

# Global United Technology Services Co., Ltd.

Report No.: GTS201702000033F01

# **FCC** Report

Applicant: FLYSKY RC MODEL TECHNOLOGY CO.,LTD

Address of Applicant: West building3, Huangjianyuan Ind, Park QIAOLI North Gate

Changping Town, Dongguan, China

Manufacturer/Factory: FLYSKY RC MODEL TECHNOLOGY CO.,LTD

Address of West building3, Huangjianyuan Ind, Park QIAOLI North Gate

Manufacturer/ Factory: Changping Town, Dongguan, China

**Equipment Under Test (EUT)** 

Product Name: Digital Proportional Radio Control System

Model No.: FS-X6B

FCC ID: N4ZX6B00

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2016

**Date of sample receipt:** February 21, 2017

**Date of Test:** February 22-March 09, 2017

Date of report issued: March 10, 2017

Test Result: PASS \*

\* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.



# 2 Version

| Version No. | Date           | Description |
|-------------|----------------|-------------|
| 00          | March 10, 2017 | Original    |
|             |                |             |
|             |                |             |
|             |                |             |
|             |                |             |

| Prepared By: | Yang liu         | Date: | March 10, 2017 |
|--------------|------------------|-------|----------------|
|              | Project Engineer |       |                |
| Check By:    | Andy wa          | Date: | March 10, 2017 |
|              | Reviewer         |       |                |



# 3 Contents

|   |       |                                             | Page |
|---|-------|---------------------------------------------|------|
| 1 | COVE  | R PAGE                                      | 1    |
| 2 | VERS  | ION                                         | 2    |
|   |       |                                             |      |
| 3 | CONT  | ENTS                                        | 3    |
| 4 | TEST  | SUMMARY                                     | 4    |
|   | 4.1 N | MEASUREMENT UNCERTAINTY                     | 4    |
| 5 | GENE  | RAL INFORMATION                             | 5    |
|   | 5.1   | GENERAL DESCRIPTION OF EUT                  | 5    |
|   |       | EST MODE                                    |      |
|   | 5.3   | EST FACILITY                                | 8    |
|   |       | FEST LOCATION                               |      |
|   |       | OTHER INFORMATION REQUESTED BY THE CUSTOMER |      |
|   |       | DESCRIPTION OF SUPPORT UNITS                |      |
|   | 5.7   | FEST INSTRUMENTS LIST                       | 9    |
| 6 | TEST  | RESULTS AND MEASUREMENT DATA                | 10   |
|   | -     | ANTENNA REQUIREMENT                         |      |
|   |       | CONDUCTED PEAK OUTPUT POWER                 |      |
|   |       | 20DB EMISSION BANDWIDTH                     |      |
|   |       | CARRIER FREQUENCIES SEPARATION              |      |
|   |       | HOPPING CHANNEL NUMBER                      |      |
|   |       | OWELL TIME                                  |      |
|   | -     | SEUDORANDOM FREQUENCY HOPPING SEQUENCE      |      |
|   | 6.8 E | BAND EDGE                                   |      |
|   | 6.8.1 | Conducted Emission Method                   |      |
|   | 6.8.2 | Radiated Emission Method                    |      |
|   | 6.9   | Spurious Emission                           |      |
|   | 6.9.1 | Conducted Emission Method                   | 37   |
|   | 6.9.2 | Radiated Emission Method                    | 40   |
| 7 | TEST  | SETUP PHOTO                                 | 47   |
|   | EUT ( | CONSTRUCTIONAL DETAILS                      | 40   |



# 4 Test Summary

| Test Item                                  | Section           | Result |
|--------------------------------------------|-------------------|--------|
| Antenna Requirement                        | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission           | 15.207            | N/A    |
| Conducted Peak Output Power                | 15.247 (b)(1)     | Pass   |
| 20dB Occupied Bandwidth                    | 15.247 (a)(1)     | Pass   |
| Carrier Frequencies Separation             | 15.247 (a)(1)     | Pass   |
| Hopping Channel Number                     | 15.247 (a)(1)     | Pass   |
| Dwell Time                                 | 15.247 (a)(1)     | Pass   |
| Pseudorandom Frequency Hopping<br>Sequence | 15.247(b)(4)      | Pass   |
| Radiated Emission                          | 15.205/15.209     | Pass   |
| Band Edge                                  | 15.247(d)         | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not applicable.

Remark: Test according to ANSI C63.10:2013.

# 4.1 Measurement Uncertainty

| Test Item                                  | Frequency Range    | Measurement Uncertainty | Notes |
|--------------------------------------------|--------------------|-------------------------|-------|
| Radiated Emission                          | 9kHz ~ 30MHz       | ± 4.34dB                | (1)   |
| Radiated Emission                          | 30MHz ~ 1000MHz    | ± 4.24dB                | (1)   |
| Radiated Emission                          | 1GHz ~ 26.5GHz     | ± 4.68dB                | (1)   |
| AC Power Line Conducted Emission           | 0.15MHz ~ 30MHz    | ± 3.45dB                | (1)   |
| Conducted Peak Output Power                | 2.4GHz ~ 2.4835GHz | ±1.5dB                  | (1)   |
| 20dB Emission Bandwidth                    | 2.4GHz ~ 2.4835GHz | ±5 %                    | (1)   |
| Carrier Frequencies Separation             | 2.4GHz ~ 2.4835GHz | ±5 %                    | (1)   |
| Dwell Time                                 | 2.4GHz ~ 2.4835GHz | ±5 %                    | (1)   |
| Band Edge                                  | 2.31GHz ~ 2.5GHz   | ± 3.5dB                 | (1)   |
| Hopping Channel Number                     | 2.4GHz ~ 2.4835GHz | N/A                     | (1)   |
| Pseudorandom Frequency<br>Hopping Sequence | 2.4GHz ~ 2.4835GHz | N/A                     | (1)   |



# **5** General Information

# 5.1 General Description of EUT

| -                      |                                           |
|------------------------|-------------------------------------------|
| Product Name:          | Digital Proportional Radio Control System |
| Model No.:             | FS-X6B                                    |
| Operation Frequency:   | 2408.0MHz~2475.0MHz                       |
| Channel numbers:       | 135                                       |
| Modulation technology: | GFSK                                      |
| Antenna Type:          | Integral Antenna                          |
| Antenna gain:          | 0dBi                                      |
| Power supply:          | DC 4.0V ~ 8.4V                            |

Remark: The system works in the frequency range of 2408.0MHz to 2475MHz. This band has been divided to 135 independent channels. Each radio system uses 16 different channels, the minimum channel separation is ≥1MHz. By using various switch-on times, hopping scheme and channel frequencies, the system can guarantee a jamming free radio transmission. The channel list is below.



| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| 1       | 2408.00            | 36      | 2425.50            | 71      | 2443.00            | 106     | 2460.50            |
| 2       | 2408.50            | 37      | 2426.00            | 72      | 2443.50            | 107     | 2461.00            |
| 3       | 2409.00            | 38      | 2426.50            | 73      | 2444.00            | 108     | 2461.50            |
| 4       | 2409.50            | 39      | 2427.00            | 74      | 2444.50            | 109     | 2462.00            |
| 5       | 2410.00            | 40      | 2427.50            | 75      | 2445.00            | 110     | 2462.50            |
| 6       | 2410.50            | 41      | 2428.00            | 76      | 2445.50            | 111     | 2463.00            |
| 7       | 2411.00            | 42      | 2428.50            | 77      | 2446.00            | 112     | 2463.50            |
| 8       | 2411.50            | 43      | 2429.00            | 78      | 2446.50            | 113     | 2464.00            |
| 9       | 2412.00            | 44      | 2429.50            | 79      | 2447.00            | 114     | 2464.50            |
| 10      | 2412.50            | 45      | 2430.00            | 80      | 2447.50            | 115     | 2465.00            |
| 11      | 2413.00            | 46      | 2430.50            | 81      | 2448.00            | 116     | 2465.50            |
| 12      | 2413.50            | 47      | 2431.00            | 82      | 2448.50            | 117     | 2466.00            |
| 13      | 2414.00            | 48      | 2431.50            | 83      | 2449.00            | 118     | 2466.50            |
| 14      | 2414.50            | 49      | 2432.00            | 84      | 2449.50            | 119     | 2467.00            |
| 15      | 2415.00            | 50      | 2432.50            | 85      | 2450.00            | 120     | 2467.50            |
| 16      | 2415.50            | 51      | 2433.00            | 86      | 2450.50            | 121     | 2468.00            |
| 17      | 2416.00            | 52      | 2433.50            | 87      | 2451.00            | 122     | 2468.50            |
| 18      | 2416.50            | 53      | 2434.00            | 88      | 2451.50            | 123     | 2469.00            |
| 19      | 2417.00            | 54      | 2434.50            | 89      | 2452.00            | 124     | 2469.50            |
| 20      | 2417.50            | 55      | 2435.00            | 90      | 2452.50            | 125     | 2470.00            |
| 21      | 2418.00            | 56      | 2435.50            | 91      | 2453.00            | 126     | 2470.50            |
| 22      | 2418.50            | 57      | 2436.00            | 92      | 2453.50            | 127     | 2471.00            |
| 23      | 2419.00            | 58      | 2436.50            | 93      | 2454.00            | 128     | 2471.50            |
| 24      | 2419.50            | 59      | 2437.00            | 94      | 2454.50            | 129     | 2472.00            |
| 25      | 2420.00            | 60      | 2437.50            | 95      | 2455.00            | 130     | 2472.50            |
| 26      | 2420.50            | 61      | 2438.00            | 96      | 2455.50            | 131     | 2473.00            |
| 27      | 2421.00            | 62      | 2438.50            | 97      | 2456.00            | 132     | 2473.50            |
| 28      | 2421.50            | 63      | 2439.00            | 98      | 2456.50            | 133     | 2474.00            |
| 29      | 2422.00            | 64      | 2439.50            | 99      | 2457.00            | 134     | 2474.50            |
| 30      | 2422.50            | 65      | 2440.00            | 100     | 2457.50            | 135     | 2475.00            |
| 31      | 2423.00            | 66      | 2440.50            | 101     | 2458.00            |         |                    |
| 32      | 2423.50            | 67      | 2441.00            | 102     | 2458.50            |         |                    |
| 33      | 2424.00            | 68      | 2441.50            | 103     | 2459.00            |         |                    |
| 34      | 2424.50            | 69      | 2442.00            | 104     | 2459.50            |         |                    |
| 35      | 2425.00            | 70      | 2442.50            | 105     | 2460.00            |         |                    |



In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2408.0MHz |
| The middle channel  | 2440.0MHz |
| The Highest channel | 2475.0MHz |



#### 5.2 Test mode

Transmitting mode Keep the EUT in transmitting mode.

# 5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

## • FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

# • Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

# 5.4 Test Location

All other tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

# 5.5 Other Information Requested by the Customer

None.

# 5.6 Description of Support Units

None.



# 5.7 Test Instruments list

| Rad  | Radiated Emission:               |                                |                             |                  |                        |                            |  |  |
|------|----------------------------------|--------------------------------|-----------------------------|------------------|------------------------|----------------------------|--|--|
| Item | Test Equipment                   | Manufacturer                   | Model No.                   | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber     | ZhongYu Electron               | 9.0(L)*6.0(W)* 6.0(H)       | GTS250           | July. 03 2015          | July. 02 2020              |  |  |
| 2    | Control Room                     | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)       | GTS251           | N/A                    | N/A                        |  |  |
| 3    | Spectrum Analyzer                | Agilent                        | E4440A                      | GTS533           | June 29 2016           | June 28 2017               |  |  |
| 4    | EMI Test Receiver                | Rohde & Schwarz                | ESU26                       | GTS203           | June 29 2016           | June 28 2017               |  |  |
| 5    | Loop Antenna                     | ZHINAN                         | ZN30900A                    | GTS534           | June 29 2016           | June 28 2017               |  |  |
| 6    | BiConiLog Antenna                | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163                    | GTS214           | June 29 2016           | June 28 2017               |  |  |
| 7    | Double -ridged waveguide<br>horn | SCHWARZBECK<br>MESS-ELEKTRONIK | 9120D-829                   | GTS208           | June 29 2016           | June 28 2017               |  |  |
| 8    | Horn Antenna                     | ETS-LINDGREN                   | 3160                        | GTS217           | June 29 2016           | June 28 2017               |  |  |
| 9    | EMI Test Software                | AUDIX                          | E3                          | N/A              | N/A                    | N/A                        |  |  |
| 10   | Coaxial Cable                    | GTS                            | N/A                         | GTS213           | June 29 2016           | June 28 2017               |  |  |
| 11   | Coaxial Cable                    | GTS                            | N/A                         | GTS211           | June 29 2016           | June 28 2017               |  |  |
| 12   | Coaxial cable                    | GTS                            | N/A                         | GTS210           | June 29 2016           | June 28 2017               |  |  |
| 13   | Coaxial Cable                    | GTS                            | N/A                         | GTS212           | June 29 2016           | June 28 2017               |  |  |
| 14   | Amplifier(100kHz-3GHz)           | HP                             | 8347A                       | GTS204           | June 29 2016           | June 28 2017               |  |  |
| 15   | Amplifier(2GHz-20GHz)            | HP                             | 8349B                       | GTS206           | June 29 2016           | June 28 2017               |  |  |
| 16   | Amplifier (18-26GHz)             | Rohde & Schwarz                | AFS33-18002<br>650-30-8P-44 | GTS218           | June 29 2016           | June 28 2017               |  |  |
| 17   | Band filter                      | Amindeon                       | 82346                       | GTS219           | June 29 2016           | June 28 2017               |  |  |

| Gen  | General used equipment: |              |           |               |                        |                         |  |
|------|-------------------------|--------------|-----------|---------------|------------------------|-------------------------|--|
| Item | Test Equipment          | Manufacturer | Model No. | Inventory No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date (mm-dd-yy) |  |
| 1    | Barometer               | ChangChun    | DYM3      | GTS257        | June 29 2016           | June 28 2017            |  |



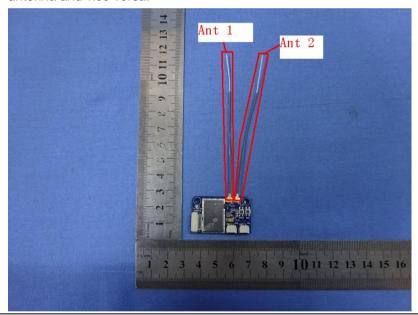
# 6 Test results and Measurement Data

# 6.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

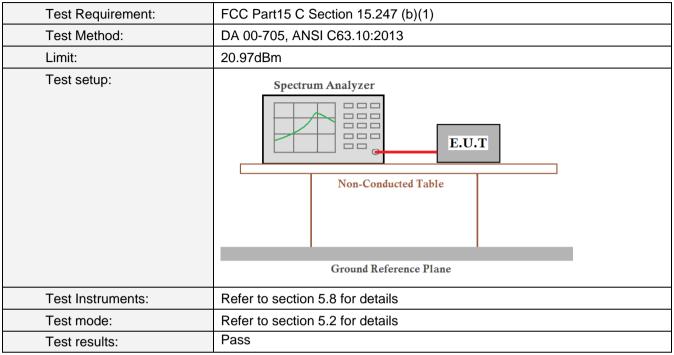
### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


## 15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### **EUT Antenna:**


The antenna is integral Antenna, the best case gain of the antenna is 0dBi

Two antennas can't transmit at the same time. While the ANT1 transmitting, the ANT2 act as a receiver antenna and vice versa.



