

TE	EST REPORT For SAR			
Report No	CHTEW23040006	Report vertification:		
Project No:	SHT2303112601EW			
FCC ID:	N4ZST800	Reporting CHTEW25040006		
Applicant's name:	FLYSKY RC MODEL TECHNOL	.OGY CO., LTD		
Address	West building 3, HuangjinyuanIng ChangpingTown, Dongguan ,Chi			
Test item description:	Digital proportional radio contr	ol system		
Trade Mark	FLYSKY			
Model/Type reference	FS-ST8B			
Listed Model(s)	ST8B			
Standard :	FCC 47 CFR Part2.1093 IEEE Std C95.1: 1999 Edition IEEE Std 1528: 2013			
Date of receipt of test sample	Mar. 24, 2023			
Date of testing:	Mar. 25, 2023- Apr. 03, 2023			
Date of issue:	Apr. 04, 2023			
Result	PASS			
Compiled by (position+printedname+signature):	File administrators:Silvia Li	Silvia Li		
Supervised by (position+printedname+signature):	Test Engineer: Weiyang Xiang	Weiyang Xiang		
Approved by		Howe Hu		
(position+printedname+signature):	Manager: Hans Hu			
Testing Laboratory Name::	Shenzhen Huatongwei International Inspection Co., Ltd			
Address:	1/F, Bldg 3, Hongfa Hi-tech Indus Gongming, Shenzhen, China	strial Park, Genyu Road, Tianliao,		
Shenzhen Huatongwei International Ir	• • •			
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.				

Contents

<u>1.</u>	Statement of Compliance	3
<u>2.</u>	Test Standards and Report version	4
2.1.	Test Standards	4
2.2.	Report version	4
<u>3.</u>	Summary	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Testing Laboratory Information	6
3.4.	Environmental conditions	6
<u>4.</u>	Equipments Used during the Test	7
<u>5.</u>	Measurement Uncertainty	8
<u>6.</u>	SAR Measurement System Configuration	9
6.1.	SAR Measurement Set-up	9
6.2.	DASY5 E-field Probe System	10
6.3.	Phantoms	11
6.4.	Device Holder	11
<u>7.</u>	SAR Test Procedure	12
7.1.	Scanning Procedure	12
7.2.	Data Storage and Evaluation	14
<u>8.</u>	Dielectric Property Measurements & System Check	16
8.1.	Tissue Dielectric Parameters	16
8.2.	System Check	17
<u>9.</u>	SAR Exposure Limits	20
<u>10.</u>	Conducted Power Measurement Results and Tune-up	20
<u>11.</u>	Antenna Location	21
<u>12.</u>	Measured and Reported SAR Results	22
<u>13.</u>	Test Setup Photos	23
<u>14.</u>	External and Internal Photos of the EUT	24

1. Statement of Compliance

Maximum Reported SAR (W/kg @10g)			
Type Test setting 2.4G			
Limbs	Dist.= 0mm	1.763	

Note:

1. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (4 W/kg@10g) specified in FCC 47 CFR part 2 (2.1093) and IEEE Std C95.1,

2. This device had been tested in accordance with the measurement methods and procedures specified in IEEE 1528 and FCC KDB publications.

2. Test Standards and Report version

2.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093: Radiofrequency radiation exposure evaluation: portable devices.

<u>IEEE Std C95.1, 1999 Edition:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC published RF exposure KDB procedures:

865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

<u>865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

<u>447498 D04 Interim General RF Exposure Guidance v01:</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets

<u>TCB workshop</u> April, 2019; Page 19, Tissue Simulating Liquids (TSL)

2.2. Report version

Revision No.	Date of issue	Description
N/A	2023-04-04	Original

3. <u>Summary</u>

3.1. Client Information

Applicant:	FLYSKY RC MODEL TECHNOLOGY CO., LTD
Address:	West building 3, HuangjinyuanInd Park, QIAOLI North Gate, ChangpingTown, Dongguan ,China
Manufacturer:	ShenZhen FLYSKY Technology Co.,Ltd
Address:	16F, Huafeng Building, No. 6006 Shennan Road, Futian District, Shenzhen, Guangdong, China

3.2. Product Description

Main unit	
Name of EUT:	Digital proportional radio control system
Trade Mark:	FLYSKY
Model No.:	FS-ST8B
Listed Model(s):	ST8B
Power supply: #1	1.5Vdc*4
Hardware version:	FS-ST8-V1.5
Software version:	FS-ST8 V1.0.27
Device Dimension:	Length x Width x Thickness (mm): 205 x 175 x60
Device Category:	Portable
Product stage:	Production unit
RF Exposure Environment:	General Population/Uncontrolled
HTW test sample No.:	YPHT23031126001

Note:

#1: The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power.

