

TEST REPORT

Test report no.: 1-9420/19-03-05 BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany + 49 681 5 98 - 0 Phone: Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com mail@ctcadvanced.com e-mail:

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Valeo Comfort and Driving Assistance S.A.S.

76 rue Auguste Perret - ZI Europarc 94046 CRETEIL CEDEX / FRANCE Phone: +33 1 48 84 54 00 Contact: Jerome Hugot

e-mail: ierome.hugot@valeo.com

Phone: +33 1 48 84 57 14

Manufacturer

Valeo Comfort and Driving Assistance S.A.S.

76 rue Auguste Perret - ZI Europarc 94046 CRETEIL CEDEX / FRANCE

Test standard/s

FCC - Title 47 CFR Part FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

Spectrum Management and Telecommunications Radio Standards Specification -RSS - 210 Issue 10

Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Smart Hub (BRT, VRR)

Model name: BLXH1A FCC ID: N5F-BLXH1 IC: 3248A-BLXH1

DTS band 2400 MHz to 2483.5 MHz Frequency:

Technology tested: Proprietary RF transmitter

Antenna: Integrated PCB and external FAKRA antennas

Power supply: 12 V DC by vehicle battery

Temperature range: -40°C to +85°C

Radio Communications

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Michael Dorongovski	René Oelmann	
Lab Manager	Lab Manager	

Radio Communications

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1	Notes and disclaimer	3
	2.2	Application details	
	2.3	Test laboratories sub-contracted	3
3	Test s	standard/s, references and accreditations	4
4	Repoi	ting statements of conformity – decision rule	5
5	Test e	environment	6
6	Test i	tem	6
	6.1	General description	6
	6.2	Additional information	6
7	Descr	iption of the test setup	7
	7.1	Shielded semi anechoic chamber	8
	7.2	Shielded fully anechoic chamber	
	7.3	Radiated measurements > 18 GHz	
	7.4	Conducted measurements	11
8	Seque	ence of testing	12
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	13
	8.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	
	8.4	Sequence of testing radiated spurious above 18 GHz	15
9	Meas	urement uncertainty	16
10	Sur	nmary of measurement results	17
11	Add	litional information and comments	18
12	Me	asurement results	19
	12.1	Timing of the transmitter	
	12.2	Maximum carrier field strength	
	12.3	Occupied bandwidth – 99% emission bandwidth	
	12.4	Band edge compliance radiated	
	12.5	Spurious emissions radiated below 30 MHz	
	12.6	Spurious emissions radiated 30 MHz to 1 GHz	
40	12.7	Spurious emissions radiated above 1 GHz	
13		servations	
14		ssary	
15		cument history	
16	Acc	reditation Certificate – D-PL-12076-01-04	76
17	Acc	reditation Certificate – D-PL-12076-01-05	77

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2020-07-22
Date of receipt of test item: 2020-09-15
Start of test: 2021-01-26
End of test: 2021-03-19

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

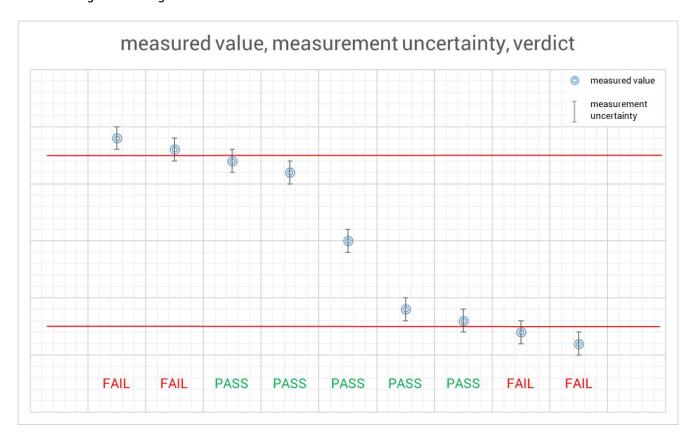
© CTC advanced GmbH Page 3 of 77

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 10	December 2019	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	Deutsche Akkreditierungsstelle D-PL-12076-01-05


© CTC advanced GmbH Page 4 of 77

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 77

5 Test environment

Temperature	:	T_nom T_max T_min	+24 °C during room temperature tests No tests under extreme temperature conditions required. No tests under extreme temperature conditions required.
Relative humidity content	:		42 %
Barometric pressure	:		1021 hpa
		V_{nom}	12 V DC by vehicle battery / external power supply (RF tests)
Power supply	:	V_{max}	No tests under extreme voltage conditions required.
		V_{min}	No tests under extreme voltage conditions required.

6 Test item

6.1 General description

Kind of test item :	Smart Hub (BRT, VRR)				
Model name :	BLXH1A				
HMN :	-/-				
PMN :	BRT, VRR				
HVIN :	BLXH1A				
FVIN :	-/-				
	Radiated unit: Rad. Ant 1/2/3				
S/N serial number :	Conducted unit: internal PCB A1:				
	internal PCB A2:				
	external FAKRA A3:				
Hardware status :	B156717-01-C				
Software status :	V3.27				
Firmware status :	n/a				
Frequency band :	DTS band 2400 MHz to 2483.5 MHz				
Type of radio transmission:	Single unmodulated carrier, DSSS				
Use of frequency spectrum :					
Type of modulation :	GFSK, CW				
Number of channels :	75				
Antenna :	Integrated PCB and external FAKRA antennas				
Power supply :	12 V DC by vehicle battery				
Temperature range :	-40°C to +85°C				

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-9420/19-03-01_AnnexA

1-9420/19-03-01_AnnexB 1-9420/19-03-01_AnnexD

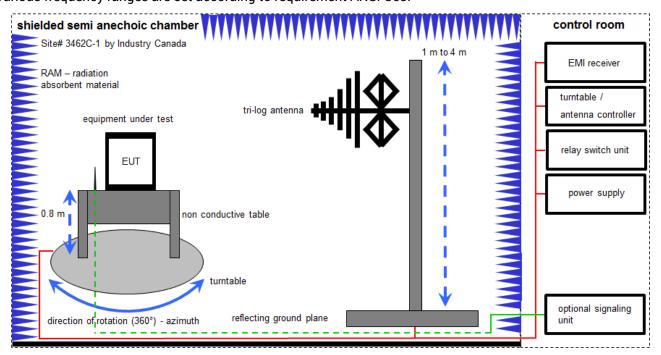
© CTC advanced GmbH Page 6 of 77

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 77

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

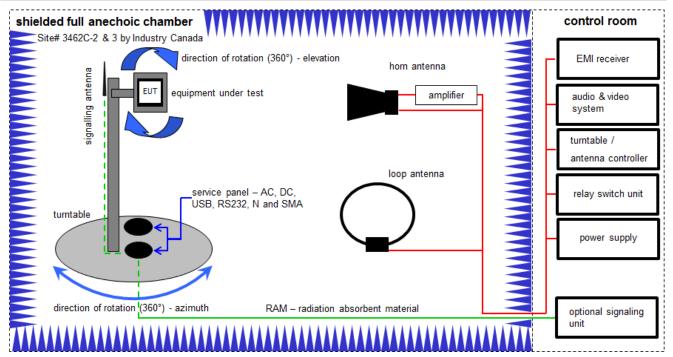
Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	09.12.2020	08.12.2021
3	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	vlKI!	02.07.2019	01.07.2021
8	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.06.2022
9	Α	DC Power Supply	HMP2020	Rohde & Schwarz	102850	300005517	vlKI!	12.12.2019	11.12.2021

© CTC advanced GmbH Page 8 of 77

7.2 Shielded fully anechoic chamber

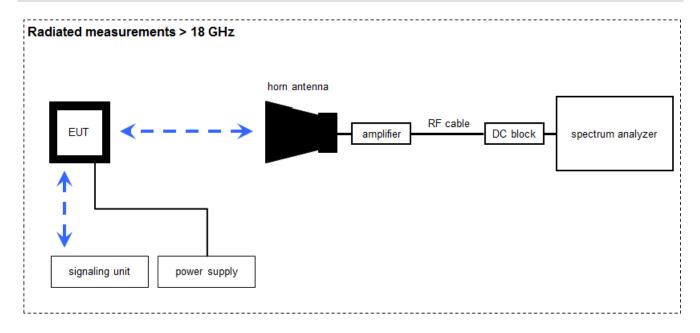
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B, C	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	09.12.2020	08.12.2023
2	В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	13.06.2019	12.06.2021
3	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	A, C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5289	300000213	vlKI!	14.07.2020	13.07.2022
5	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
6	Α	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
7	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2020	08.12.2021
8	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
9	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	Α	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
12	A, B, C	NEXIO EMV- Software	BAT EMC V3.20.06	EMCO	-/-	300004682	ne	-/-	-/-
13	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
14	Α	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 77

7.3 Radiated measurements > 18 GHz

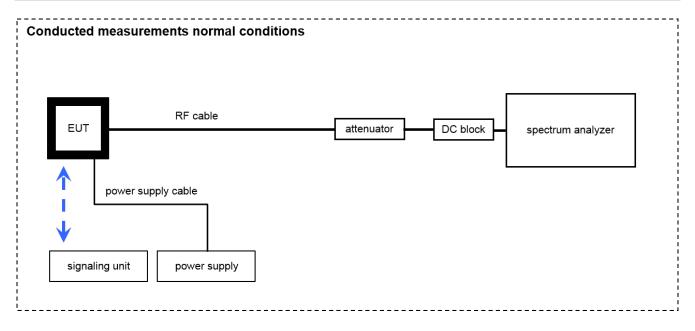
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	НР	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKI!	21.01.2020	20.01.2022
3	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	07.12.2020	06.12.2021
4	Α	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
6	Α	DC Power Supply	HMP2020	Rohde & Schwarz	102850	300005517	vlKI!	12.12.2019	11.12.2021

© CTC advanced GmbH Page 10 of 77

7.4 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	07.12.2020	06.12.2021
2	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
3	Α	Hygro-Thermometer	-/-, 5-45°C, 20- 100%rF	Thies Clima	-/-	400000108	ev	13.08.2020	12.08.2022
4	Α	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
5	Α	RF-Cable	ST18/SMAm/SMAm /60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
6	А	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10-2W44+	Mini Circuits	-/-	400001186	ev	-/-	-/-
7	Α	Synchron Power Meter	SPM-4	стс	1	300005580	ev	-/-	-/-
8	Α	DC Power Supply	HMP2020	Rohde & Schwarz	102850	300005517	vlKI!	12.12.2019	11.12.2021
9	А	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-