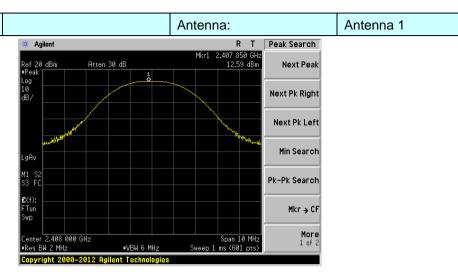


# 6.2 Conducted Peak Output Power

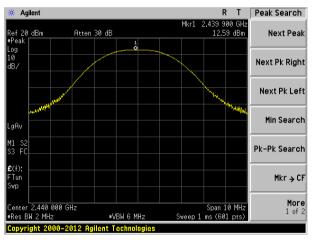


# **Measurement Data**

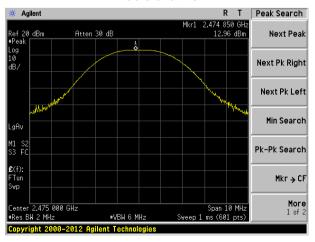
## Antenna 1:


| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |
|--------------|-------------------------|-------------|--------|
| Lowest       | 12.59                   |             |        |
| Middle       | 12.59                   | 20.97       | Pass   |
| Highest      | 12.96                   |             |        |

### Antenna 2:


| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |
|--------------|-------------------------|-------------|--------|
| Lowest       | 11.89                   |             |        |
| Middle       | 12.59                   | 12.59 20.97 |        |
| Highest      | 12.42                   |             |        |



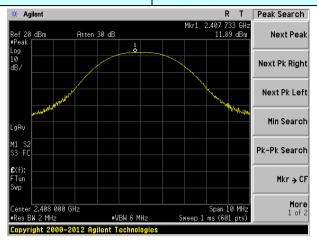

## Test plot as follows:



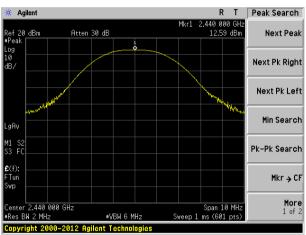
#### Lowest channel



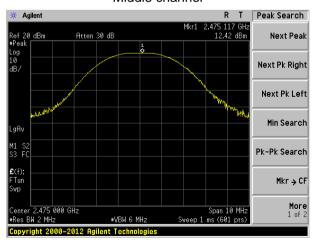
### Middle channel




Highest channel




# Antenna:


#### Antenna 2



#### Lowest channel



# Middle channel



Highest channel



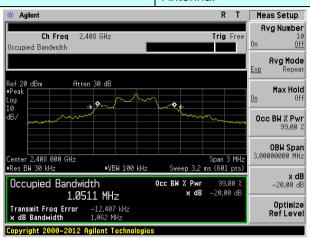
# 6.3 20dB Emission Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                    |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | DA 00-705, ANSI C63.10:2013                                           |
| Limit:            | N/A                                                                   |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.8 for details                                      |
| Test mode:        | Refer to section 5.2 for details                                      |
| Test results:     | Pass                                                                  |

#### **Measurement Data**

# Antenna 1:

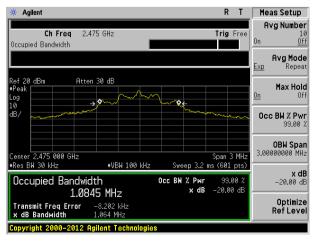
| Test channel | 20dB Emission Bandwidth (MHz) | Result |
|--------------|-------------------------------|--------|
| Lowest       | 1.062                         |        |
| Middle       | 1.064                         | Pass   |
| Highest      | 1.064                         |        |


# Antenna 2:

| Test channel | 20dB Emission Bandwidth (MHz) | Result |
|--------------|-------------------------------|--------|
| Lowest       | 1.062                         |        |
| Middle       | 1.066                         | Pass   |
| Highest      | 1.064                         |        |



## Test plot as follows:

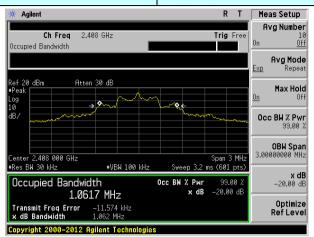

Antenna: Antenna 1



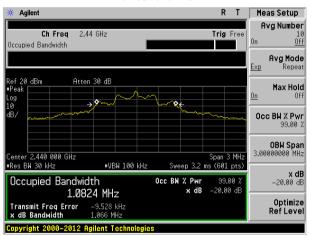
#### Lowest channel



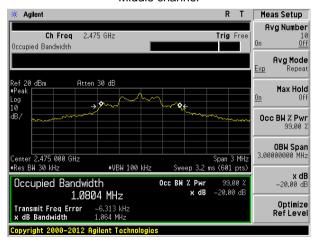
#### Middle channel




Highest channel




### Antenna:


### Antenna 2



#### Lowest channel



# Middle channel



Highest channel

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102



# 6.4 Carrier Frequencies Separation

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                    |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | DA 00-705, ANSI C63.10:2013                                           |
| Receiver setup:   | RBW=100KHz, VBW=300KHz, detector=Peak                                 |
| Limit:            | 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)          |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.8 for details                                      |
| Test mode:        | Refer to section 5.2 for details                                      |
| Test results:     | Pass                                                                  |



### **Measurement Data**

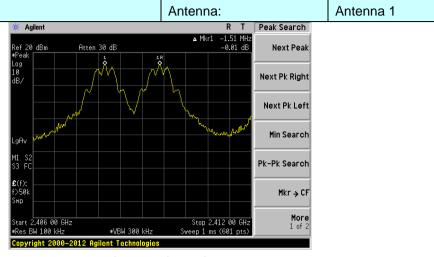
# Antenna 1:

| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |
|--------------|--------------------------------------|-------------|--------|
| Lowest       | 1510                                 | 709         | Pass   |
| Middle       | 3010                                 | 709         | Pass   |
| Highest      | 3010                                 | 709         | Pass   |

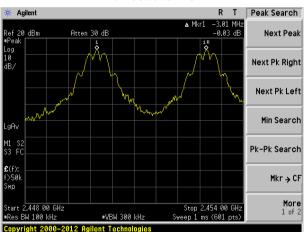
Note: According to section 6.3

| Mode | 20dB bandwidth (kHz) | Limit (kHz)                      |
|------|----------------------|----------------------------------|
|      | (worse case)         | (Carrier Frequencies Separation) |
| GFSK | 1064                 | 709                              |

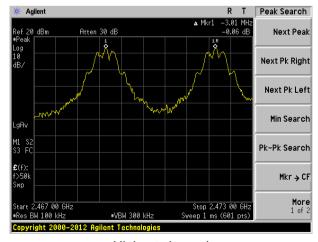
### Antenna 2:


| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |
|--------------|--------------------------------------|-------------|--------|
| Lowest       | 1508                                 | 711         | Pass   |
| Middle       | 3008                                 | 711         | Pass   |
| Highest      | 3008                                 | 711         | Pass   |

Note: According to section 6.3


| Mode | 20dB bandwidth (kHz) | Limit (kHz)                      |
|------|----------------------|----------------------------------|
|      | (worse case)         | (Carrier Frequencies Separation) |
| GFSK | 1066                 | 711                              |

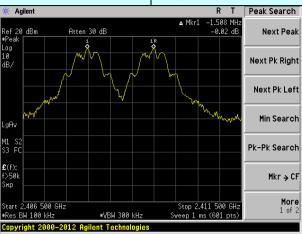



Test plot as follows:

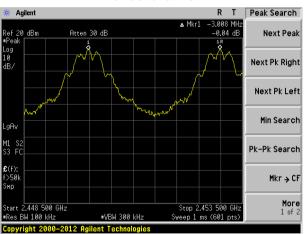


#### Lowest channel

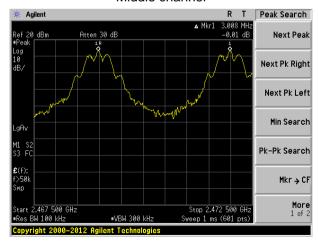



### Middle channel




Highest channel




# Antenna: Antenna 2



#### Lowest channel



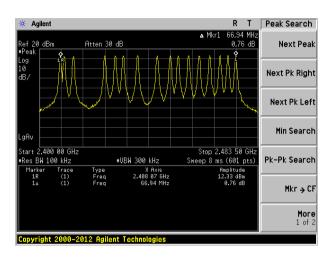
### Middle channel



Highest channel

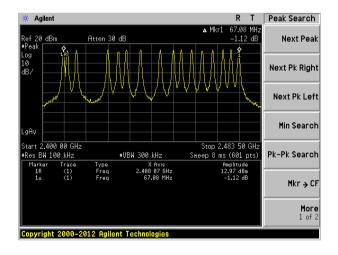


# 6.5 Hopping Channel Number


| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)(iii)                                  |
|-------------------|--------------------------------------------------------------------------|
| Test Method:      | DA 00-705, ANSI C63.10:2013                                              |
| Receiver setup:   | RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak |
| Limit:            | 15 channels                                                              |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane    |
| Test Instruments: | Refer to section 5.8 for details                                         |
| Test mode:        | Refer to section 5.2 for details                                         |
| Test results:     | Pass                                                                     |



#### **Measurement Data:**


### Antenna 1:

| Hopping channel numbers | Limit | Result |
|-------------------------|-------|--------|
| 16                      | 15    | Pass   |



### Antenna 2:

| Hopping channel numbers | Limit | Result |
|-------------------------|-------|--------|
| 16                      | 15    | Pass   |





# 6.6 Dwell Time

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)(iii)                               |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | DA 00-705, ANSI C63.10:2013                                           |
| Receiver setup:   | RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak                           |
| Limit:            | 0.4 Second                                                            |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.8 for details                                      |
| Test mode:        | Refer to section 5.2 for details                                      |
| Test results:     | Pass                                                                  |



#### **Measurement Data**

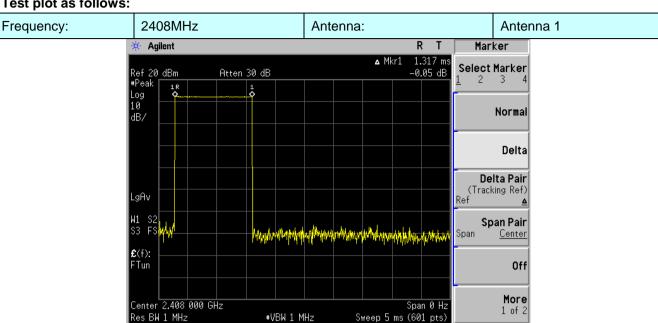
#### Antenna 1:

| Frequency | Ton (ms) | Dwell time(ms) | Limit(ms) | Result |
|-----------|----------|----------------|-----------|--------|
| 2.408GHz  | 1.317    | 143.29         | 400       | Pass   |
| 2.440GHz  | 1.308    | 142.31         | 400       | Pass   |
| 2.475GHz  | 1.308    | 142.31         | 400       | Pass   |

#### The formula as below:

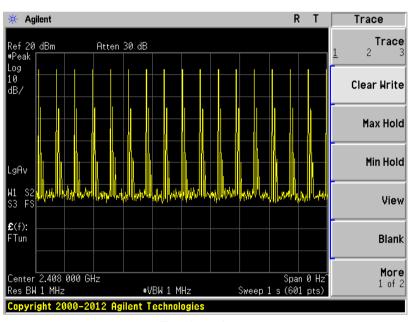
2408MHz: Dwell time = Ton \* Ton times in 1s \* 0.4s \* channel numbers=1.317ms\*17\*0.4\*16=143.29ms 2440MHz: Dwell time = Ton \* Ton times in 1s \* 0.4s \* channel numbers=1.308ms\*17\*0.4\*16=142.31ms 2475MHz: Dwell time = Ton \* Ton times in 1s \* 0.4s \* channel numbers=1.308ms\*17\*0.4\*16=142.31ms

#### Antenna 2:


| Frequency | Ton (ms) | Dwell time(ms) | Limit(ms) | Result |
|-----------|----------|----------------|-----------|--------|
| 2.408GHz  | 1.308    | 142.31         | 400       | Pass   |
| 2.440GHz  | 1.308    | 142.31         | 400       | Pass   |
| 2.475GHz  | 1.300    | 141.44         | 400       | Pass   |

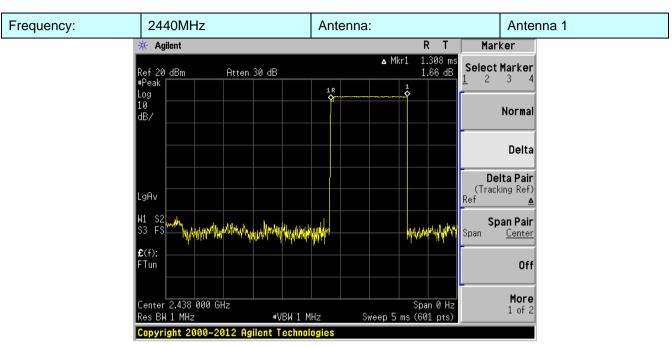
#### The formula as below:

2408MHz: Dwell time = Ton \* Ton times in 1s \* 0.4s \* channel numbers=1.310ms\*17\*0.4\*16=142.31ms 2440MHz: Dwell time = Ton \* Ton times in 1s \* 0.4s \* channel numbers=1.310ms\*17\*0.4\*16=142.31ms 2475MHz: Dwell time = Ton \* Ton times in 1s \* 0.4s \* channel numbers=1.300ms\*17\*0.4\*16=141.44ms

