

TEST REPORT

Date:	ESPOO 04.10.2013	Page: <u>1 (30)</u> Appendices –
Number: No. 1 / 1	245598A	Date of handing in: 30.09.2013 Tested by:
		Timo Hietala, test specialist Reviewed by:
		Janne Nyman, Compliance Specialist

SORT OF EQUIPMENT: 2.4 GHz Transceiver

TRADE MARK: SCANRECO

TYPE: G5 CU M

MANUFACTURER: Scanreco Industrielektronik AB

CLIENT: Scanreco Industrielektronik AB

ADDRESS: Årsta Skolgränd 22, S – 100 74 Stockholm, Sweden

TEST LABORATORY: Nemko Oy

FCC REG. NO. 359859 October 20, 2011
IC FILE NO. 2040F-1 November 22, 2012

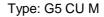
SUMMARY:

In regard to the performed tests the equipment under test fulfils the requirements defined in the test specifications, see page 2 for details.

The test results are valid for the tested unit only. Without a written permission of Nemko Oy it is allowed to copy this report as a whole, but not partially.

Summary of performed tests and test results

Section in CFR 47	Section in RSS-GEN or RSS-210, Issue 8		Result
15.247 (b)(1)	A8.4 (2)	Conducted peak output power	PASS
15.247 (d)	A8.5	Band-edge compliance of RF emissions	PASS
15.247 (d)	A8.5	Spurious RF conducted emissions	*)
15.247 (d) 15.209	A8.5	Spurious radiated emissions	PASS
15.207	7.2.2	AC power line conducted emissions	PASS
15.247 (a)(1)	A8.1 (a)	20 dB bandwidth	*).
15.247 (a)(1)	A8.1 (b)	Carrier frequency separation	*)
15.247 (a)(1)(iii)	A8.1 (d)	Number of hopping frequencies	*)
15.247 (a)/1)(iii)	A8.1 (d)	Time of occupancy	*).


^{*)} Test results in test report no. 224568 FCC 15.247 TRF RAD rev2.

PASS The EUT passed that particular test. FAIL The EUT failed that particular test.

N.A. The test not applicable, battery operated equipment

X The measurement was done, but there is no applicable performance criteria.

N.T. Not Tested

Contents

Sι	ımmar	y of performed tests and test results	2
1.	EUT a	and Accessory Information	4
	1.1	EUT description	
	1.2	EUT and accessories	
	1.3	Additional information related to testing	
	1.5	Additional information related to testing	
2.	Test	setups	5
3.	Stand	dards and measurement methods	6
4.	Test r	results	
	4.1	Conducted peak output power	
		EUT operation mode Test method and limit	
		Test results	
	4.2	Band-edge compliance of RF emissions	
		EUT operation mode	
	4.2.1	Test method and limit	9
	4.2.2	Test results	10
	4.3	Spurious radiated emission	18
		EUT operation mode	
		Test method and limit Test results	
		Test results, Radiated emissions in restricted bands 30 MHz – 25 GHz	
	4.4	Duty cycle correction factor	24
	4.5	AC power line conducted emissions	25
	4.5.1	·	
		EUT operation mode	
	4.5.3	Test results	26
5.	List of	f test equipment	28
\sim	DI 4 -		00

1. EUT and Accessory Information

1.1 EUT description

2.4 GHz transceiver, Frequency hopping system, 16 channels Type: G5 CU M $\,$

1.2 EUT and accessories

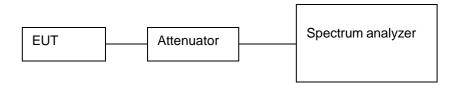
	unit	type	s/n
EUT1	Transceiver with antenna connector (SMA-RP) 80mm dipole (art.n. 49070)	G5 CU M	1
EUT2	Transceiver with Pcb Inverted F Antenna	G5 CU M	4

Operating voltages

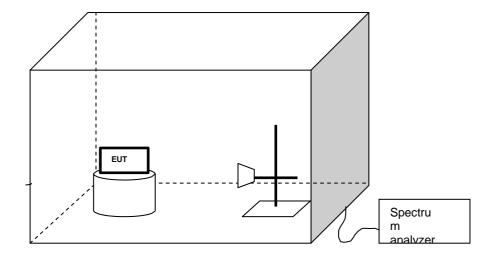
12 VDC

1.3 Additional information related to testing

Tested Technology:		Frequency Hopping System, 16 channels	
Antenna:	SMA-RP, 80mm length, g		
	or Integral, gain=3.3dBi r	or Integral, gain=3.3dBi max (EUT2)	
Type of Unit	Transmitter	Transmitter	
Modulation:	FHSS		
Power Supply Requirement:	Nominal	12V	
Transmit Frequency Range	2400 MHz to 2483.5 MHz	2400 MHz to 2483.5 MHz	
Transmit Channels Tested:	Channel Number	Channel Frequency	
		(MHz)	
	0	2405	
	7	2440	
	15	2480	



2. Test setups


Setup 1 (Conducted measurements)

The test was performed inside a shielded room.

