP7, G5 LP8

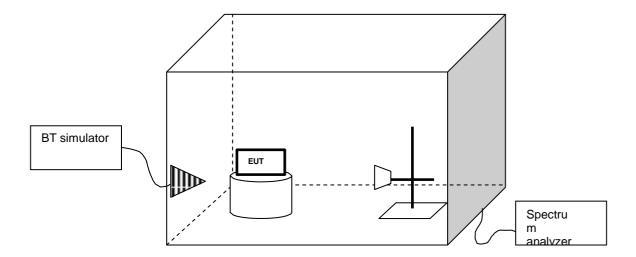
1.2 EUT and accessories

	unit	type	s/n
EUT1	Tranceiver	G5	5

Operating voltages

4.5 VDC 3 * AAA Battery

1.3 Additional information related to testing


Tested Technology:	Digital modulated, 16 channels			
Antenna:	Integral, gain 5.5dBi			
Type of Unit	Transmitter			
Modulation:	DSSS, continuous transn	nission		
Power Supply Requirement:	Nominal 4.5V			
Transmit Frequency Range	2400 MHz to 2483.5 MHz			
Transmit Channels Tested:	Channel Number	Channel Frequency		
		(MHz)		
	0	2405		
	7	2440		
	15	2480		

2. Test setups

Setup (Radiated measurements)

The test was performed inside a semi anechoic shielded room. For the duration of the test the EUT was placed on a non-conductive support 0.8 m high standing on the turntable. The tower and turn table were remotely controlled to turn the EUT and change the antenna polarization. The measured signal was routed from the measuring antenna to the spectrum analyzer. A BT simulator was not used.

3. Standards and measurement methods

The test were performed in guidance of the CFR 47, FCC Rules Part 15 Subpart C, ANSI C63.4 (2003), CISPR 22 Ed. 6.0, Public notice DA 00-705, ANSI C63.10 (2009), IC standards RSS-GEN (Issue 3, December 2010) and RSS-210 (Issue 8, December 2010).

4. Test results

4.1 Field strength of fundamental

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1	
Site name	Nemko Oy / Perkkaa	
FCC rule part	§ 15.249 (a)	
Section in RSS-210	A2.9	
Date of testing	14.03.2013	
Test equipment	566, 525, 350	
Test conditions	22 °C, 31 % RH	

4.1.1 EUT operation mode

EUT channel	0, 7 and 15
-------------	-------------

4.1.2 Test method and limit

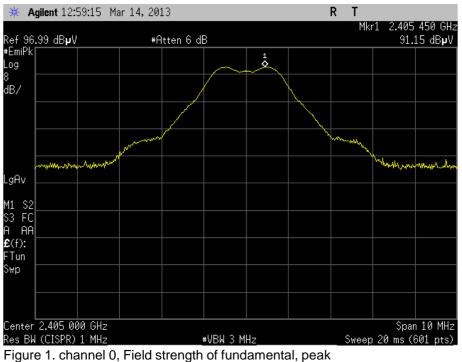
Frequency range (MHz)	Limit Average (dBµV/m)	Limit Peak (dBµV/m)
2400 – 2483.5	≤ 94	≤ 114

The measurement results were obtained as described below.

$$E[\mu V/m] = U_{RX} + A_{CABLE} + AF$$

Where

 U_{RX} receiver reading


A_{CABLE} attenuation of the cable

AF antenna factor

4.1.3 Test results

Channel / f (MHz)	E Average (dBμV/m)	E Peak (dBµV/m)	Result
0 / 2405	86.97	91.15	PASS
7 / 2440	85.45	91.05	PASS
15 / 2480	85.90	90.25	PASS

Agilent 12:58:28 Mar 14, 2013 Mkr1 2.405 017 GHz Ref 96.99 dB**µ**V 86.97 dB**µ**V #Atten 6 dB #EmiPk Log dB/ LgAv M1 S2 S3 FC A AA **£**(f): FTun Swp Center 2.405 000 GHz Span 10 MHz Res BW (CISPR) 1 MHz #VBW 10 Hz Sweep 4.054 s (601 pts)