© CTC advanced GmbH Page 11 of 77

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with guasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 12 of 77

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 77

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 77

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 15 of 77

9 Measurement uncertainty

Measurement uncertainty				
Test case	Uncertainty			
Antenna gain	± 3 dB			
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative			
Maximum field strength	± 3 dB			
Band edge compliance radiated	± 3 dB			
Spurious emissions radiated below 30 MHz	± 3 dB			
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB			
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB			
Spurious emissions radiated above 12.75 GHz	± 4.5 dB			
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB			

© CTC advanced GmbH Page 16 of 77

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 10	See table!	2021-03-24	-/-

Test specification clause	Test case	Guideline	Temperature & voltage conditions	Mode	С	NC	NA	NP	Remark
§ 15.35 RSS GEN	Timing of the transmitter	-/-	Nominal	TX modulated		-/	/-		-/-
§15.249 RSS 210	Maximum field strength	-/-	Nominal	TX modulated and CW	\boxtimes				-/-
RSS Gen	OBW – 99% emission bandwidth	-/-	Nominal	TX modulated and CW		-,	/-		-/-
§15.249 RSS 210	Band edge compliance radiated	-/-	Nominal	TX modulated and CW	\boxtimes				-/-
§15.249 RSS 210	Spurious emissions radiated below 30 MHz	-/-	Nominal	TX modulated and CW	\boxtimes				-/-
§15.249 RSS 210	Spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	TX modulated and CW	\boxtimes				-/-
§15.249 RSS 210	Spurious emissions radiated above 1 GHz	-/-	Nominal	TX modulated and CW	\boxtimes				-/-
§15.107 §15.207 RSS-Gen	Spurious emissions conducted below 30 MHz (AC conducted)	-/-	Nominal	-/-			\boxtimes		-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 17 of 77

11 Additional information and comments

Reference documents:	CCC-C/	AR_Mc LAREN【P16】PEPS (BLR)_ RfQ (Compliance)
	1-9420	/19-03-05_log1_conducted.pdf
Special test descriptions:	None	
Configuration descriptions:	None	
Test mode:	×	EUT is transmitting pseudo random data by itself
EUT selection:		Only one device available
	\boxtimes	Devices selected by the customer
		Devices selected by the laboratory (Randomly)
Antennas and transmit	\boxtimes	Operating mode 1 (single antenna)
operating modes:		 Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode
		 by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming)
		 Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

© CTC advanced GmbH Page 18 of 77

12 Measurement results

12.1 Timing of the transmitter

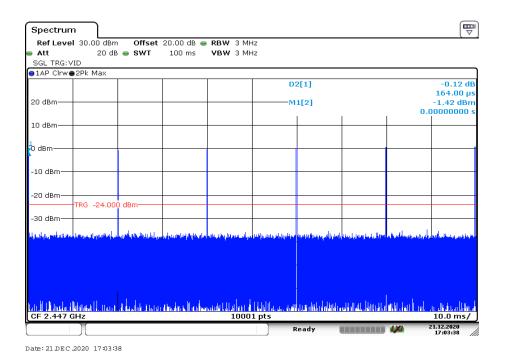
Description:

Measurement of the transmitter timing behavior for duty cycle correction.

Measurement parameter			
Detector	Peak		
Sweep time	See plot		
Resolution bandwidth	See plot		
Video bandwidth	See plot		
Span	Zero		
Trace mode	Single		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9		

Limits:

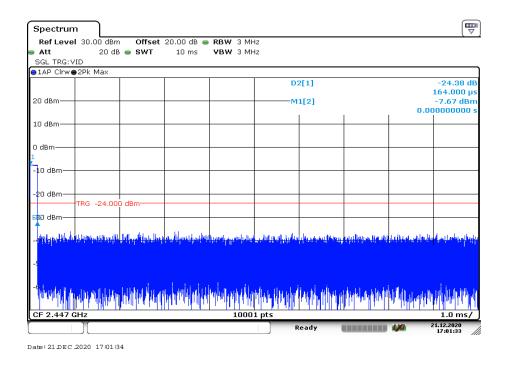
FCC	IC			
Timing of the transmitter				


(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

© CTC advanced GmbH Page 19 of 77

Result:

Plot 1:



6 emissions @ 100 ms

© CTC advanced GmbH Page 20 of 77

Plot 2:

Txon 164 µs

 $6 \times 164 \mu s @ 100 ms = 984 \mu s$

DC Correction factor: 20 log (0.00984) = -40.14 dB

The timing is similar to the transmitter KEY FOB (KFML1), tested in test report 1-9420_19-01-05. The plots and the calculation are representative for both devices.

© CTC advanced GmbH Page 21 of 77

12.2 Maximum carrier field strength

Description:

Measurement of the carrier field strength @ 3-meter distance with peak and average detector.

Measurement parameters			
Detector	Peak / AVG (RMS or duty cycle correction)		
Sweep time	Auto		
Resolution bandwidth	3 MHz		
Video bandwidth	10 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 C		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC			
The field strength of emissions of intentional radiators shall comply with the following:				
Field strength of fundamental:				
50 mV/m / (94 dBμV/m) @ 3 m (AVG)				
500 mV/m / (114 dBμV/m) @ 3 m (Peak)				

© CTC advanced GmbH Page 22 of 77

Results: internal PCB A1

Field strength @ 3 meter		Frequency	
	Lowest channel	Middle channel	Highest channel
Peak (GFSK / CW)	97.2 / 100.9	96.6 / 100.0	95.8 / 100.5
AVG (GFSK / CW) (corrected with duty cycle correction factor from chapter 12.1)	57.1 / 60.8	56.5 / 59.9	55.7 / 60.4

Results: internal PCB A2

Field strength @ 3 meter	Frequency		
	Lowest channel	Middle channel	Highest channel
Peak (GFSK / CW)	98.1 / 101.9	96 2 / 100.8	967/101.2
AVG (GFSK / CW) (corrected with duty cycle correction factor from chapter 12.1)	58.0 / 61.8	56.1 / 60.7	56.6 / 61.1

Results: external FAKRA A3

Field strength @ 3 meter	Frequency		
	Lowest channel	Middle channel	Highest channel
Peak (GFSK / CW)	100 3 / 103.9	99 9 / 104.8	99 1 / 103.4
AVG (GFSK / CW) (corrected with duty cycle correction factor from chapter 12.1)	60.2 / 63.8	59.8 / 64.7	59.0 / 63.3

© CTC advanced GmbH Page 23 of 77

12.3 Occupied bandwidth - 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement parameter		
Reference document:	1-9420/19-03-05_log1_conducted.pdf	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

Usage:

-/-	IC	
Occupied bandwidth – 99% emission bandwidth		
OBW is necessary for emission designator		

Results:

	Frequency		
	Lowest channel	Middle channel	Highest channel
99% bandwidth (kHz) - GFSK	1041	1041	1041
99% bandwidth (kHz) - CW	78	78	79

© CTC advanced GmbH Page 24 of 77

12.4 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance.

Measurement parameters		
Detector	Peak / RMS	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Span	Lower Band: 2310 - 2405 MHz higher Band: 2478 - 2500 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.2 C	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC	
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209 / RSS GEN, whichever is the lesser attenuation.		
54 dBμV/m AVG 74 dBμV/m Peak		

© CTC advanced GmbH Page 25 of 77

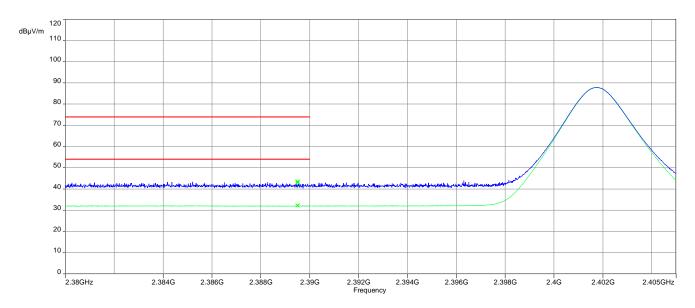
Result: internal PCB A1

Scenario	Band edge compliance radiated [dBµV/m]
Lower restricted band (GFSK)	32.3 dBµV/m AVG
, ,	43.6 dBμV/m Peak
Upper restricted band (GFSK)	47.7 dBμV/m AVG
	64.2 dBμV/m Peak
Lower restricted band (CW)	32.4 dBμV/m AVG
	43.8 dBμV/m Peak
Upper restricted band (CW)	47.1 dBμV/m AVG
	50.4 dBμV/m Peak

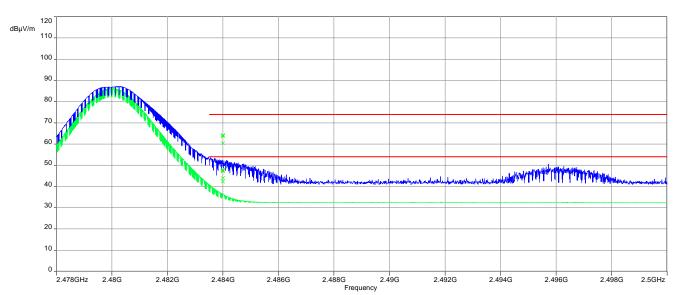
Result: internal PCB A2

Scenario	Band edge compliance radiated [dBµV/m]
Lower restricted band (GFSK)	32.4 dBμV/m AVG
	43.4 dBμV/m Peak
Upper restricted band (GFSK)	49.0 dBμV/m AVG
	66.2 dBμV/m Peak
Lower restricted band (CW)	32.4 dBμV/m AVG
	43.6 dBμV/m Peak
Upper restricted band (CW)	48.1 dBμV/m AVG
	51.3 dBμV/m Peak