Setup 2 (Radiated measurements)

The test was performed inside a semi anechoic shielded room. For the duration of the test the EUT was placed on a non-conductive support 0.8 m high standing on the turntable. The tower and turn table were remotely controlled to turn the EUT and change the antenna polarization. The measured signal was routed from the measuring antenna to the spectrum analyzer.

Test report: 245598A

3. Standards and measurement methods

The test were performed in guidance of the CFR 47, FCC Rules Part 15 Subpart C, ANSI C63.4 (2003), CISPR 22 Ed. 6.0, Public notice DA 00-705, ANSI C63.10 (2009), IC standards RSS-GEN (Issue 3, December 2010) and RSS-210 (Issue 8, December 2010).

4. Test results

4.1 Conducted peak output power

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1, setup 1	
Site name	Nemko Oy / Perkkaa	
FCC rule part	§ 15.247 (b)(1)	
Section in RSS-210	A8.4 (2)	
Date of testing	01.10.2013	
Test equipment	566, 390	
Test conditions	22 °C, 35 % RH	

4.1.1 EUT operation mode

EUT channel	0, 7 and 15
-------------	-------------

4.1.2 Test method and limit

The measurement is made according to ANSI C63.10 Section 6.10.1 and IC standard RSS-210.

Frequency range (MHz)	Limit (W)	Limit (dBm)
2400 – 2483.5	≤ 1.0	≤ 30

4.1.3 Test results

Channel / f (MHz)	P (dBm)	Result
0 / 2405	18.52	PASS
7 / 2440	18.23	PASS
15 / 2480	17.67	PASS

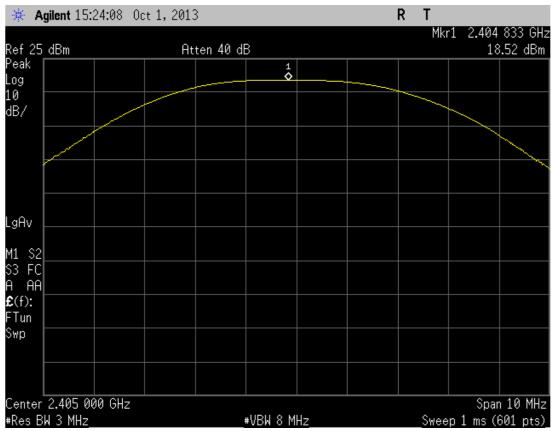


Figure 1, channel 0, conducted peak output power

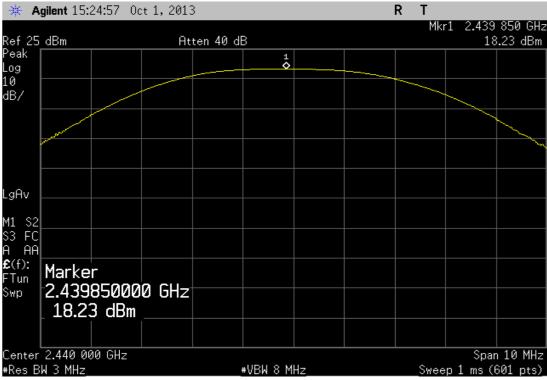


Figure 2,. channel 7, conducted peak output power

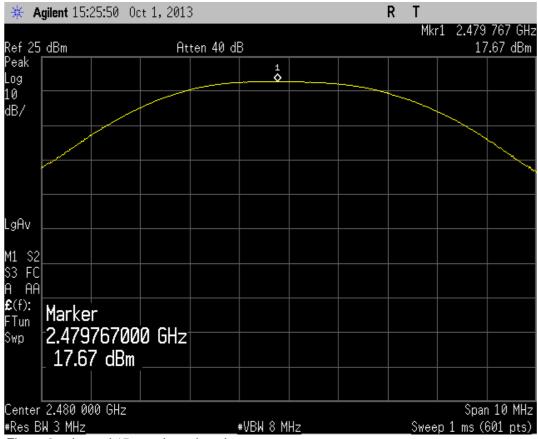


Figure 3,. channel 15, conducted peak output power

4.2 Band-edge compliance of RF emissions

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1 and EUT2, setup 2	
Site name	Nemko Oy / Perkkaa	
FCC rule part	§ 15.247 (d)	
Section in RSS-210	A8.5	
Date of testing	30.09-01.10.2013	
Test equipment	566, 525, 350, 564	
Test conditions	22 °C, 35 % RH	
Test result	PASS	

4.2.1 EUT operation mode

Hopping ON
Hopping OFF channels low and high

4.2.1 Test method and limit

The measurement is made according to ANSI C63.10 Section 6.9.2 and FCC KDB 913591.

Frequency range (MHz)	Limit (dBc)
Below 2400	≤ -20

Limit (3m measuring distance)

Frequency range (MHz)	Average dB(μV/m)	Peak dB(μV/m)
Below 2390	54	74

Limit (3m measuring distance)

Frequency range (MHz)	Average	Peak
	dB(μV/m)	dB(μV/m)
Above 2483.5	54	74

Delta measurement technique was used at upper band edge (FCC KDB 913591).