Figure 2. channel 7, Field strength of fundamental, average

4.2 Band-edge compliance of RF emissions

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1	
Site name	Nemko Oy / Perkkaa	
FCC rule part	§ 15.249 (d)(e), § 15.209	
Section in RSS-210	A2.9	
Date of testing	14.03.2013	
Test equipment	566, 525, 350	
Test conditions	22 °C, 30 % RH	
Test result	PASS	

4.2.1 EUT operation mode

EUT channel	0 and 15

4.2.2 Test method and limit

The measurement is made according to Public notice DA 00-705 and IC standard RSS-210.

3m measurement distance

Frequency range (MHz)	Limit Average (dBµV/m)	Limit Peak (dBμV/m)
Below 2390 and above 2483.5	≤ 54	≤ 74

The measurement results were obtained as described below.

$$E[\mu V/m] = U_{RX} + A_{CABLE} + AF$$

Where

U_{RX} receiver reading

A_{CABLE} attenuation of the cable

AF antenna factor

4.2.3 Test results

Channel 0:

Below 2400 MHz:

Detector (RBW: 1MHz)	E (dBμV/m)	Result
Peak	48.81	PASS
Average	35.92	PASS

Channel 15:

Above 2483.5 MHz:

Detector (RBW: 1MHz)	E (dBμV/m)	Result	
Peak	51.59	PASS	
Average	40.86	PASS	

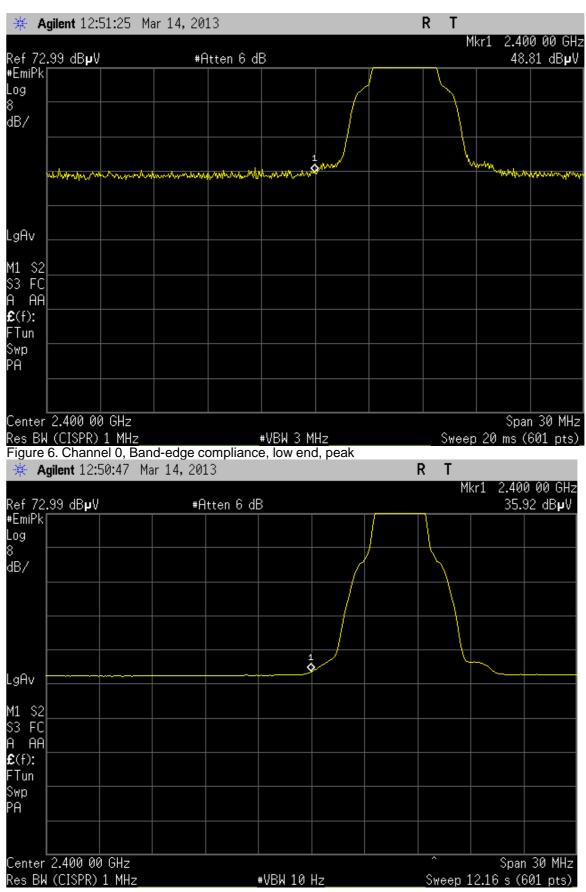


Figure 7. Channel 0, Band-edge compliance, low end, average

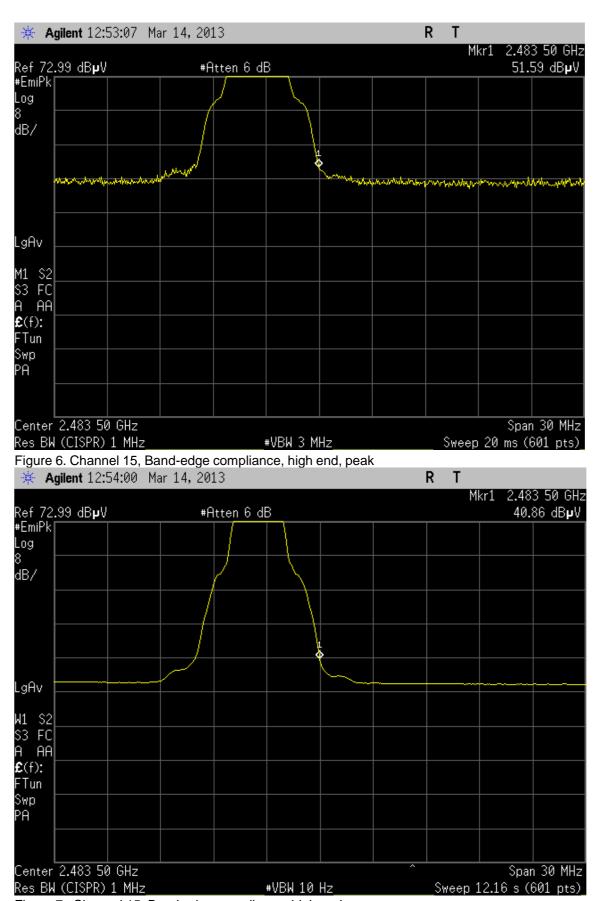


Figure 7. Channel 15, Band-edge compliance, high end, average

4.3 Spurious radiated emission

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.249 (d)(e), § 15.209
Section in RSS-210	A2.9
Date of testing	13.12.2012
Test equipment	566, 709, 564, 559, 525, 319, 544, 393, 350, 88, 710
Test conditions	22 °C, 31 % RH

4.3.1 EUT operation mode

EUT channel	Channel 0, 7 and 15

4.3.2 Test method and limit

The test was performed in a semi-anechoic shielded room. The EUT was placed on a non-conductive 0.8 m high table standing on the turntable. During the test the distance from the EUT to the measuring antenna was 3 m. The excess length of the cables of the EUT were made into bundles 30-40 cm in length (see photograph 1). In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna and the lay-out of the EUT cables were varied during the tests. The test was performed with the measuring antenna being both in horizontal and vertical polarizations.