Result: external FAKRA A3

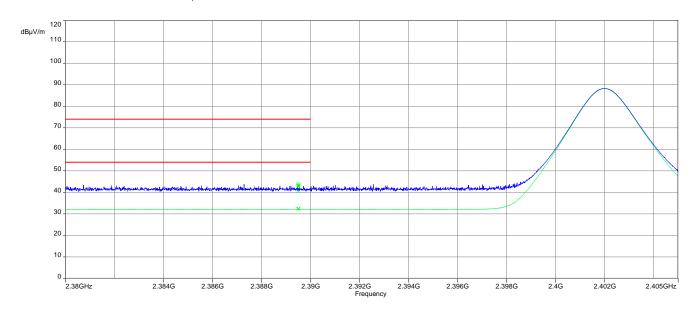

Scenario	Band edge compliance radiated [dBµV/m]
Lower restricted band (GFSK)	32.6 dBμV/m AVG 43.5 dBμV/m Peak
Upper restricted band (GFSK)	50.0 dBμV/m AVG 59.3 dBμV/m Peak
Lower restricted band (CW)	32.6 dBμV/m AVG
	43.6 dBμV/m Peak
Linner rectricted hand (CM)	49.3 dBμV/m AVG
Upper restricted band (CW)	52.3 dBμV/m Peak

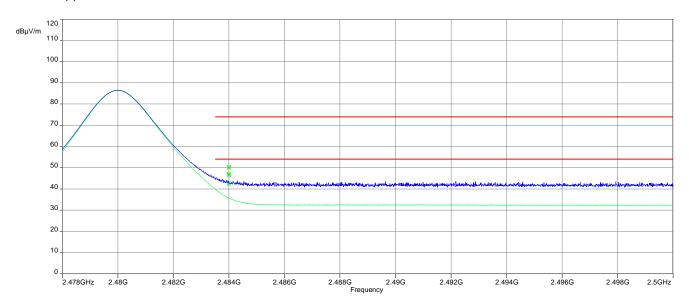
© CTC advanced GmbH Page 26 of 77



Plots: internal PCB A1

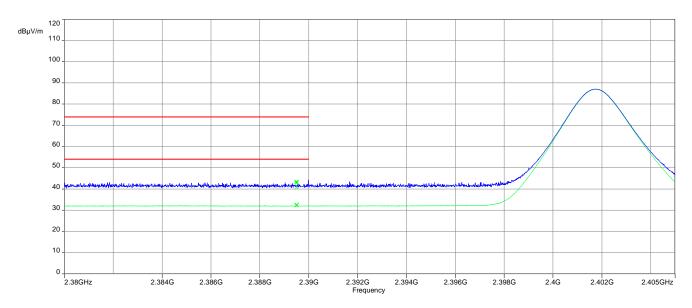
Plot 1: Lower restricted band, GFSK


Plot 2: Upper restricted band, GFSK

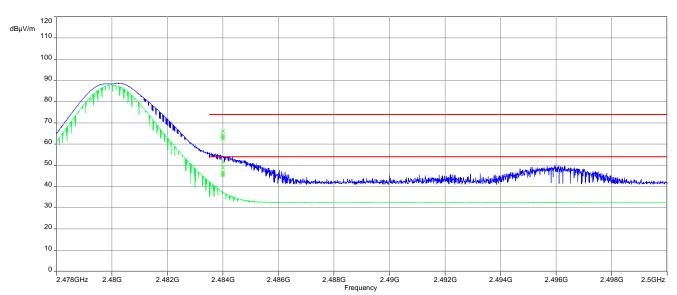

© CTC advanced GmbH Page 27 of 77

Plot 3: Lower restricted band, CW

Plot 4: Upper restricted band, CW

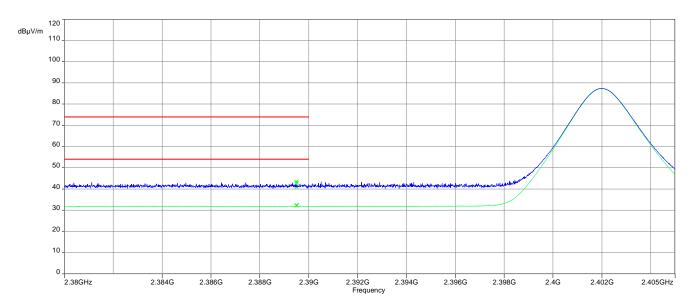


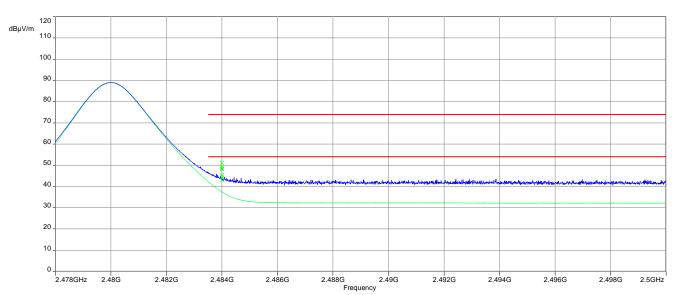
© CTC advanced GmbH Page 28 of 77



Plots: internal PCB A2

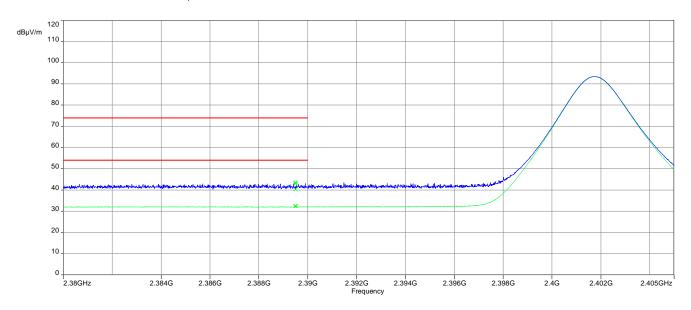
Plot 1: Lower restricted band, GFSK


Plot 2: Upper restricted band, GFSK

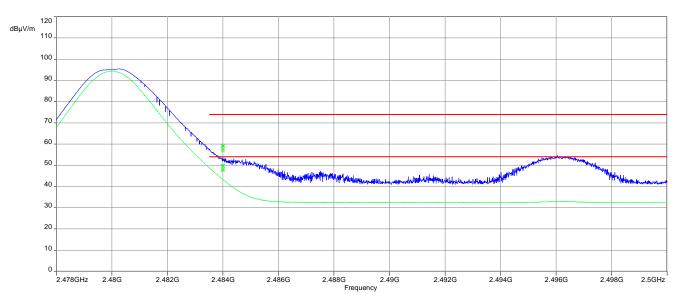

© CTC advanced GmbH Page 29 of 77

Plot 3: Lower restricted band, CW

Plot 4: Upper restricted band, CW

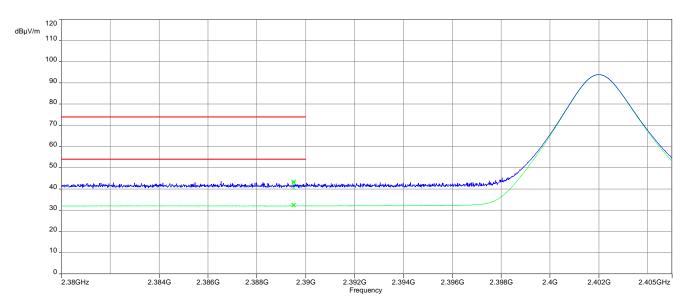


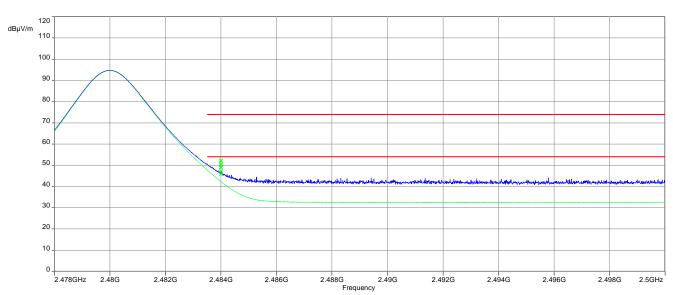
© CTC advanced GmbH Page 30 of 77



Plots: external FAKRA A3

Plot 1: Lower restricted band, GFSK


Plot 2: Upper restricted band, GFSK


© CTC advanced GmbH Page 31 of 77

Plot 3: Lower restricted band, CW

Plot 4: Upper restricted band, CW

© CTC advanced GmbH Page 32 of 77

12.5 Spurious emissions radiated below 30 MHz

Description:

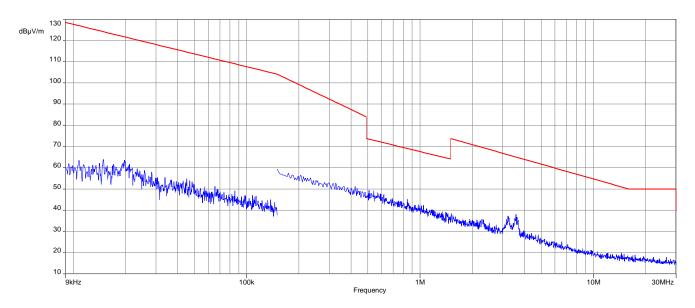
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement parameters			
Detector	Peak / Quasi peak		
Sweep time	Auto		
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 30 kHz		
Span	9 kHz to 30 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 B		
Measurement uncertainty	See sub clause 9		

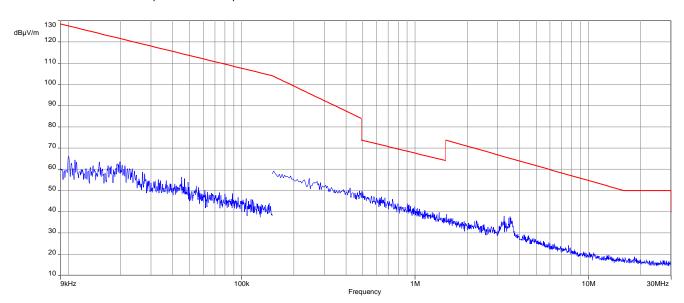
Limits:

FCC		IC		
TX spurious emissions radiated below 30 MHz				
Frequency (MHz)	Field strength (dBµV/m)		Measurement distand	ce
0.009 - 0.490	2400/F(kHz)		300	
0.490 - 1.705	24000/F(kHz)		30	
1.705 – 30.0	30		30	

Results:

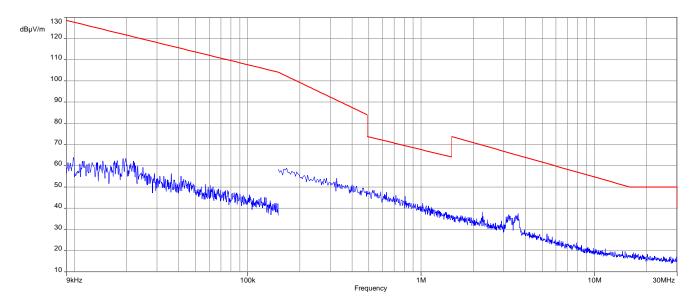

TX spurious emissions radiated below 30 MHz [dBμV/m]			
F [MHz]	Detector	Level [dBμV/m]	
All detected emissions are more than 20 dB below the limit.			