STEP 1 In-band field strength measurement of the fundamental emission using the RBW 1MHz STEP 2 Using the RBW 1ookHz record peak levels of the fundamental emission and the relevant band edge emission (i.e., run several sweeps in peak hold mode). Measure the amplitude delta between the peak of the fundamental and the peak of the band edge emission

STEP 3 - Subtract the delta measured in step (2) from the field strengths measured in step (1)

For peak to average Duty Cycle correction factor (dB) -21.27 dB was used.

4.2.2 Test results

EUT1

Hopping ON:

Below 2400 MHz:

Detector (RBW: 100kHz)	P (dBc)	Result
Peak	-52.69	PASS

Below 2390 MHz:

Detector (RBW: 1MHz)	E (dBμV/m)	Result
Peak	63.94	PASS
Average	42.67	PASS

Above 2483.5 MHz:

Detector (RBW: 100kHz)	P (dBc)	E (dBμV/m)	Result
Peak	-48.85	64.45	PASS
Average	-48.85	43.18	PASS

Radiated field strength of the fundamental (RBW 1MHz, VBW 3MHz) is 113.3 dB(μ V/m)@3m

Hopping OFF

Channel 0:

Below 2400 MHz:

Detector (RBW: 100kHz)	P (dBc)	Result
Peak	-53.23	PASS

Below 2390 MHz:

Detector (RBW: 1MHz)	E (dBµV/m)	Result
Peak	60.67	PASS
Average	39.40	PASS

Channel 15:

Above 2483.5 MHz:

Detector (RBW: 100kHz)	P (dBc)	E (dBμV/m)	Result
Peak	-48.01	65.29	PASS
Average	-48.01	44.02	PASS

Radiated field strength of the fundamental (RBW 1MHz, VBW 3MHz) is 113.3 dB(μ V/m)@3m