Vertical and horizontal polarizations in the frequency range 30 - 1000 MHz was measured by using the peak detector. During the peak detector scan. the turntable was rotated from 0° to 360° with 30° step with the antenna heights 1.0 m and 3.0 m. The highest levels of the radiated interference field strength measured by using the quasi-peak detector were recorded.

Vertical and horizontal polarizations in the frequency range 1000 – 25000 MHz was measured by using the peak detector. During the peak detector scan. the turntable was rotated from 0° to 360° with 15° step with the antenna heights 1.0 m, 1,5m, 2.0m, 2,5m and 3.0 m. The highest levels of the radiated interference field strength measured by using the average and peak detectors were recorded.

Minimum Standard: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Emissions falling in the restricted bands of 15.205 shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions.

3m measuring distance, FCC Part 15.209

on measuring distance; 1 00 1 dr. 101200				
Frequency band	limit, Quasi peak detector			
MHz	dB(μV/m)			
30 - 88	40			
88 - 216	43.5			
216 - 960	46			
960 - 1000	54			

Frequency band	limit, average detector	limit, peak detector
MHz	dB(μV/m)	dB(μV/m)
1000 - 25000	54	74

3m measuring distance, CISPR 22, class B

Frequency band	limit, Quasi peak detector			
MHz	dB(μV/m)			
30 - 230	40			
230 - 1000	47			

The EUT was tested on three orthogonal axis.

The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33. The device was tested on three channels per 15.31(I).

The CFR 47 Part 15. Subpart B. Class B limit of 500 μ V/m has been calculated to correspond 54 dB(μ V/m) as follows: [dB(μ V/m)]=20log[μ V/m].