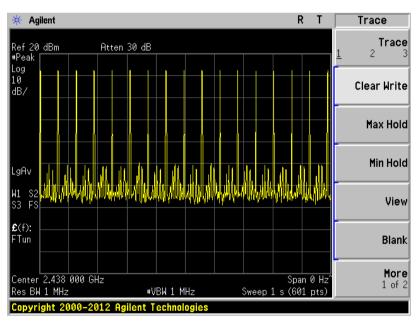



## Test plot as follows:



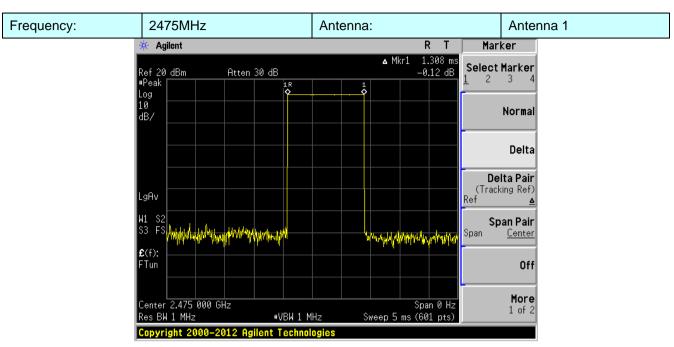

Ton

#VBW 1 MHz

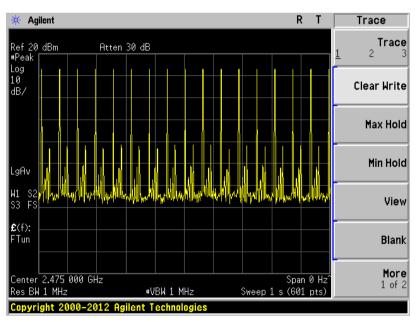



Ton times in 1s



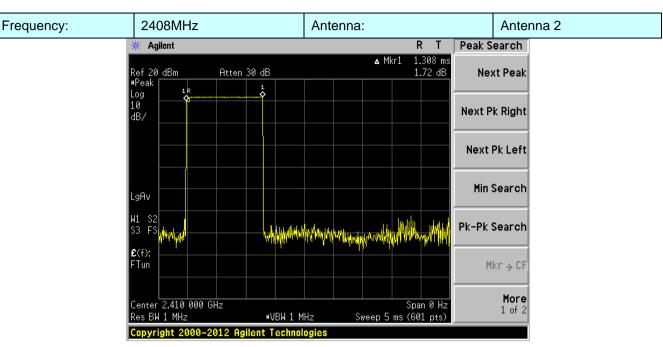



Ton

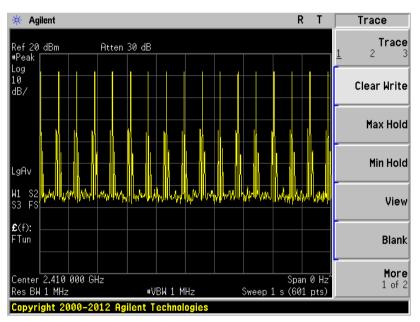



Ton times in 1s






Ton




Ton times in 1s

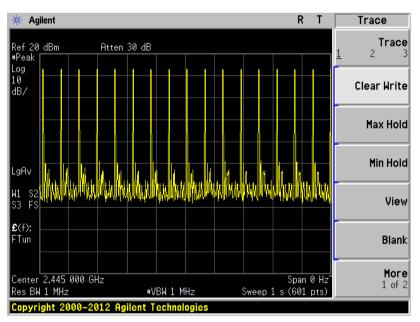




Ton

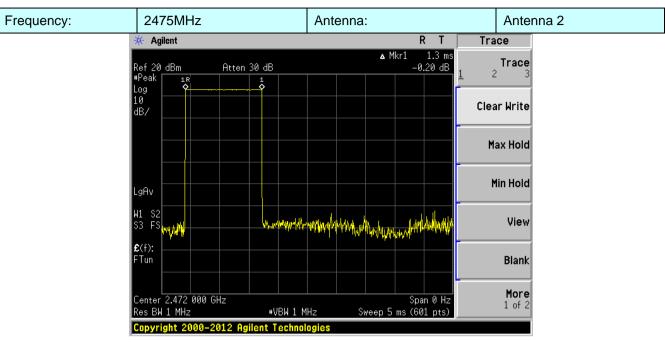


Ton times in 1s

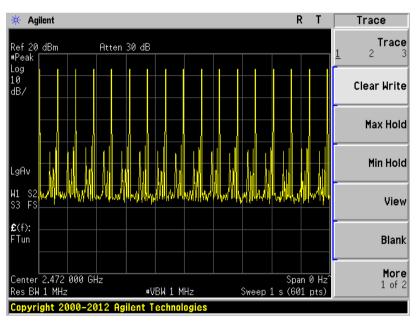



Frequency:

Report No.: GTS201702000033F01


2440MHz Antenna: Antenna 2 Agilent Peak Search 1.308 ms -0.27 dB Ref 20 dBm #Peak 1R Atten 30 dB Next Peak Log 10 dB/ Next Pk Right Next Pk Left Min Search LgAv Pk-Pk Search £(f): FTun Mkr → CF Center 2.445 000 GHz Res BW 1 MHz More Span 0 Hz Sweep 5 ms (601 pts) 1 of 2 #VBW 1 MHz






Ton times in 1s





Ton

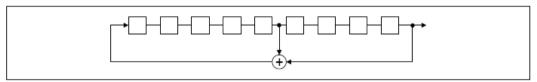


Ton times in 1s



# 6.7 Pseudorandom Frequency Hopping Sequence

## Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

## **EUT Pseudorandom Frequency Hopping Sequence**

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2<sup>9</sup> -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)



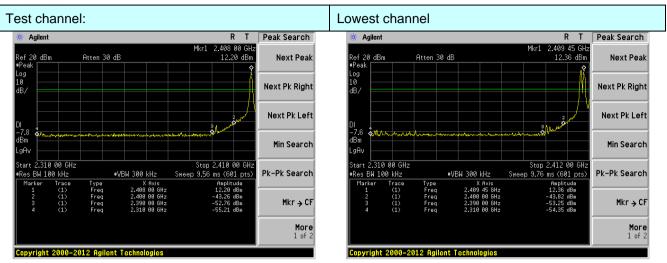
Linear Feedback Shift Register for Generation of the PRBS sequence

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



# 6.8 Band Edge


# 6.8.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | DA 00-705, ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Receiver setup:   | RBW=100kHz, VBW=300kHz, Detector=Peak                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

# Test plot as follows:

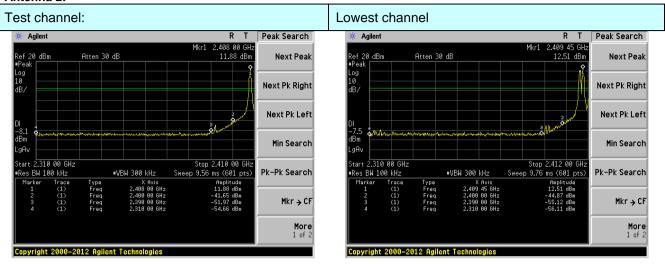


#### Antenna 1:



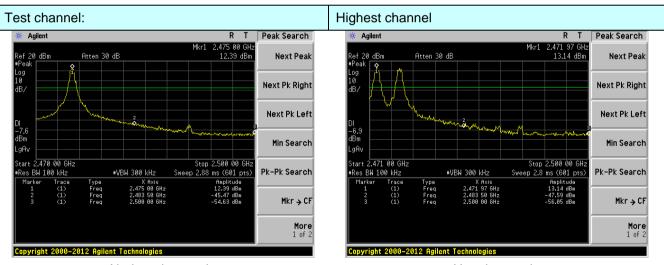
No-hopping mode

Hopping mode


#### Test channel: Highest channel Peak Search Peak Search Next Peak Next Peak Next Pk Right Next Pk Right Next Pk Left Next Pk Left Min Search Min Search Stop 2.500 00 GH: Sweep 2.88 ms (601 pts) Stop 2.500 00 GHz Sweep 2.88 ms (601 pts) Start 2.470 00 GHz Res BW 100 kHz .470 00 GHz Pk-Pk Search #VBW 300 kHz Pk-Pk Search Mkr → CF Mkr → CF More 1 of 2 More 1 of 2

No-hopping mode

Hopping mode




#### Antenna 2:



No-hopping mode

Hopping mode



No-hopping mode

Hopping mode



# 6.8.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ection 15.209   | and 15.205   |        |               |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--------|---------------|--|--|
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |        |               |  |  |
| Test Frequency Range: | All restriction band have been tested, and 2.3GHz to 2.5GHz band is the worse case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |        |               |  |  |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | istance: 3m     |              |        |               |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Detector        | RBW          | VBW    | Remark        |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peak            | 1MHz         | 3MHz   | Peak Value    |  |  |
|                       | Above IGHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peak            | 1MHz         | 10Hz   | Average Value |  |  |
| Limit:                | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ncy             | Limit (dBuV/ | m @3m) | Remark        |  |  |
|                       | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH2             | 54.0         | 0      | Average Value |  |  |
|                       | Above I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHZ             | 74.0         | 0      | Peak Value    |  |  |
| Test setup:           | Tum Tables EUTs < lm 4m >s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |              |        |               |  |  |
| Test Procedure:       | <ol> <li>The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</li> </ol> |                 |              |        |               |  |  |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.8 for details |              |        |               |  |  |
| Test mode:            | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.2 for details |              |        |               |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |        |               |  |  |

#### Remark:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. Two antenna were tested and found the antenna1 is worse. So only the data of antenna1 is reported.