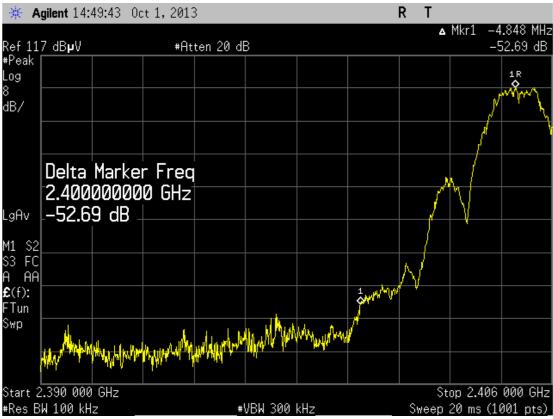


Figure 4, Hopping on, Band-edge compliance, low end <2400MHz



Figure 5, Hopping on, Band-edge compliance, low end <2390MHz

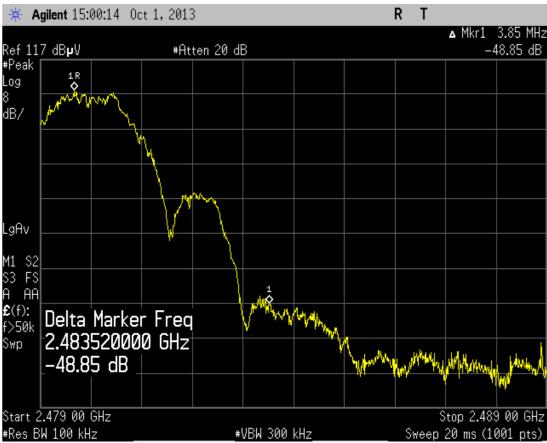


Figure 6, Hopping on, Band-edge compliance, high end

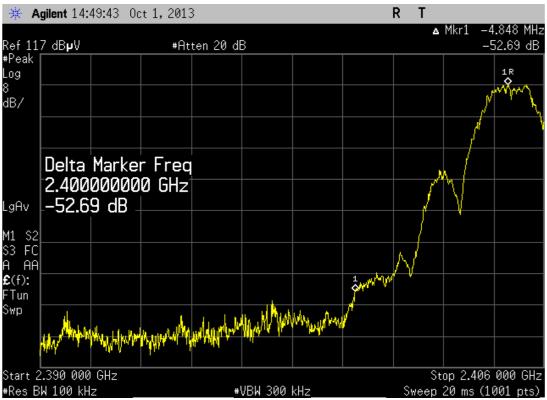


Figure 7, Hopping off, Channel 0, Band-edge compliance, low end

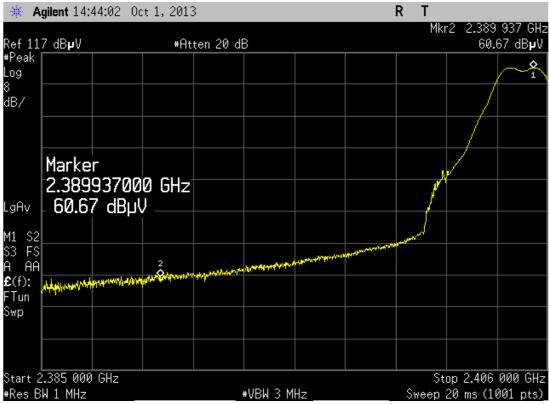


Figure 8, Hopping off, Channel 0, Band-edge compliance, low end

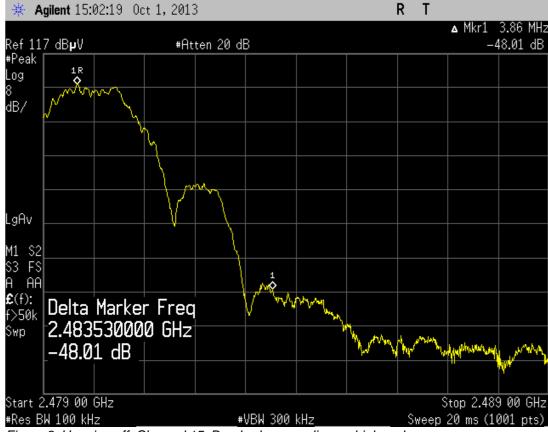


Figure 9, Hopping off, Channel 15, Band-edge compliance, high end

Test results EUT2 Hopping ON:

Below 2400 MHz:

Detector (RBW: 100kHz)	P (dBc)	Result
Peak	-53.17	PASS

Below 2390 MHz:

Detector (RBW: 1MHz)	E (dBμV/m)	Result
Peak	60.29	PASS
Average	39.02	PASS

Above 2483.5 MHz:

Detector (RBW: 100kHz)	P (dBc)	E (dBμV/m)	Result
Peak	-49.85	61.15	PASS
Average	-49.85	39.88	PASS

Radiated field strength of the fundamental (RBW 1MHz, VBW 3MHz) is 111.0 dB(μ V/m)@3m

Hopping OFF

Channel 0:

Below 2400 MHz:

Detector (RBW: 100kHz)	P (dBc)	Result
Peak	-52.88	PASS

Below 2390 MHz:

Detector (RBW: 1MHz)	E (dBμV/m)	Result
Peak	61.64	PASS
Average	40.37	PASS

Channel 15:

Above 2483.5 MHz:

Detector (RBW: 100kHz)	P (dBc)	E (dBμV/m)	Result
Peak	-48.70	62.30	PASS
Average	-48.70	41.03	PASS

Radiated field strength of the fundamental (RBW 1MHz, VBW 3MHz) is 111.0 dB(μ V/m)@3m