© CTC advanced GmbH Page 33 of 77



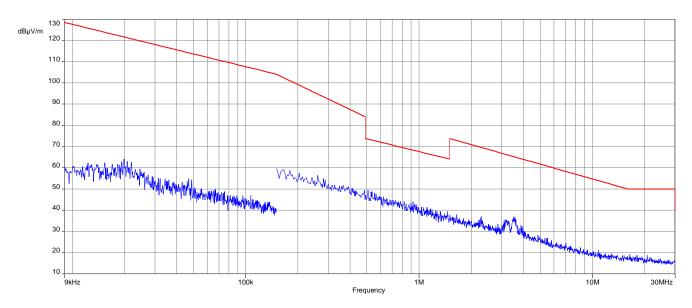
Plots: internal PCB A1

Plot 1: 9 kHz to 30 MHz, low channel, GFSK

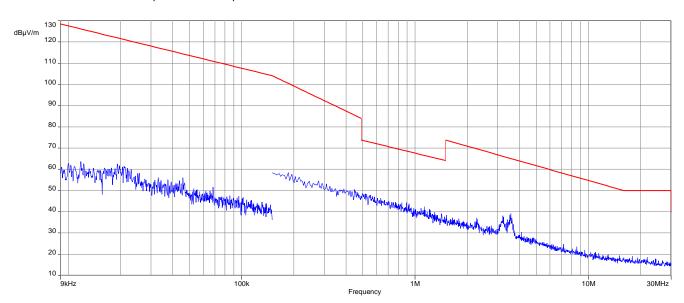

Plot 2: 9 kHz to 30 MHz, mid channel, GFSK

© CTC advanced GmbH Page 34 of 77

Plot 3: 9 kHz to 30 MHz, high channel, GFSK

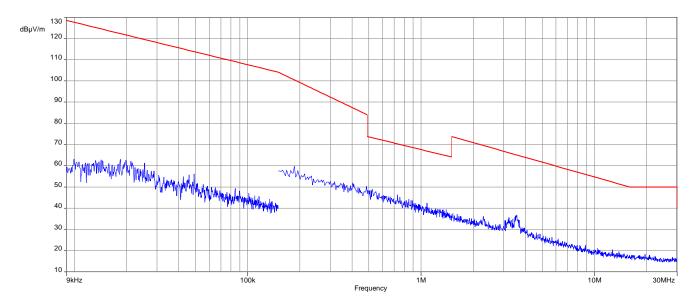


© CTC advanced GmbH Page 35 of 77



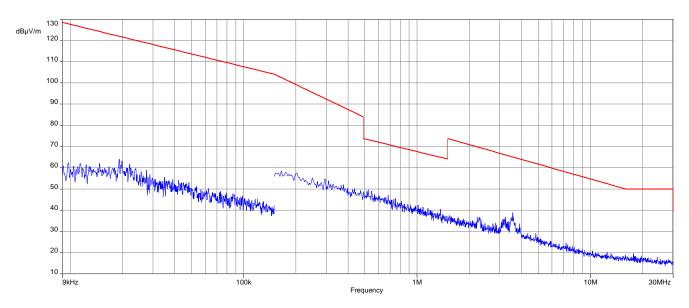
Plots: internal PCB A2

Plot 1: 9 kHz to 30 MHz, low channel, GFSK

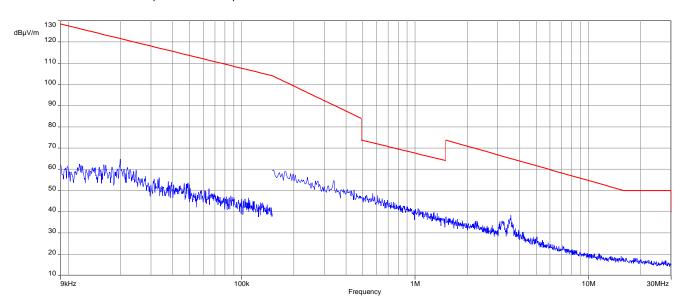

Plot 2: 9 kHz to 30 MHz, mid channel, GFSK

© CTC advanced GmbH Page 36 of 77

Plot 3: 9 kHz to 30 MHz, high channel, GFSK

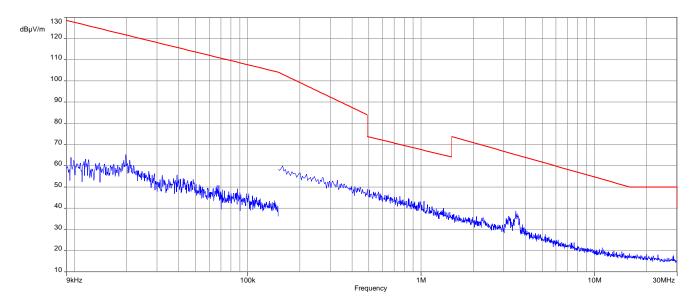


© CTC advanced GmbH Page 37 of 77



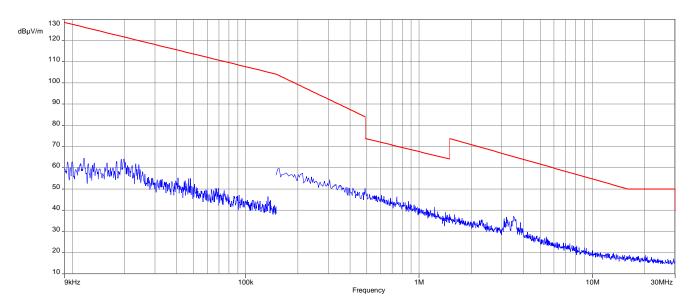
Plots: external FAKRA A3

Plot 1: 9 kHz to 30 MHz, low channel, GFSK

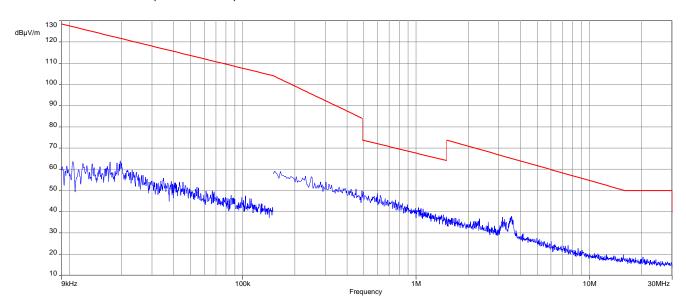

Plot 2: 9 kHz to 30 MHz, mid channel, GFSK

© CTC advanced GmbH Page 38 of 77

Plot 3: 9 kHz to 30 MHz, high channel, GFSK

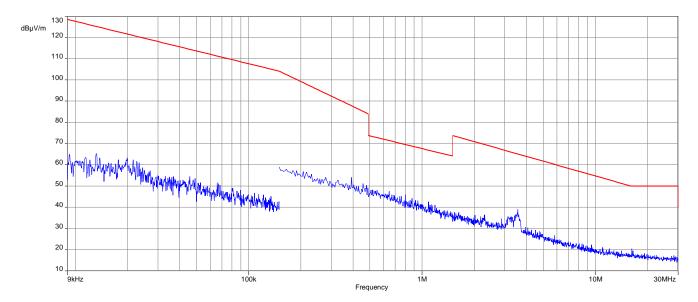


© CTC advanced GmbH Page 39 of 77



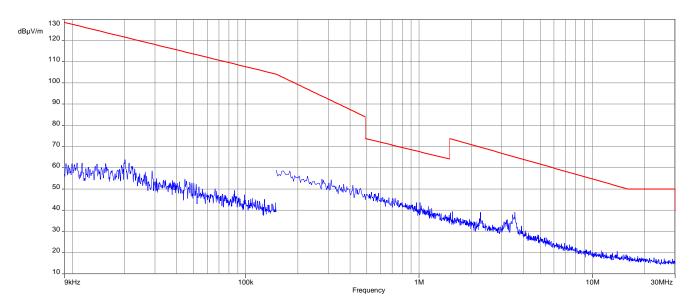
Plots: internal PCB A1

Plot 1: 9 kHz to 30 MHz, low channel, CW

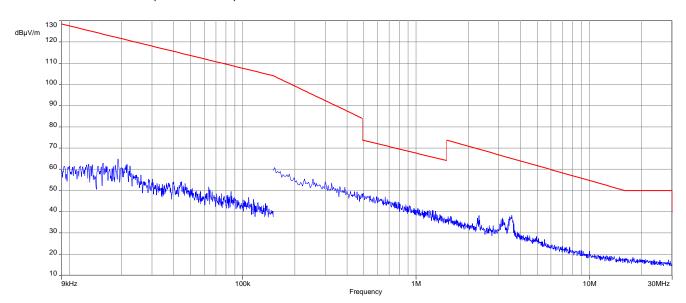

Plot 2: 9 kHz to 30 MHz, mid channel, CW

© CTC advanced GmbH Page 40 of 77

Plot 3: 9 kHz to 30 MHz, high channel, CW

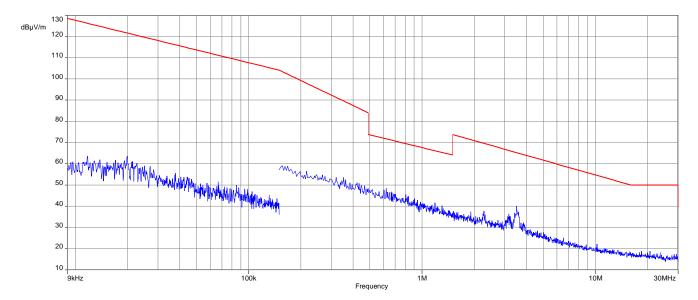


© CTC advanced GmbH Page 41 of 77



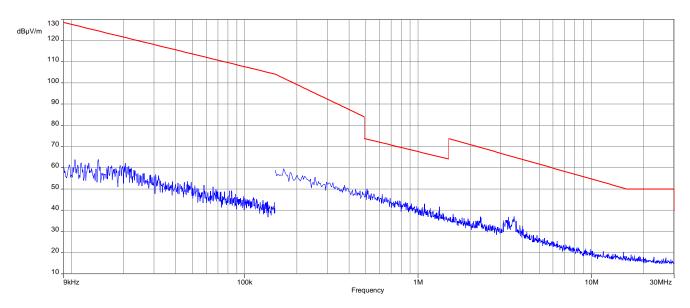
Plots: internal PCB A2

Plot 1: 9 kHz to 30 MHz, low channel, CW

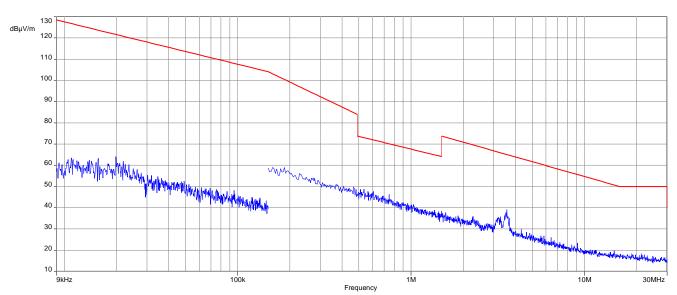

Plot 2: 9 kHz to 30 MHz, mid channel, CW

© CTC advanced GmbH Page 42 of 77

Plot 3: 9 kHz to 30 MHz, high channel, CW

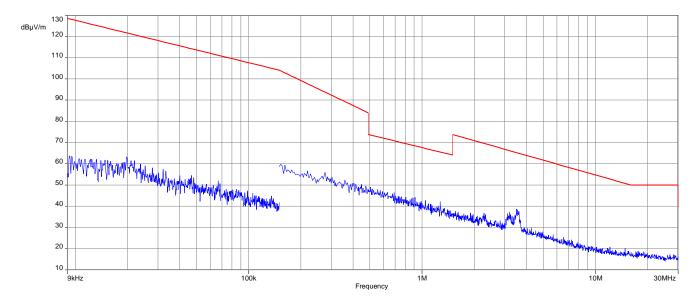


© CTC advanced GmbH Page 43 of 77



Plots: external FAKRA A3

Plot 1: 9 kHz to 30 MHz, low channel, CW


Plot 2: 9 kHz to 30 MHz, mid channel, CW

© CTC advanced GmbH Page 44 of 77

Plot 3: 9 kHz to 30 MHz, high channel, CW

© CTC advanced GmbH Page 45 of 77

12.6 Spurious emissions radiated 30 MHz to 1 GHz

Description:

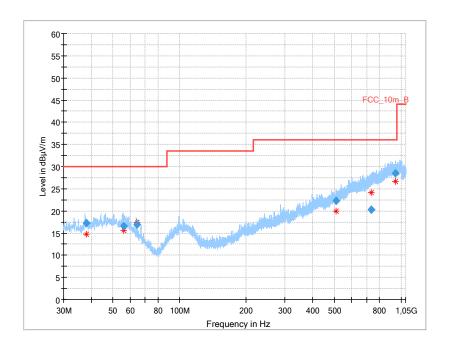
Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at lowest, middle and highest channel.

Meas	urement parameters
Detector	Peak / Quasi Peak
Sweep time	Auto
Resolution bandwidth	120 kHz
Video bandwidth	3 x RBW
Span	30 MHz to 1 GHz
Trace mode	Max hold
Test setup	See sub clause 7.1 A
Measurement uncertainty	See sub clause 9

Limits:

FCC		IC						
	TX spurious em	ssions radiated						
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209 / RSS GEN, whichever is the lesser attenuation.								
§15.209								
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance					
30 - 88	30	.0	10					