The measurement results were obtained as described below.

$$E[\mu V/m] = U_{RX} + A_{CABLE} + AF - G_{PREAMP}$$

Where

U_{RX} receiver reading

ACABLE attenuation of the cable

AF antenna factor

GPREAMP gain of the preamplifier

Page 13 (16) Date 15.03.2013

4.3.3 Test results

below 1GHz: RBW 120kHz

above 1GHz: peak, RBW 1MHz, VBW 3MHz; average RBW 1MHz, VBW 10Hz

Channel 0

Frequency	Peak	Limit	Margin	Result
GHz	dB(μV/m)	dB(μV/m)	dB	
4810	46.7	74	27.3	PASS
7215	48.7	74	25.3	PASS
9220	51.5	74	22.5	PASS

Channel 0

•				
Frequency	Average	Limit	Margin	Result
GHz	dB(μV/m)	dB(μV/m)	dB	
4810	38.7	54	15.3	PASS
7215	40.5	54	13.5	PASS
9220	43.4	54	10.6	PASS

Channel 7

Frequency	Peak	Limit	Margin	Result
GHz	dB(μV/m)	dB(μV/m)	dB	
4880	47.5	74	26.5	PASS
7320	49.3	74	24.7	PASS
9760	50.6	74	23.4	PASS

Channel 7

Onamio i				
Frequency	Average	Limit	Margin	Result
GHz	dB(μV/m)	dB(μV/m)	dB	
4880	39.5	54	14.5	PASS
7320	41.5	54	12.5	PASS
9760	42.0	54	12.0	PASS

Channel 15

Frequency	Peak	Limit	Margin	Result
ĠHz	dB(μV/m)	dB(μV/m)	dB	
4960	48.6	74	25.4	PASS
7440	51.0	74	23.0	PASS
9920	51.5	74	22.5	PASS

Channel 7

Charliel 1							
	Frequency	Average	Limit	Margin	Result		
	ĠHz	dB(μV/m)	dB(μV/m)	dB			
	4960	41.0	54	13.0	PASS		
	7440	43.1	54	10.9	PASS		
	9920	44.0	54	10.0	PASS		

.

5. List of test equipment

Each active test equipment is calibrated once a year, antennas every 18 months and other passive equipment every 24 months.

Nr.	Equipment	Туре	Manufacturer	Serial number	Cal date	Cal due
390	RF attenuator PAD	WA2-10	Weinschel	3784	10.12.2011	12.2013
694	EMI Test Receiver	ESPC	Rohde & Schwarz	842888/023	11.12.2012	12.2013
566	Spectrum analyzer	E4448A	Agilent	US42510236	17.4.2013	4.2014
709	EMI test receiver	ESU8	Rohde & Schwarz	100297	24.07.2013	7.2014
567	RF generator	E8257C	Agilent	MY43320736	25.2.2013	2.2014
544	RF-amplifier	ZFL-2000VH2	Mini-Circuits	QA0749010	9.1.2013	1.2014
564	RF amplifier	CA018-4010	CIAO Wireless	132	9.1.2013	1.2014
710	RF-amplifier	ALS 1826-41-12	ALC Microwave Inc.	0011	28.10.2011	10.2013
745	2-Line V-Network	ENV216	Rohde & Schwarz	101466	11.6.2013	06.2014
319	Antenna	CBL6112	Chase	2018	12.7.2012	1.2014
525	Double-Ridged Horn	3115	Emco	6691	10.10.2012	4.2014
542	Double-Ridged Horn	3115	Emco	00023905	10.10.2012	4.2014
559	Highpass filter	WHKX3.0/18G-10ss	Wainwright	1	7.12.2011	2.2013
88	Waveguide horn	638	Narda	8003	-	-
371	AC Power source	500i-400	California Instr.	HK 52064	23.5.2012	5.2013
350	Semianechoic shielded room	RFD-F-100	Euroshield Oy	1327	26.10.2012	10.2014

6. Photographs