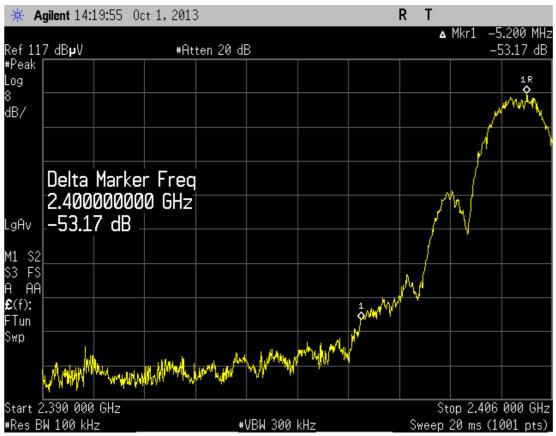


Figure 10, Hopping on, Band-edge compliance, low end <2400MHz

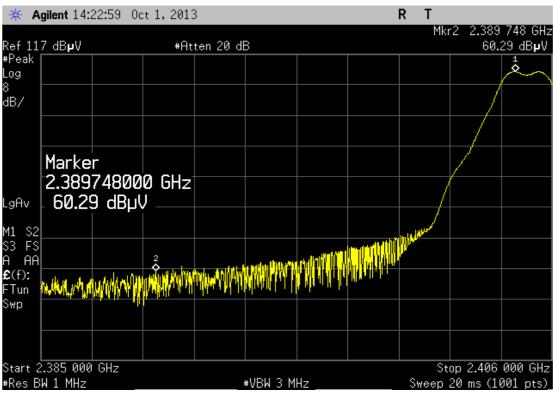


Figure 11, Hopping on, Band-edge compliance, low end <2390MHz

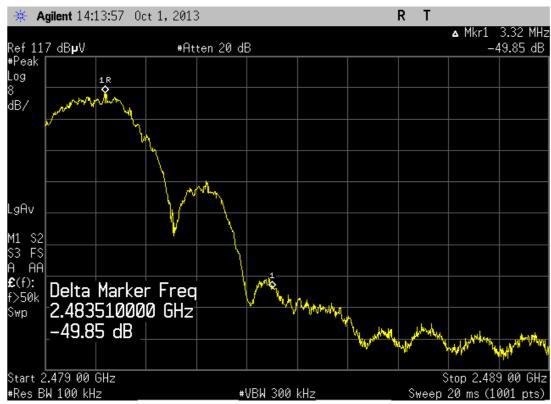


Figure 12, Hopping on, Band-edge compliance, high end

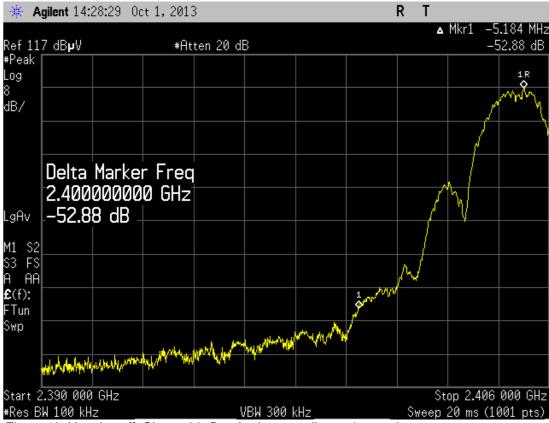


Figure 13, Hopping off, Channel 0, Band-edge compliance, low end

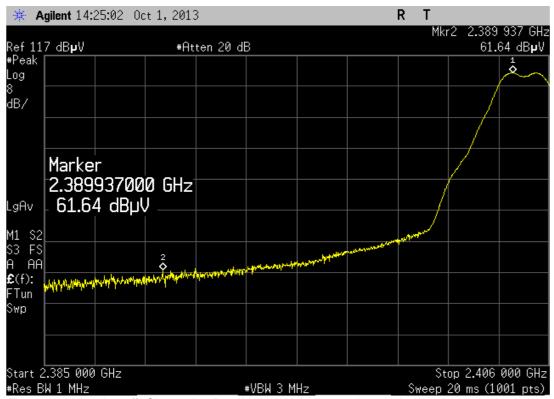


Figure 14, Hopping off, Channel 0, Band-edge compliance, low end

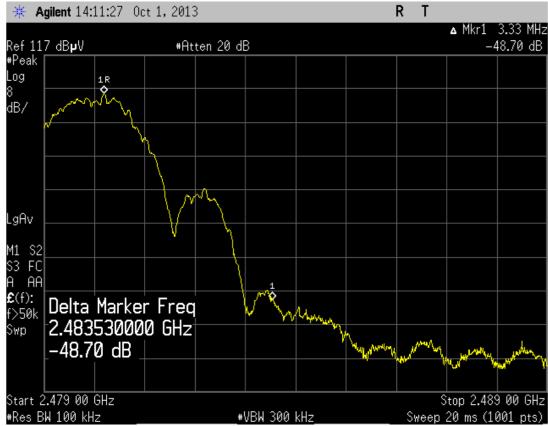
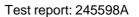



Figure 15, Hopping off, Channel 15, Band-edge compliance, high end

4.3 Spurious radiated emission

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1, setup 2
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.247 (d), § 15.209
Section in RSS-210	A8.5
Date of testing	30.09.2013
Test equipment	350, 319, 544, 709, 525, 559, 564, 566, 88, 710
Test conditions	22 °C, 31 % RH

4.3.1 EUT operation mode

EUT channel	Channel 0, 7 and 15

4.3.2 Test method and limit

The test was performed in a semi-anechoic shielded room. The EUT was placed on a non-conductive 0.8 m high table standing on the turntable. During the test the distance from the EUT to the measuring antenna was 3 m. The excess length of the cables of the EUT was made into bundles 30-40 cm in length (see photograph 1). In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna and the lay-out of the EUT cables were varied during the tests. The test was performed with the measuring antenna being both in horizontal and vertical polarizations.

Vertical and horizontal polarizations in the frequency range 30-1000 MHz was measured by using the peak detector. During the peak detector scan, the turntable was rotated from 0° to 360° with 30° step with the antenna heights 1.0 m and 3.0 m. The highest levels of the radiated interference field strength measured by using the quasi-peak detector were recorded.

Vertical and horizontal polarizations in the frequency range 1000 – 25000 MHz was measured by using the peak detector. During the peak detector scan, the turntable was rotated from 0° to 360° with 15° step with the antenna heights 1.0 m. The highest levels of the radiated interference field strength measured by using the average and peak detectors were recorded.

Test report: 245598A

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the limits shown in §15.209.

At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. (below 1GHz: RBW 120kHz; above 1GHz: RBW 1MHz, VBW 3MHz)

3m measuring distance, FCC Part 15.209

Frequency band	limit, Quasi peak detector	
MHz	dB(μV/m)	
30 - 88	40	
88 - 216	43.5	
216 - 960	46	
960 - 1000	54	

Frequency band	limit, average detector	limit, peak detector
MHz	dB(μV/m)	dB(μV/m)
1000 - 25000	54	74

3m measuring distance, CISPR 22, class B

Frequency band	limit, Quasi peak detector	
MHz	dB(μV/m)	
30 - 230	40	
230 - 1000	47	

The EUT was tested on three orthogonal axes.

The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33.

The device was tested on three channels per 15.31(I).

The CFR 47 Part 15. Subpart B. Class B limit of 500 μ V/m has been calculated to correspond 54 dB(μ V/m) as follows: [dB(μ V/m)]=20log[μ V/m].