88 – 216	33	.5	10					
216 – 960	36	.0	10					

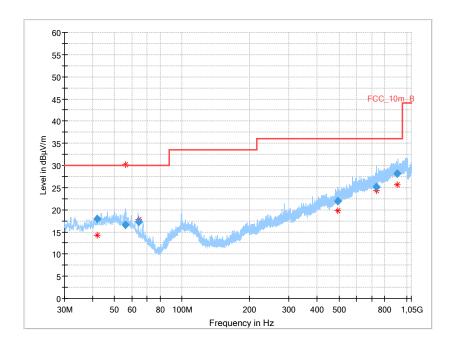
NOTE: The plots are representative for all modes with all antennas and channels.


© CTC advanced GmbH Page 46 of 77

Results: internal PCB A1

Plots: Transmit mode, GFSK

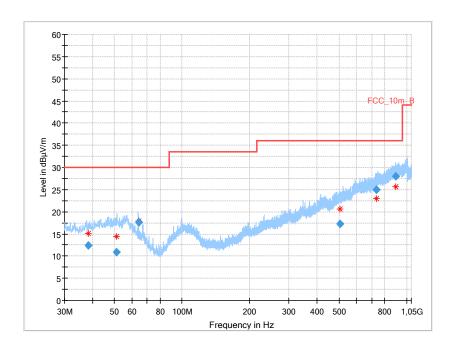
Plot 1: 30 MHz to 1 GHz, low channel, vertical & horizontal polarization


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.940	17.34	30.0	12.7	1000	120.0	122.0	Н	265	13
55.895	16.64	30.0	13.4	1000	120.0	170.0	V	157	15
64.002	16.95	30.0	13.1	1000	120.0	110.0	V	247	12
510.034	22.21	36.0	13.8	1000	120.0	170.0	Н	112	18
734.844	20.24	36.0	15.8	1000	120.0	170.0	V	247	22
943.724	28.45	36.0	7.6	1000	120.0	170.0	Н	93	24

© CTC advanced GmbH Page 47 of 77

Plot 2: 30 MHz to 1 GHz, mid channel, vertical & horizontal polarization

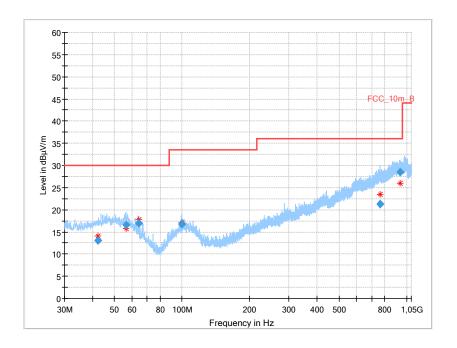

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.041	17.95	30.0	12.1	1000	120.0	162.0	V	22	14
56.186	16.65	30.0	13.4	1000	120.0	105.0	V	186	15
63.993	17.22	30.0	12.8	1000	120.0	102.0	V	112	12
494.655	21.92	36.0	14.1	1000	120.0	166.0	Н	67	18
734.393	25.17	36.0	10.8	1000	120.0	141.0	Н	157	22
911.938	28.19	36.0	7.8	1000	120.0	170.0	V	67	24

© CTC advanced GmbH Page 48 of 77

Plot 3: 30 MHz to 1 GHz, high channel, vertical & horizontal polarization

Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.204	12.40	30.0	17.6	1000	120.0	166.0	V	292	13
51.217	10.90	30.0	19.1	1000	120.0	170.0	Н	-6	14
63.992	17.53	30.0	12.5	1000	120.0	119.0	V	-22	12
505.741	17.21	36.0	18.8	1000	120.0	170.0	Н	202	18
732.878	25.04	36.0	11.0	1000	120.0	170.0	Н	247	22
892.808	28.00	36.0	8.0	1000	120.0	163.0	V	247	24

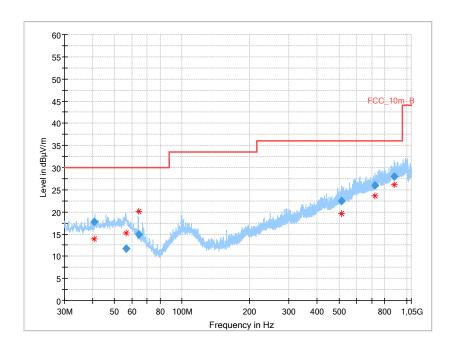
© CTC advanced GmbH Page 49 of 77

Plots: Transmit mode, CW

Plot 1: 30 MHz to 1 GHz, mid channel, vertical & horizontal polarization

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.161	13.05	30.0	17.0	1000	120.0	170.0	V	202	14
56.368	16.59	30.0	13.4	1000	120.0	122.0	V	247	15
64.002	16.93	30.0	13.1	1000	120.0	104.0	V	-22	12
99.514	16.80	33.5	16.7	1000	120.0	170.0	V	196	12
763.607	21.23	36.0	14.8	1000	120.0	163.0	V	249	22
938.721	28.52	36.0	7.5	1000	120.0	108.0	V	-22	24


© CTC advanced GmbH Page 50 of 77

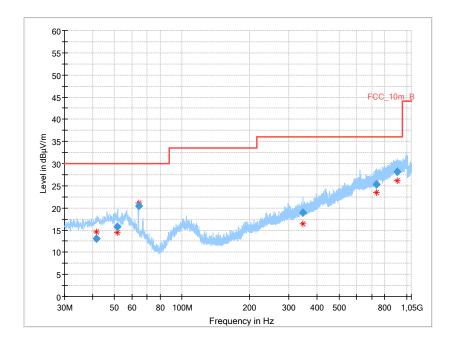
Results: internal PCB A2

Plots: Transmit mode, GFSK

Plot 1: 30 MHz to 1 GHz, mid channel, vertical & horizontal polarization

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.827	17.75	30.0	12.3	1000	120.0	170.0	Н	247	14
56.421	11.71	30.0	18.3	1000	120.0	127.0	Н	247	15
63.996	14.97	30.0	15.0	1000	120.0	116.0	V	67	12
514.813	22.38	36.0	13.6	1000	120.0	152.0	V	67	19
723.155	26.03	36.0	10.0	1000	120.0	170.0	V	157	21
884.023	27.98	36.0	8.0	1000	120.0	170.0	V	22	23