### Antenna 1:

| Test channel:      |               |                   |               | Lowe             | est   |            |               |              |
|--------------------|---------------|-------------------|---------------|------------------|-------|------------|---------------|--------------|
| Peak value:        |               |                   |               |                  |       |            |               |              |
| Frequency<br>(MHz) | Read<br>Level | Antenna<br>Factor | Cable<br>Loss | Preamp<br>Factor | Level | Limit Line | Over<br>Limit | Polarization |

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2390.00            | 58.11                   | 27.59                       | 5.38                  | 30.18                    | 60.90             | 74.00                  | -13.10                | Vertical     |
| 2400.00            | 62.28                   | 27.58                       | 5.39                  | 30.18                    | 65.07             | 74.00                  | -8.93                 | Vertical     |
| 2390.00            | 51.83                   | 27.59                       | 5.38                  | 30.18                    | 54.62             | 74.00                  | -19.38                | Horizontal   |
| 2400.00            | 58.03                   | 27.58                       | 5.39                  | 30.18                    | 60.82             | 74.00                  | -13.18                | Horizontal   |

# Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2390.00            | 42.51                   | 27.59                       | 5.38                  | 30.18                    | 45.30             | 54.00                  | -8.70                 | Vertical     |
| 2400.00            | 43.96                   | 27.58                       | 5.39                  | 30.18                    | 46.75             | 54.00                  | -7.25                 | Vertical     |
| 2390.00            | 38.87                   | 27.59                       | 5.38                  | 30.18                    | 41.66             | 54.00                  | -12.34                | Horizontal   |
| 2400.00            | 42.85                   | 27.58                       | 5.39                  | 30.18                    | 45.64             | 54.00                  | -8.36                 | Horizontal   |

| Test channel: Highest |  |
|-----------------------|--|
|-----------------------|--|

### Peak value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2483.50            | 58.07                   | 27.53                       | 5.47                  | 29.93                    | 61.14             | 74.00                  | -12.86                | Vertical     |
| 2500.00            | 48.72                   | 27.55                       | 5.49                  | 29.93                    | 51.83             | 74.00                  | -22.17                | Vertical     |
| 2483.50            | 54.90                   | 27.53                       | 5.47                  | 29.93                    | 57.97             | 74.00                  | -16.03                | Horizontal   |
| 2500.00            | 48.00                   | 27.55                       | 5.49                  | 29.93                    | 51.11             | 74.00                  | -22.89                | Horizontal   |

# Average value:

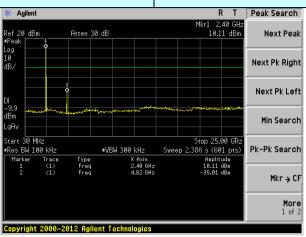
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2483.50            | 41.37                   | 27.53                       | 5.47                  | 29.93                    | 44.44             | 54.00                  | -9.56                 | Vertical     |
| 2500.00            | 36.65                   | 27.55                       | 5.49                  | 29.93                    | 39.76             | 54.00                  | -14.24                | Vertical     |
| 2483.50            | 40.68                   | 27.53                       | 5.47                  | 29.93                    | 43.75             | 54.00                  | -10.25                | Horizontal   |
| 2500.00            | 35.32                   | 27.55                       | 5.49                  | 29.93                    | 38.43             | 54.00                  | -15.57                | Horizontal   |

## Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

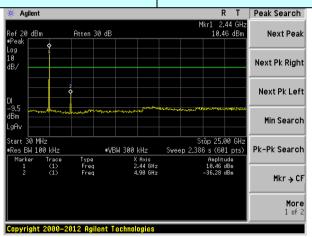


# 6.9 Spurious Emission


# 6.9.1 Conducted Emission Method

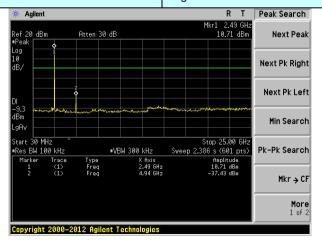
| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |




#### Antenna 1:

Test channel: Lowest channel



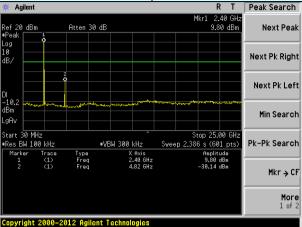

30MHz~25GHz

Test channel: Middle channel



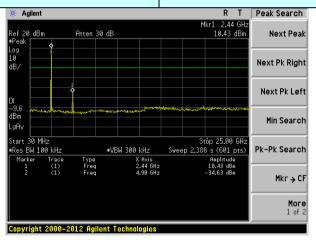
30MHz~25GHz

Test channel: Highest channel



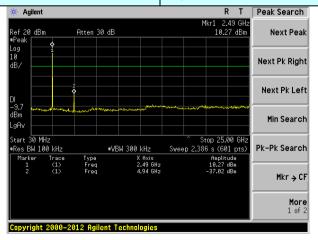

30MHz~25GHz




### Antenna 2:

Test channel: Lowest channel




30MHz~25GHz

Test channel: Middle channel



30MHz~25GHz

Test channel: Highest channel



30MHz~25GHz



# 6.9.2 Radiated Emission Method

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~~ 41                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                          |                      |                                                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------|----------------------|------------------------------------------------------|--|
| FCC Part15 C Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on 18                                                                                                                                                                                      | 0.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                          |                      |                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |                      |                                                      |  |
| 9kHz to 25GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |                      |                                                      |  |
| Measurement Distar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nce: (                                                                                                                                                                                     | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                          |                      |                                                      |  |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                            | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RB\           | W                                        | VBW                  | Value                                                |  |
| 9KHz-150KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qι                                                                                                                                                                                         | ıasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2001          | Hz                                       | 600Hz                | Quasi-peak                                           |  |
| 150KHz-30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Qι                                                                                                                                                                                         | ıasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9KF           | Ηz                                       | 30KHz                | Quasi-peak                                           |  |
| 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qι                                                                                                                                                                                         | ıasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100K          | Ήz                                       | 300KHz               | z Quasi-peak                                         |  |
| Abovo 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MF           | Ηz                                       | 3MHz                 | Peak                                                 |  |
| Above 1G112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MF           | Ηz                                       | 10Hz                 | Average                                              |  |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                            | Limit (u\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | //m)          | V                                        | 'alue                | Measurement<br>Distance                              |  |
| 0.009MHz-0.490M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hz                                                                                                                                                                                         | 2400/F(K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Hz)          |                                          | QP                   | 300m                                                 |  |
| 0.490MHz-1.705M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.490MHz-1.705MHz                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          | QP                   | 300m                                                 |  |
| 1.705MHz-30MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QP            |                                          | 30m                  |                                                      |  |
| 30MHz-88MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QP            |                                          |                      |                                                      |  |
| 88MHz-216MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | QP                                       |                      |                                                      |  |
| 216MHz-960MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QP            |                                          | 2.00                 |                                                      |  |
| 960MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | QP                                       |                      | 3m                                                   |  |
| Abovo 1CHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | Average                                  |                      |                                                      |  |
| Above 1G112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Above 1GHz                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5000          |                                          | Peak                 |                                                      |  |
| Below 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |                      |                                                      |  |
| Test Antenna - < 1m 4m > - < 80cm > - Turn Table - Preamplifier - Preamplifie |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |                      |                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz  Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz Above 1GHz  Below 1GHz | 9kHz to 25GHz  Measurement Distance: 3  Frequency Distance: 3  9kHz-150KHz Quantification of the second of the sec | SkHz to 25GHz | SkHz to 25GHz   Measurement Distance: 3m | Secriver   Preamplif | SkHz to 25GHz   Measurement Distance: 3m   Frequency |  |