The measurement results were obtained as described below.

$$E[dB(\mu V/m)] = U_{RX} + A_{CABLE} + AF - G_{PREAMP}$$

Where

U_{RX} receiver reading

A_{CABLE} attenuation of the cable

AF antenna factor

GPREAMP gain of the preamplifier

Duty Cycle correction factor(dB) -21.27 dB was used.

Page 19 (30) Date 04.10.2013

4.3.3 Test results

EUT1

Above 1GHz. Channel low, (RBW 100kHz, VBW 300 kHz)

Гиоличанац	Dools	l incit	Marain	Dogult
Frequency	Peak	Limit	Margin	Result
MHz	dBc	dBc	dB	
7215	-38.8	-20.0	18.8	PASS
9620	-43.7	-20.0	23.7	PASS
9620	-43.7	-20.0	23.7	PASS

All peak emissions were more than 30 dB below the in-band power.

Above 1GHz. Channel mid, (RBW 100kHz, VBW 300 kHz)

Frequency	Peak	Limit	Margin	Result
MHz	dBc	dBc	dB	
9760	-43.7	-20.0	23.7	PASS

All peak emissions were more than 30 dB below the in-band power.

Above 1GHz. Channel high, (RBW 100kHz, VBW 300 kHz)

Frequency	Peak	Limit	Margin	Result
MHz	dBc	dBc	dB	
9920	-43.0	-20.0	23.0	PASS

All peak emissions were more than 30 dB below the in-band power.

4.3.4 Test results, Radiated emissions in restricted bands 30 MHz - 25 GHz

EUT1

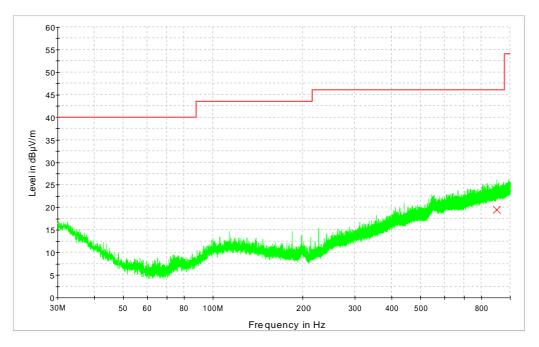
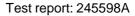



Figure 16, Spurious emissions, 30-1000 MHz, middle channel

Below 1GHz, Channel mid (RBW120kHz)

Frequency	Quasi peak	Limit	Margin	Result
MHz	dB(μV/m)	dB(μV/m)	dB	
900.38	19.4	46.0	26.6	PASS

TX on channel low/2405 MHz, EUT1

(RBW 1MHz, VBW 3MHz)

Frequency		Average (Av)			Peak	
MHz	Result dB(µV/m)	Limit dB(µV/m)	Margin dB	Result dB(µV/m)	Limit dB(µV/m)	Margin dB
4810	28.9	54	25.1	50.2	74.0	23.8
12025	32.8	54	21.2	54.1	74.0	19.9

TX on channel middle/2440 MHz, EUT1

(RBW 1MHz, VBW 3MHz)

(
Frequency MHz		Average (Av)			Peak	
IVII IZ	Result	Limit	Margin	Result	Limit	Margin
	dB(μV/m)	$dB(\mu V/m)$	dB	dB(μV/m)	dB(μV/m)	dB
4880	27.2	54	26.8	48.5	74.0	25.5
7320	49.9	54	4.1	71.2	74.0	2.8
12200	35.9	54	18.1	57.2	74.0	16.8

TX on channel high/2480 MHz, EUT1 (RBW 1MHz, VBW 3MHz)

Frequency MHz		Average (Av)			Peak	
IVITZ	Result dB(µV/m)	Limit dB(µV/m)	Margin dB	Result dB(μV/m)	Limit dB(µV/m)	Margin dB
4960	25.7	54	28.3	47.0	74.0	27.0
7440	46.9	54	7.1	68.2	74.0	5.8
12400	36.7	54	17.3	58.0	74.0	16.0

The average was obtained from the peak using the duty cycle correction factor -21.27. The peak was measured using a peak detector.

Test results, EUT2

Above 1GHz. Channel low, (RBW 100kHz, VBW 300 kHz)

Frequency	Peak	Limit	Margin	Result
MHz	dBc	dBc	dB	
7215	-38.9	-20.0	18.9	PASS
9620	-40.5	-20.0	20.5	PASS

All peak emissions were more than 30 dB below the in-band power.

Above 1GHz. Channel mid, (RBW 100kHz, VBW 300 kHz)

Frequency	Peak	Limit	Margin	Result
MHz	dBc	dBc	dB	
9760	-42.4	-20.0	22.4	PASS

All peak emissions were more than 30 dB below the in-band power.

Above 1GHz. Channel high, (RBW 100kHz, VBW 300 kHz)

Frequency	Peak	Limit	Margin	Result
MHz	dBc	dBc	dB	
9920	-38.5	-20.0	18.5	PASS

All peak emissions were more than 30 dB below the in-band power.