© CTC advanced GmbH Page 51 of 77

Results: external FAKRA A3

Plots: Transmit mode, GFSK

Plot 1: 30 MHz to 1 GHz, mid channel, vertical & horizontal polarization

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.658	13.01	30.0	17.0	1000	120.0	123.0	V	-15	14
51.576	15.77	30.0	14.2	1000	120.0	170.0	Н	112	14
63.993	20.43	30.0	9.6	1000	120.0	104.0	V	-22	12
344.809	19.00	36.0	17.0	1000	120.0	170.0	Н	67	16
735.075	25.32	36.0	10.7	1000	120.0	170.0	Н	-22	22
909.851	28.14	36.0	7.9	1000	120.0	170.0	V	202	24

© CTC advanced GmbH Page 52 of 77

12.7 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measure	ment parameters
Detector	Peak / RMS
Sweep time	Auto
Resolution bandwidth	1 MHz
Video bandwidth	3 x RBW
Span	1 GHz to 26 GHz
Trace mode	Max hold
Measured modulation	GFSK/CW
Test setup	See sub clause 7.2 A (1 GHz - 18 GHz)
Test setup	See sub clause 7.3 A (18 GHz - 26 GHz)
Measurement uncertainty	See sub clause 9

Limits:

FCC		IC						
TX spurious emissions radiated								
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209 / RSS GEN, whichever is the lesser attenuation.								
	§15.	209						
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance					
Above 960 54.0 (Average) 3								
Above 960	74.0 (Peak)	3					

© CTC advanced GmbH Page 53 of 77

Results: internal PCB A1

Results: GFSK

	TX spurious emissions radiated [dBμV/m]											
L	owest chanr	nel	Middle channel			Highest channel						
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz] Detector		Level [dBµV/m]				
-/-	Peak	-/-	,	Peak	-/-	,	Peak	-/-				
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-				

Results: CW

	TX spurious emissions radiated [dBμV/m]											
Lowest channel Middle channel						Highest channel						
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]				
-/-	Peak	-/-	7210	Peak	49.1	7440	Peak	49.5				
-/-	AVG	-/-	7319	AVG	41.4	7440	AVG	42.7				

Results: internal PCB A2

Results: GFSK

TX spurious emissions radiated [dBμV/m]								
Lowest channel		Middle channel			Highest channel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
-/-	Peak	-/-	7319	Peak	49.8	,	Peak	-/-
-/-	AVG -/	-/-	1319	AVG	39.3	-/-	AVG	-/-

Results: CW

TX spurious emissions radiated [dBμV/m]								
Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
-/-	Peak	-/-	7320	Peak	50.1	7440	Peak	49.6
	AVG	-/-		AVG	43.1		AVG	42.6

© CTC advanced GmbH Page 54 of 77

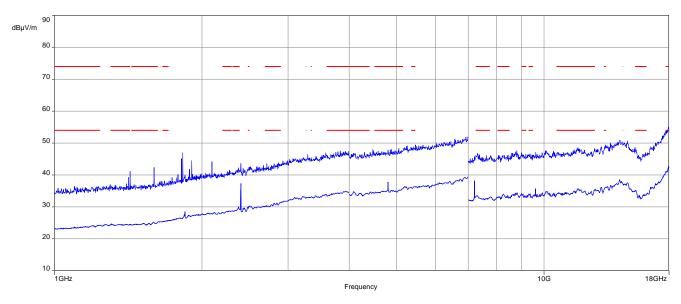
Results: external FAKRA A3

Results: GFSK

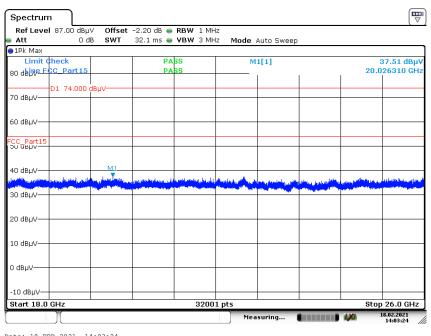
TX spurious emissions radiated [dBμV/m]								
Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
-/-	Peak	-/-	7319	Peak	51.4	7440	Peak	52.7
-/-	AVG	-/-		AVG	42.9		AVG	45.6

Results: CW

TX spurious emissions radiated [dBµV/m]								
Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
-/-	Peak	-/-	7319	Peak	52.1	7440	Peak	52.7
	AVG	-/-		AVG	47.1	7440	AVG	48.7


© CTC advanced GmbH Page 55 of 77

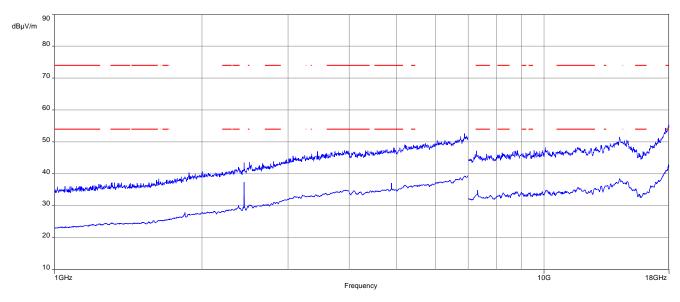
Results: internal PCB A1


Plots: Transmitter mode, GFSK

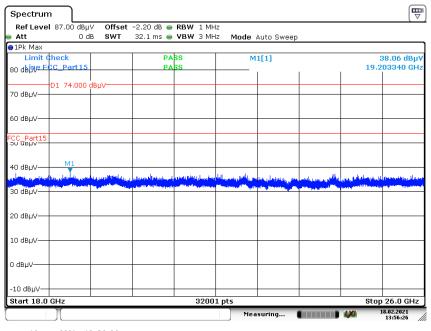
Plot 1: 1 GHz to 18 GHz, lowest channel, vertical & horizontal polarization, GFSK

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 18 GHz to 26 GHz, lowest channel, vertical & horizontal polarization, GFSK

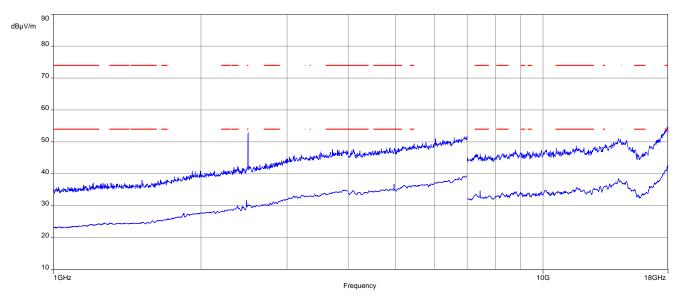


Date: 18.FEB.2021 14:03:24

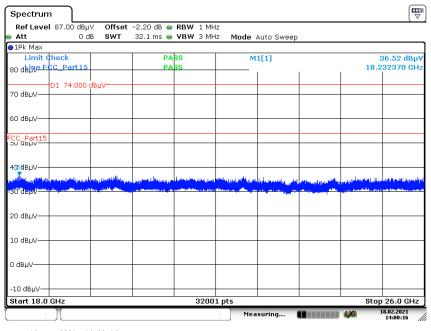

© CTC advanced GmbH Page 56 of 77

Plot 3: 1 GHz to 18 GHz, mid channel, vertical & horizontal polarization, GFSK

Plot 4: 18 GHz to 26 GHz, mid channel, vertical & horizontal polarization, GFSK

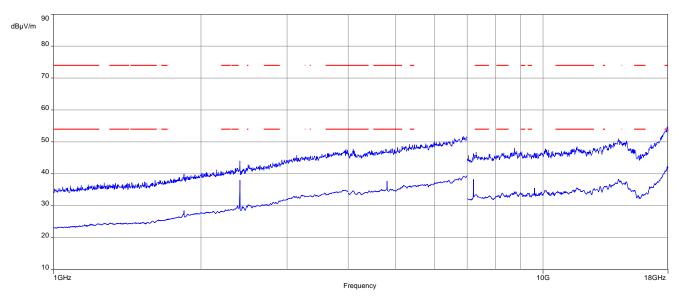


Date: 18.FEB.2021 13:56:26

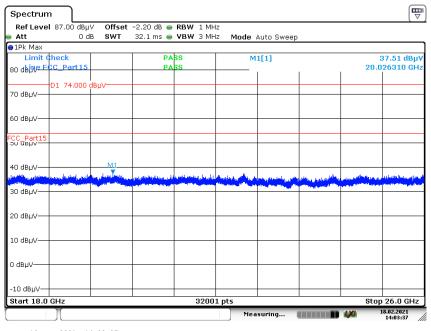

© CTC advanced GmbH Page 57 of 77

Plot 5: 1 GHz to 18 GHz, high channel, vertical & horizontal polarization, GFSK

Plot 6: 18 GHz to 26 GHz, high channel, vertical & horizontal polarization, GFSK


Date: 18.FEB.2021 14:00:16

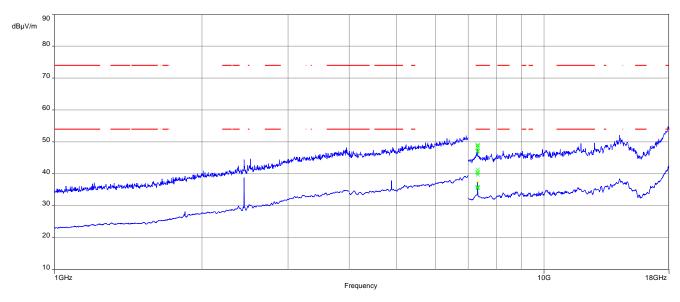
© CTC advanced GmbH Page 58 of 77


Plots: Transmitter mode, CW

Plot 1: 1 GHz to 18 GHz, lowest channel, vertical & horizontal polarization, CW

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 18 GHz to 26 GHz, lowest channel, vertical & horizontal polarization, CW