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



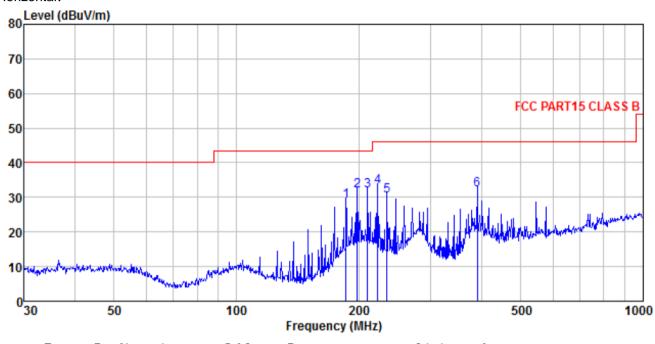
Report No.: GTS201702000033F01 Test Antenna-EUT-Turn Tables <150cm; Receiver Preamplifier-Test Procedure: The EUT was placed on the top of a rotating table (0.8 meters for below 1GHz and 1.5meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.8 for details Test mode: Refer to section 5.2 for details

#### Remark:

Test results:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. The measured filed strength at frequencies below 30MHz are lower than the limit over 30dB. So the data isn't reported.
- 3. Two antenna were tested and found the antenna1 is worse. So only the data of antenna1 is reported.

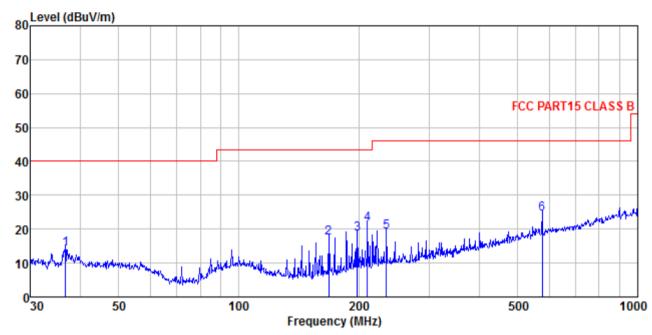
Pass




## Measurement data:

### Antenna 1:

#### ■ 30MHz ~ 1GHz


Horizontal:



| Freq                                                                 | Reading<br>level<br>dBuV                                 | Antenna<br>factor<br>dB/m                         | Cable<br>loss<br>dB                          | Preamp<br>factor<br>dB                                   | level<br>dBuV/m                                    | Limit<br>level<br>dBuV/m                  | Over<br>limit<br>dB                                      | Remark                           |  |
|----------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------|--|
| 185. 788<br>197. 893<br>210. 048<br>222. 170<br>234. 168<br>390. 723 | 47. 22<br>49. 13<br>48. 68<br>49. 41<br>46. 52<br>43. 79 | 9.10<br>10.20<br>10.59<br>10.98<br>11.36<br>15.26 | 1.77<br>1.83<br>1.90<br>1.97<br>2.04<br>2.81 | 29. 25<br>29. 21<br>29. 30<br>29. 41<br>29. 52<br>29. 54 | 28.84<br>31.95<br>31.87<br>32.95<br>30.40<br>32.32 | 43.50<br>43.50<br>43.50<br>46.00<br>46.00 | -14.66<br>-11.55<br>-11.63<br>-13.05<br>-15.60<br>-13.68 | QP<br>QP<br>QP<br>QP<br>QP<br>QP |  |



## Vertical:



|     | Freq<br>MHz | Reading<br>level<br>dBuV | Antenna<br>factor<br>dB/m | Cable<br>loss<br>dB | Preamp<br>factor<br>dB | level<br>dBuV/m | Limit<br>level<br>dBuV/m | Over<br>limit<br>dB | Remark |
|-----|-------------|--------------------------|---------------------------|---------------------|------------------------|-----------------|--------------------------|---------------------|--------|
|     | 36.766      | 32.44                    | 11.20                     | 0.63                | 30.06                  | 14.21           | 40.00                    | -25.79              | QP     |
|     | 167.824     | 36.84                    | 8.33                      | 1.67                | 29.33                  | 17.51           | 43.50                    | -25.99              | QP     |
|     | 197.893     | 35.82                    | 10.20                     | 1.83                | 29.21                  | 18.64           | 43.50                    | -24.86              | QP     |
| - 2 | 210.048     | 38.31                    | 10.59                     | 1.90                | 29.30                  | 21.50           | 43.50                    | -22.00              | QP     |
| 2   | 234.168     | 35.31                    | 11.36                     | 2.04                | 29.52                  | 19.19           | 46.00                    | -26.81              | QP     |
|     | 576.644     | 31.21                    | 18.88                     | 3.63                | 29.30                  | 24.42           | 46.00                    | -21.58              | QP     |



#### ■ Above 1GHz

| Test channel: | Lowest |
|---------------|--------|
|---------------|--------|

## Peak value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 4816.00            | 48.81                   | 31.79                       | 8.61                  | 32.09                    | 57.12             | 74.00                  | -16.88                | Vertical     |
| 7224.00            | 25.08                   | 36.19                       | 11.66                 | 31.99                    | 40.94             | 74.00                  | -33.06                | Vertical     |
| 9632.00            | 24.65                   | 38.01                       | 14.16                 | 31.58                    | 45.24             | 74.00                  | -28.76                | Vertical     |
| 12040.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14440.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4816.00            | 48.55                   | 31.79                       | 8.61                  | 32.09                    | 56.86             | 74.00                  | -17.14                | Horizontal   |
| 7224.00            | 26.75                   | 36.19                       | 11.66                 | 31.99                    | 42.61             | 74.00                  | -31.39                | Horizontal   |
| 9632.00            | 24.27                   | 38.01                       | 14.16                 | 31.58                    | 44.86             | 74.00                  | -29.14                | Horizontal   |
| 12040.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14440.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |

# Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 4816.00            | 38.12                   | 31.79                       | 8.61                  | 32.09                    | 46.43             | 54.00                  | -7.57                 | Vertical     |
| 7224.00            | 14.67                   | 36.19                       | 11.66                 | 31.99                    | 30.53             | 54.00                  | -23.47                | Vertical     |
| 9632.00            | 16.09                   | 38.01                       | 14.16                 | 31.58                    | 36.68             | 54.00                  | -17.32                | Vertical     |
| 12040.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14440.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4816.00            | 38.12                   | 31.79                       | 8.61                  | 32.09                    | 46.43             | 54.00                  | -7.57                 | Horizontal   |
| 7224.00            | 16.82                   | 36.19                       | 11.66                 | 31.99                    | 32.68             | 54.00                  | -21.32                | Horizontal   |
| 9632.00            | 15.08                   | 38.01                       | 14.16                 | 31.58                    | 35.67             | 54.00                  | -18.33                | Horizontal   |
| 12040.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14440.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

## Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test channel: | Middle |
|---------------|--------|
|---------------|--------|

### Peak value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 4880.00            | 42.82                   | 31.85                       | 8.66                  | 32.12                    | 51.21             | 74.00                  | -22.79                | Vertical     |
| 7320.00            | 24.30                   | 36.37                       | 11.72                 | 31.89                    | 40.50             | 74.00                  | -33.50                | Vertical     |
| 9760.00            | 23.51                   | 38.35                       | 14.25                 | 31.59                    | 44.52             | 74.00                  | -29.48                | Vertical     |
| 12200.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14640.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4880.00            | 45.22                   | 31.85                       | 8.66                  | 32.12                    | 53.61             | 74.00                  | -20.39                | Horizontal   |
| 7425.00            | 26.24                   | 36.56                       | 11.79                 | 31.80                    | 42.79             | 74.00                  | -31.21                | Horizontal   |
| 9900.00            | 25.08                   | 38.81                       | 14.35                 | 31.85                    | 46.39             | 74.00                  | -27.61                | Horizontal   |
| 12200.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14640.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |

# Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 4880.00            | 33.11                   | 31.85                       | 8.66                  | 32.12                    | 41.50             | 54.00                  | -12.50                | Vertical     |
| 7320.00            | 15.14                   | 36.37                       | 11.72                 | 31.89                    | 31.34             | 54.00                  | -22.66                | Vertical     |
| 9760.00            | 14.48                   | 38.35                       | 14.25                 | 31.59                    | 35.49             | 54.00                  | -18.51                | Vertical     |
| 12200.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14640.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4880.00            | 37.96                   | 31.85                       | 8.66                  | 32.12                    | 46.35             | 54.00                  | -7.65                 | Horizontal   |
| 7320.00            | 16.18                   | 36.37                       | 11.72                 | 31.89                    | 32.38             | 54.00                  | -21.62                | Horizontal   |
| 9760.00            | 15.83                   | 38.35                       | 14.25                 | 31.59                    | 36.84             | 54.00                  | -17.16                | Horizontal   |
| 12200.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14640.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

## Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test channel: | Highest        |
|---------------|----------------|
|               | · ··g· · · · · |

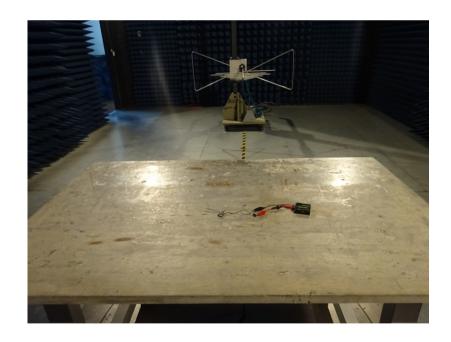
## Peak value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 4950.00            | 45.42                   | 31.91                       | 8.71                  | 32.16                    | 53.88             | 74.00                  | -20.12                | Vertical     |
| 7425.00            | 24.72                   | 36.56                       | 11.79                 | 31.80                    | 41.27             | 74.00                  | -32.73                | Vertical     |
| 9900.00            | 24.21                   | 38.81                       | 14.35                 | 31.85                    | 45.52             | 74.00                  | -28.48                | Vertical     |
| 12375.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14850.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4950.00            | 45.46                   | 31.91                       | 8.71                  | 32.16                    | 53.92             | 74.00                  | -20.08                | Horizontal   |
| 7425.00            | 27.57                   | 36.56                       | 11.79                 | 31.80                    | 44.12             | 74.00                  | -29.88                | Horizontal   |
| 9900.00            | 23.86                   | 38.81                       | 14.35                 | 31.85                    | 45.17             | 74.00                  | -28.83                | Horizontal   |
| 12375.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14850.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |

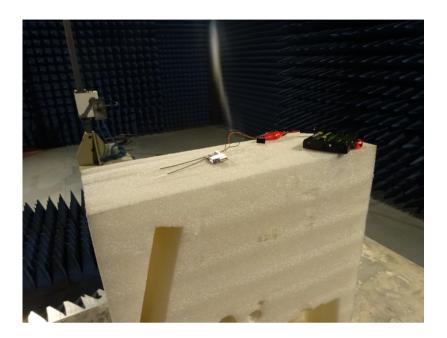
# Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 4950.00            | 33.82                   | 31.91                       | 8.71                  | 32.16                    | 42.28             | 54.00                  | -11.72                | Vertical     |
| 7425.00            | 14.57                   | 36.56                       | 11.79                 | 31.80                    | 31.12             | 54.00                  | -22.88                | Vertical     |
| 9900.00            | 14.12                   | 38.81                       | 14.35                 | 31.85                    | 35.43             | 54.00                  | -18.57                | Vertical     |
| 12375.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14850.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4950.00            | 36.57                   | 31.91                       | 8.71                  | 32.16                    | 45.03             | 54.00                  | -8.97                 | Horizontal   |
| 7425.00            | 16.49                   | 36.56                       | 11.79                 | 31.80                    | 33.04             | 54.00                  | -20.96                | Horizontal   |
| 9900.00            | 14.96                   | 38.81                       | 14.35                 | 31.85                    | 36.27             | 54.00                  | -17.73                | Horizontal   |
| 12375.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14850.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

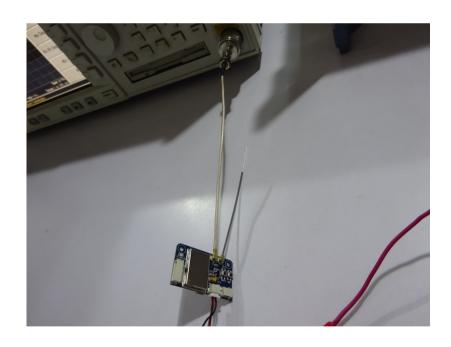
## Remark:


- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.



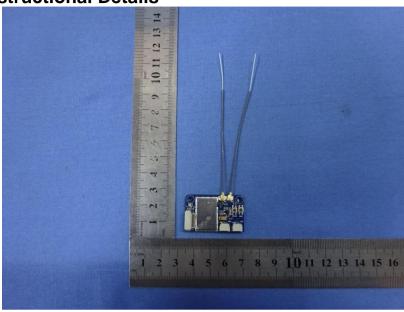

# 7 Test Setup Photo

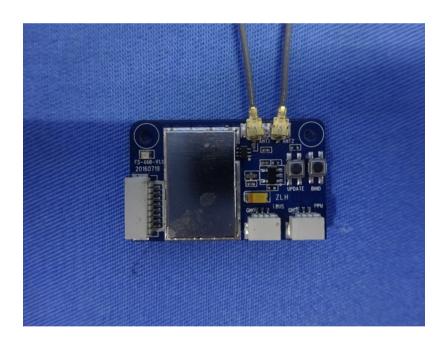
Radiated Emission



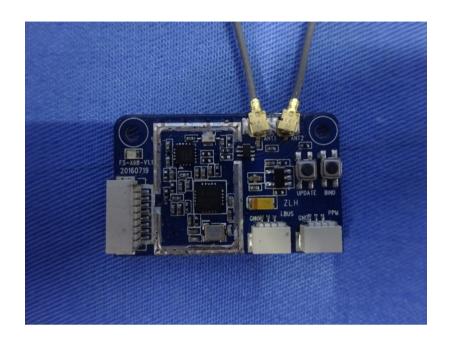


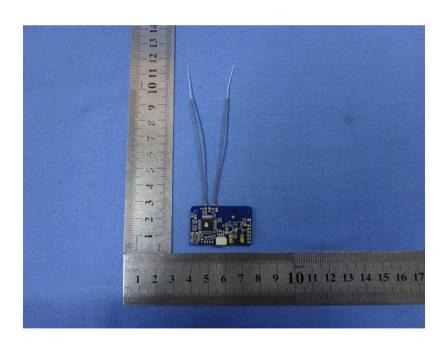


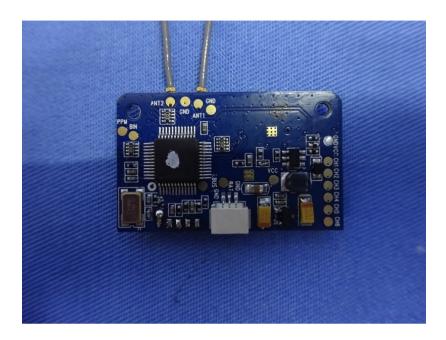


RF tests







# 8 EUT Constructional Details
















---End---