Test results, Radiated emissions in restricted bands 30 MHz – 25 GHz (TX and RX) *EUT*2

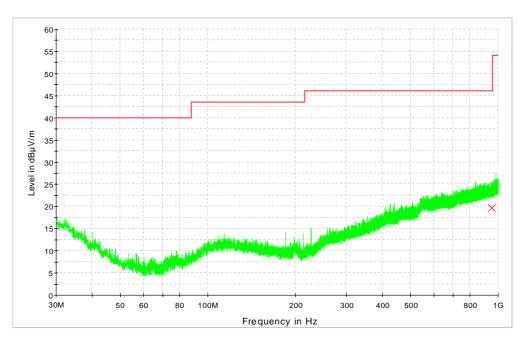


Figure 17, Spurious emissions, 30-1000 MHz, middle channel

Below 1GHz, Channel mid (RBW120kHz)

Frequency	Quasi peak	Limit	Margin	Result
MHz	dB(μV/m)	dB(μV/m)	dB	
948.900	19.7	46.0	26.3	PASS

TX on channel low/2405 MHz, EUT2

(RBW 1MHz, VBW 3MHz)

(· · · · · · · · · · · · · · · · · · ·						
Frequency MHz		Average (Av)			Peak	
IVII IZ	Result dB(µV/m)	Limit dB(μV/m)	Margin dB	Result dB(µV/m)	Limit dB(μV/m)	Margin dB
	$UD(\mu V/III)$	α <i></i> Β(μ ٧/111)	UD	$uD(\mu v/III)$	ub(μ ν/π)	uБ
4810	28.8	54	25.2	50.1	74	23.9
12025	35.8	54	18.2	57.1	74	16.9

TX on channel middle/2440 MHz, EUT2

(RBW 1MHz, VBW 3MHz)

\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.						
Frequency MHz		Average (Av)			Peak	
IVITZ	Result	Limit	Margin	Result	Limit	Margin
	dB(μV/m)	dB(μV/m)	dB	dB(μV/m)	dB(μV/m)	dB
4880	32.2	54	21.8	53.5	74	20.5
7320	49.9	54	4.1	71.2	74	2.8
12200	38.2	54	15.8	59.5	74	14.6

TX on channel high/2480 MHz, EUT2 (RBW 1MHz, VBW 3MHz)

, - ,						
Frequency MHz		Average (Av)			Peak	
IVITIZ	Result dB(µV/m)	Limit dB(µV/m)	Margin dB	Result dB(μV/m)	Limit dB(µV/m)	Margin dB
4960	36.6	54	17.4	57.9	74.0	16.1
7440	43.2	54	10.8	64.5	74.0	9.5
12400	36.7	54	17.3	58.0	74.0	16.0

The average was obtained from the peak using the duty cycle correction factor -21.27. The peak was measured using a peak detector.

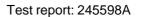
4.4 Duty cycle correction factor

Spectrum analyzer with zero span was used to investigate spectrum.

15.35(c) Unless otherwise specified, e.g.§ 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

4.4.2 Test data

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


Number of hopping channels 16

Channel occupancy: During 0.4s*16=6.4s 67 hits at 2440 MHz. Assuming equal use of channels on average this is $67 \times 16 / 6.4 = 167.5$ hops per second. Pulse period (T) = 16 / 167.5 = 95.5 ms

Pulse period (T) = 6.4s/67=95.5ms Pulses/100ms=2 Length of one pulse = 4.32ms

DutyCycleCorrectionFactor=20*log(Tocc/100)=20*log(2*4.32/100)=-21.27dB

4.5 AC power line conducted emissions

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1
Site name	Nemko / Perkkaa
FCC rule part	§ 15.207
Test method	CISPR 22 /ANSI C63.4-2009
Date of testing	01.10.2013
Test equipment	348, 745, 694
Test conditions	22 °C, 40 % RH

4.5.1 Test method and limit

The measurement is made according to ANSI C63.4-2009. The test was performed inside a shielded room where the floor and one of the walls of the test site comprised the reference ground plane (RGP). For the duration of the test the EUT was placed on a non-conductive table 0.8 m high standing on the reference ground plane (see photograph 3). The excess length of the cables of the EUT were made into bundles 30-40 cm in length. The power input cable of the EUT was connected to an artificial mains network. The test was performed separately on the phase and also on the neutral wire.

The disturbances were first examined by performing a spectrum scan by using a peak detector. The general procedure in the conducted disturbance emission test is that no further measurements are necessary if the disturbance levels measured by using the peak detector are below the limit value defined for the measurement performed by using an average detector.

If not, then at the test frequencies concerned the measurement is performed also by using a quasipeak detector. If the disturbance levels measured by using the quasi-peak detector are below the limit value defined for the measurement performed by using an average detector, then measurements by using the average detector are not necessary.

CISPR 22, class B limits

Frequency band	Quasi-peak	Average limit
MHz	$dB(\mu V)$	dB(μV)
0.15 - 0.5	66 – 56	56 – 46
0.5 – 5	56	46
5 - 30	60	50

4.5.2 EUT operation mode

EUT operation mode	Transmitter on
EUT channel	hopping
Power supply operation voltage ¹⁾	115 V / 60 Hz

Note 1) Typical laboratory DC power supply Oltronix B603 D/F was used.