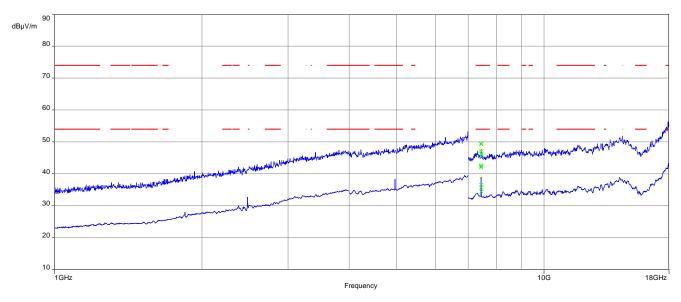


Date: 18.FEB.2021 14:03:37

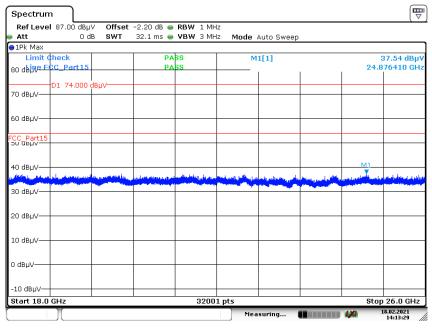

© CTC advanced GmbH Page 59 of 77

Plot 3: 1 GHz to 18 GHz, mid channel, vertical & horizontal polarization, CW

Plot 4: 18 GHz to 26 GHz, mid channel, vertical & horizontal polarization, CW



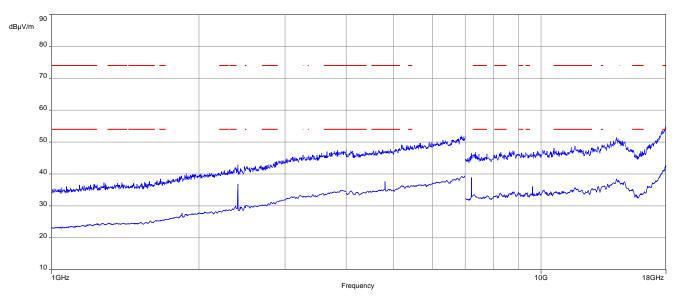
Date: 18.FEB.2021 14:07:08


© CTC advanced GmbH Page 60 of 77

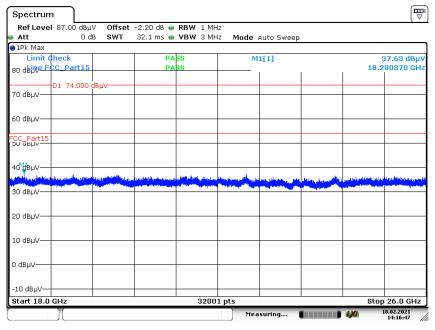
Plot 5: 1 GHz to 18 GHz, high channel, vertical & horizontal polarization, CW

Plot 6: 18 GHz to 26 GHz, high channel, vertical & horizontal polarization, CW

Date: 18.FEB.2021 14:13:29


© CTC advanced GmbH Page 61 of 77

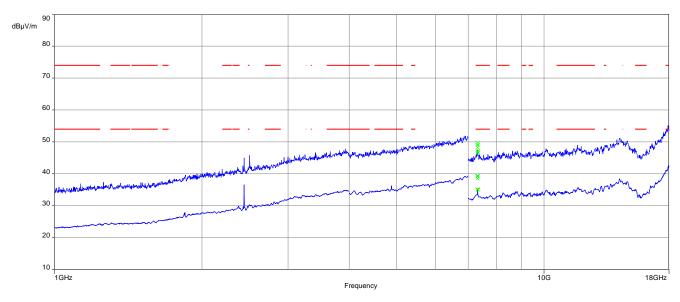
Results: internal PCB A2


Plots: Transmitter mode, GFSK

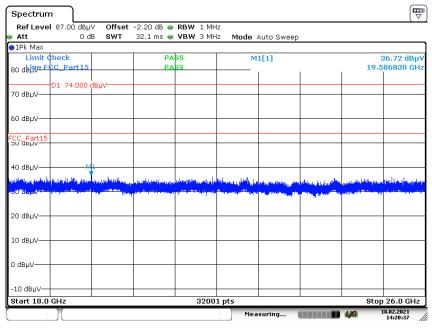
Plot 1: 1 GHz to 18 GHz, lowest channel, vertical & horizontal polarization, GFSK

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 18 GHz to 26 GHz, lowest channel, vertical & horizontal polarization, GFSK

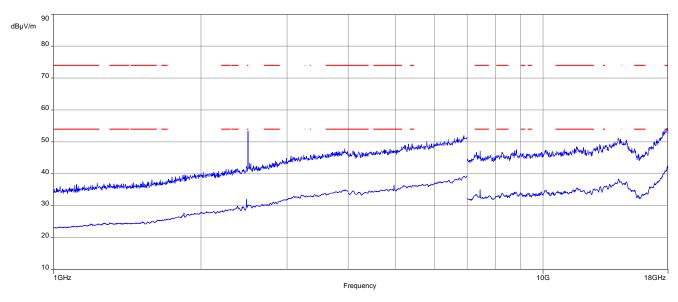


Date: 18.FEB.2021 14:16:47

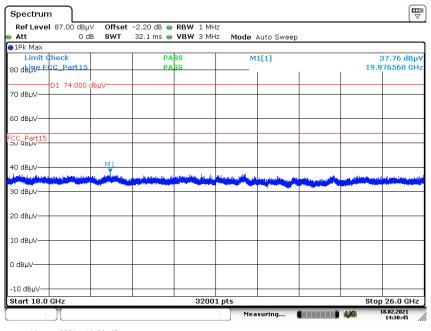

© CTC advanced GmbH Page 62 of 77

Plot 3: 1 GHz to 18 GHz, mid channel, vertical & horizontal polarization, GFSK

Plot 4: 18 GHz to 26 GHz, mid channel, vertical & horizontal polarization, GFSK

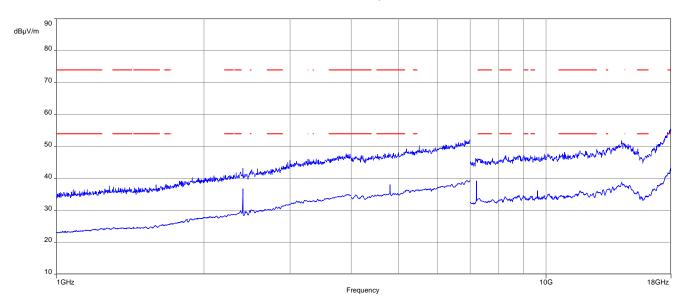


Date: 18.FEB.2021 14:20:37

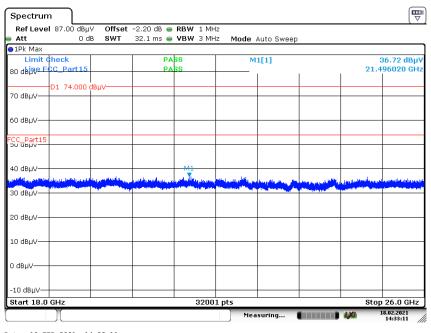

© CTC advanced GmbH Page 63 of 77

Plot 5: 1 GHz to 18 GHz, high channel, vertical & horizontal polarization, GFSK

Plot 6: 18 GHz to 26 GHz, high channel, vertical & horizontal polarization, GFSK


Date: 18.FEB.2021 14:30:45

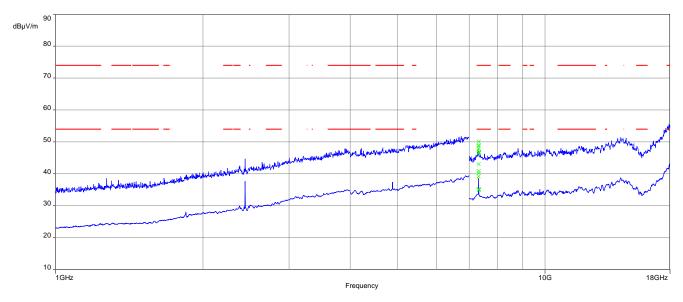
© CTC advanced GmbH Page 64 of 77


Plots: Transmitter mode, CW

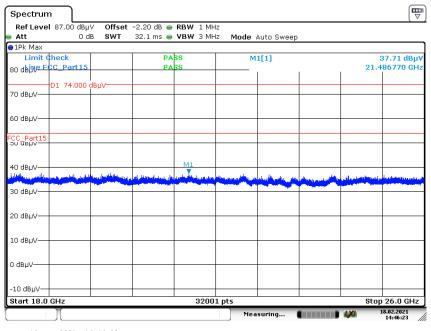
Plot 1: 1 GHz to 18 GHz, lowest channel, vertical & horizontal polarization, CW

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 18 GHz to 26 GHz, lowest channel, vertical & horizontal polarization, CW

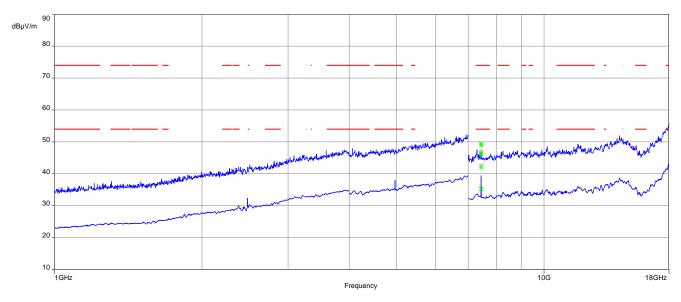


Date: 18.FEB.2021 14:33:11

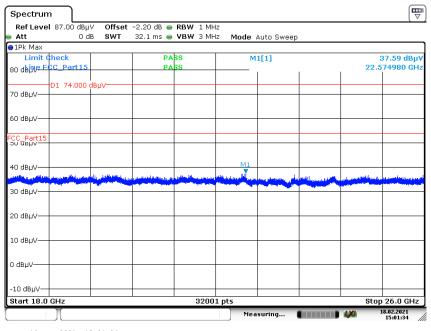

© CTC advanced GmbH Page 65 of 77

Plot 3: 1 GHz to 18 GHz, mid channel, vertical & horizontal polarization, CW

Plot 4: 18 GHz to 26 GHz, mid channel, vertical & horizontal polarization, CW



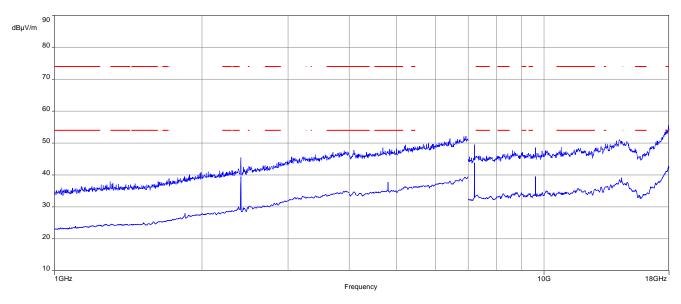
Date: 18.FEB.2021 14:46:23


© CTC advanced GmbH Page 66 of 77

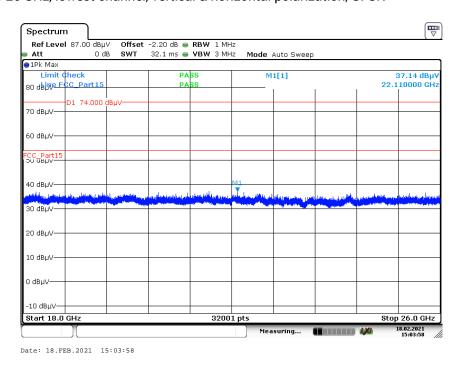
Plot 5: 1 GHz to 18 GHz, high channel, vertical & horizontal polarization, CW