4.5.3 Test results

Line N

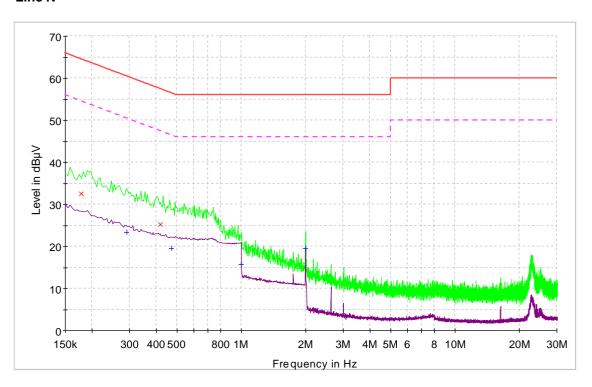


Figure 10. AC powerline emissions, Line N

Highest emissions (BW 10kHz):

Frequency	Quasi-peak	Limit value	Margin	Line	Result
MHz	$dB(\mu V)$	dB(μV)	dB		
0.178	32.5	64.6	32.1	N	Pass
0.419	25.2	57.5	32.3	N	Pass

Frequency	Average	Limit value	Margin	Line	Result
MHz	dB(μV)	dB(μV)	dB		
0.291	23.3	50.5	27.2	N	Pass
0.473	19.5	46.5	26.9	N	Pass
0.999	15.7	46.0	30.3	N	Pass
2.000	19.5	46.0	26.5	N	Pass

Line L

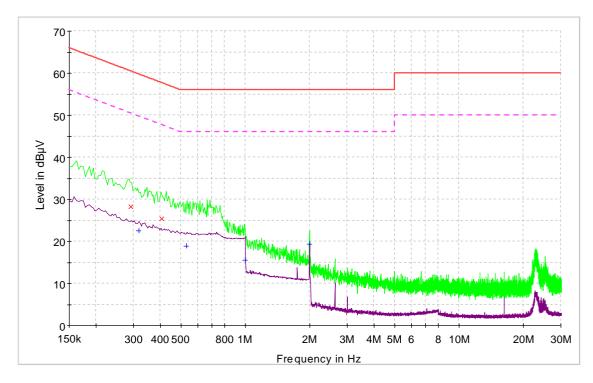



Figure 11. AC powerline emissions, Line L

Highest emissions (BW 10kHz):

Frequency MHz	Quasi-peak dB(μV)	Limit value dB(μV)	Margin dB	Line	Result
0.292	28.2	60.5	32.3	L	Pass
0.405	25.4	57.8	32.3	L	Pass

Frequency	Average	Limit value	Margin	Line	Result
MHz	$dB(\mu V)$	dB(μV)	dB		
0.318	22.6	49.8	27.2	L	Pass
0.530	18.9	46.0	27.1	L	Pass
0.999	15.6	46.0	30.4	L	Pass
2.000	19.4	46.0	26.6	L	Pass

Test report: 245598A

5. List of test equipment

Each active test equipment is calibrated once a year, antennas every 18 months and other passive equipment every 24 months.

Nr.	Equipment	Туре	Manufacturer	Serial number	Cal date	Cal due
390	RF attenuator PAD	WA2-10	Weinschel	3784	10.12.2011	12.2013
694	EMI Test Receiver	ESPC	Rohde & Schwarz	842888/023	11.12.2012	12.2013
566	Spectrum analyzer	E4448A	Agilent	US42510236	17.4.2013	4.2014
709	EMI test receiver	ESU8	Rohde & Schwarz	100297	24.07.2013	7.2014
567	RF generator	E8257C	Agilent	MY43320736	25.2.2013	2.2014
544	RF-amplifier	ZFL-2000VH2	Mini-Circuits	QA0749010	9.1.2013	1.2014
564	RF amplifier	CA018-4010	CIAO Wireless	132	9.1.2013	1.2014
710	RF-amplifier	ALS 1826-41-12	ALC Microwave Inc.	0011	28.10.2011	10.2013
745	2-Line V-Network	ENV216	Rohde & Schwarz	101466	11.6.2013	06.2014
319	Antenna	CBL6112	Chase	2018	12.7.2012	1.2014
525	Double-Ridged Horn	3115	Emco	6691	10.10.2012	4.2014
542	Double-Ridged Horn	3115	Emco	00023905	10.10.2012	4.2014
559	Highpass filter	WHKX3.0/18G-10ss	Wainwright	1	7.12.2011	2.2013
88	Waveguide horn	638	Narda	8003	-	-
371	AC Power source	500i-400	California Instr.	HK 52064	23.5.2012	5.2013
350	Semianechoic shielded room	RFD-F-100	Euroshield Oy	1327	26.10.2012	10.2014

6. Photographs

Photograph 1: Test setup, EUT 1

Photograph 1: Test setup, EUT 2

Photograph 3: AC power line conducted emissions test setup, EUT 1