Plot 6: 18 GHz to 26 GHz, high channel, vertical & horizontal polarization, CW

Date: 18.FEB.2021 15:01:34

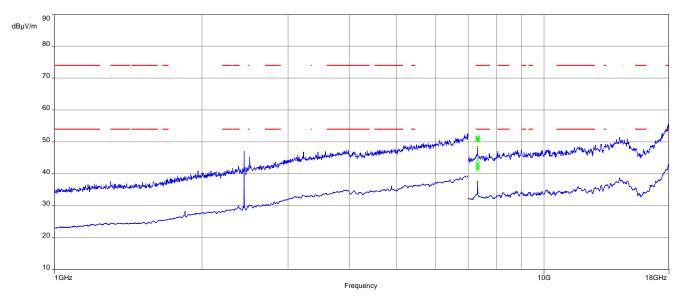

© CTC advanced GmbH Page 67 of 77

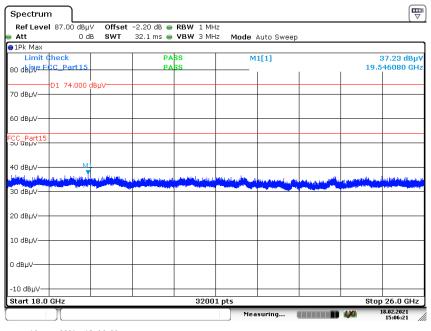
Results: external FAKRA A3


Plots: Transmitter mode, GFSK

Plot 1: 1 GHz to 18 GHz, lowest channel, vertical & horizontal polarization, GFSK

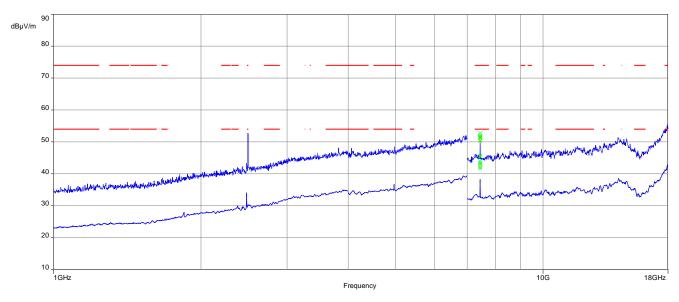
The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 2: 18 GHz to 26 GHz, lowest channel, vertical & horizontal polarization, GFSK

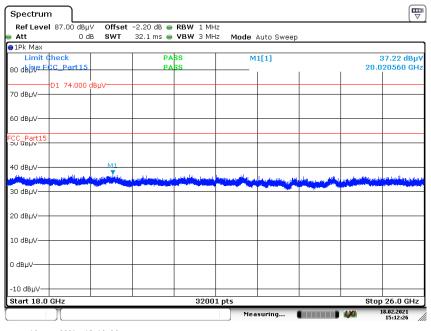

© CTC advanced GmbH Page 68 of 77

Plot 3: 1 GHz to 18 GHz, mid channel, vertical & horizontal polarization, GFSK

Plot 4: 18 GHz to 26 GHz, mid channel, vertical & horizontal polarization, GFSK

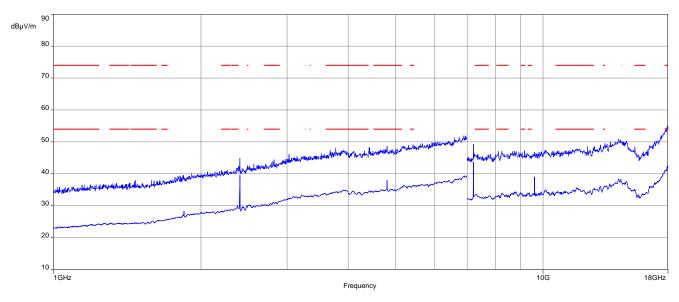


Date: 18.FEB.2021 15:06:20

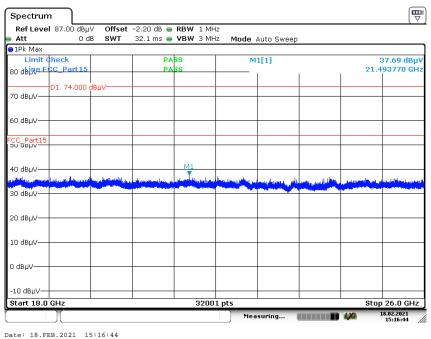

© CTC advanced GmbH Page 69 of 77

Plot 5: 1 GHz to 18 GHz, high channel, vertical & horizontal polarization, GFSK

Plot 6: 18 GHz to 26 GHz, high channel, vertical & horizontal polarization, GFSK

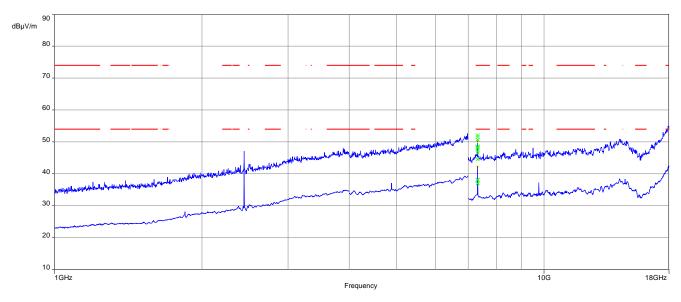

Date: 18.FEB.2021 15:12:26

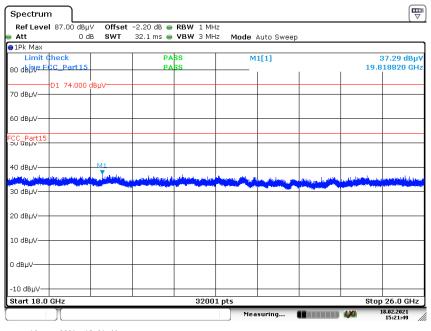
© CTC advanced GmbH Page 70 of 77


Plots: Transmitter mode, CW

Plot 1: 1 GHz to 18 GHz, lowest channel, vertical & horizontal polarization, CW

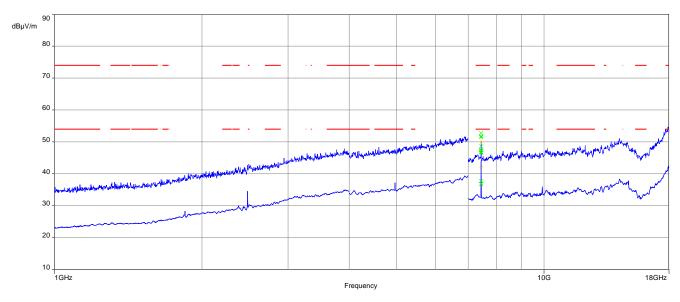
The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 2: 18 GHz to 26 GHz, lowest channel, vertical & horizontal polarization, CW

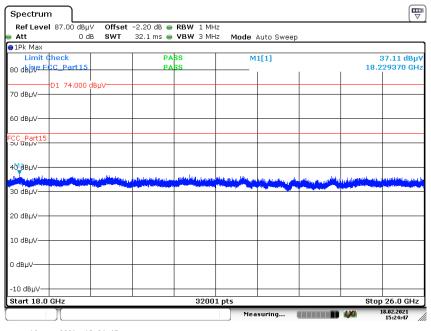

© CTC advanced GmbH Page 71 of 77

Plot 3: 1 GHz to 18 GHz, mid channel, vertical & horizontal polarization, CW

Plot 4: 18 GHz to 26 GHz, mid channel, vertical & horizontal polarization, CW



Date: 18.FEB.2021 15:21:49


© CTC advanced GmbH Page 72 of 77

Plot 5: 1 GHz to 18 GHz, high channel, vertical & horizontal polarization, CW

Plot 6: 18 GHz to 26 GHz, high channel, vertical & horizontal polarization, CW

Date: 18.FEB.2021 15:24:47

© CTC advanced GmbH Page 73 of 77

13 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 74 of 77

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 75 of 77

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2021-03-24

16 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBW Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 0.9.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 05.06.2020 The certificate together with its annex reflects the status at the time of the date of susue. The current seatus of the accept of accreditation can be found to the detention of a found to the status at the time of the date of susue. The current seatus of the accept of accreditation can be found to the detention of accreditation of all particles and the following and the status of the status	Office Berlin Spittelmarkt 10 Loropa-Allee 52 Loropa-Allee 53 Loropa-Allee 54

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

© CTC advanced GmbH Page 76 of 77

17 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 1.0 Europa-Allee 5.2 10117 Berlin Office Braunschweig Bundesallee 10.0 38116 Braunschweig Bundesallee 10.0 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelie GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelles) of 31 July 2009 (Federal Law Gassette) p. 2652) and the Regulation (EC) No 765/2008 of the European Parliament and of
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-Pt-12076-01-05 Frankfurt am Main, 08.06.2020 by order top-1-bg. (Inst) aff Egreet lead of Onsition	the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Hunion 1.28 of 9 July 2008, 5.03). DANS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (AF) and international Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC www.european-accreditation.org ILAC www.european-accreditation.org
The certificate together with its sones reflects the status at the time of the date of save. The current status of the scope of socreditation can be found in the distribute of secredited bodies of Deutsche Abbreditierungsstelle GmbH. https://www.daiks.du/en/content/accredited-bodies-daiks toe state weeks.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 77 of 77