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Tel: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

3.3. Testing Laboratory Information

3.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Ambient temperature	18 °C to 25 °C
Ambient humidity	30%RH to 70%RH
Air Pressure	950-1050mbar

4. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
•	Data Acquisition Electronics DAEx	SPEAG	HTWE0313-05	DAE4	1549	2022/04/12	2023/04/11
٠	E-field Probe	SPEAG	HTWE0313-06	EX3DV4	7494	2022/05/16	2023/05/15
•	Universal Radio Communication Tester	R&S	HTWE0323	CMW500	137681	2022/05/12	2023/05/11
Tissu	e-equivalent liquids V	alidation					
٠	Dielectric Assessment Kit	SPEAG	HTWE0315-02	DAK-3.5	1267	N/A	N/A
0	Dielectric Assessment Kit	SPEAG	HTWE0315-01	DAK-12	1130	N/A	N/A
٠	Network analyzer	Keysight	HTWE0331	E5071C	MY46733048	2022/08/29	2023/08/28
Syste	m Validation						
0	System Validation Antenna	SPEAG	HTWE0314-01	CLA-150	4024	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	HTWE0314-02	D450V3	1102	2021/01/20	2024/01/19
0	System Validation Dipole	SPEAG	HTWE0314-03	D750V3	1180	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	HTWE0314-04	D835V2	4d238	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	HTWE0314-05	D1750V2	1164	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	HTWE0314-06	D1900V2	5d226	2021/01/22	2024/01/21
•	System Validation Dipole	SPEAG	HTWE0314-07	D2450V2	1009	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	HTWE0314-08	D2600V2	1150	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	HTWE0314-09	D5GHzV2	1273	2021/01/26	2024/01/25
٠	Signal Generator	R&S	HTWE0276	SMB100A	114360	2022/05/25	2023/05/24
•	Power Viewer for Windows	R&S		N/A	N/A	N/A	N/A
•	Power sensor	R&S	HTWE0278	NRP18A	101010	2022/05/25	2023/05/24
•	Power sensor	R&S	HTWE0389	NRP18A	101386	2022/05/12	2023/05/11
•	Power Amplifier	BONN	HTWE0336	BLWA 0160- 2M	1811887	2022/11/10	2023/11/09
•	Dual Directional Coupler	Mini-Circuits	HTWE0335	ZHDC-10- 62-S+	F975001814	2022/11/10	2023/11/09
•	Attenuator	Mini-Circuits	HTWE0333	VAT-3W2+	1819	2022/11/10	2023/11/09
٠	Attenuator	Mini-Circuits	HTWE0334	VAT-10W2+	1741	2022/11/10	2023/11/09

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix E and F.

2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justificatio. The dipole are also not physically damaged or repaired during the interval.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. SAR Measurement System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

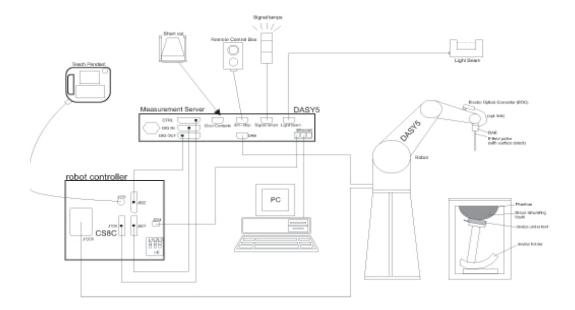
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

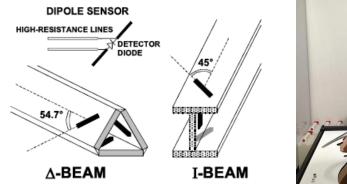
The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

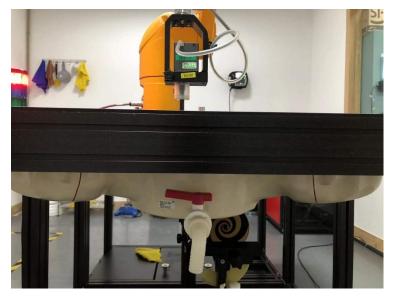

• Probe Specification

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	4 MHz to 10 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 W/kg; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

• Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:



6.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM-Twin Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. Measure the local SAR at a test point within 8 mm of the phantom inner surface that is closest to the DUT. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Resolutions per FCC KDB Publication 865664 D01v04

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \hat{\delta} \cdot \ln(2) \operatorname{mm} \pm 0.5 \operatorname{mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1g and 10g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 5 \text{ mm}^*$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 5 \; \mathrm{mm}^* \\ 4-6 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm}^* \end{array}$
	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 2.5 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$
	grid	$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoc}$	m(n-1) mm
Minimum zoom scan volume	x, y, z		\geq 30 mm	$\begin{array}{l} 3-4 \text{ GHz:} \geq 28 \text{ mm} \\ 4-5 \text{ GHz:} \geq 25 \text{ mm} \\ 5-6 \text{ GHz:} \geq 22 \text{ mm} \end{array}$
A				

Note: \hat{o} is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. The SAR drift shall be kept within ± 5 %.

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors),s together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity:	Normi, ai0, ai1, ai2
	Conversion factor:	ConvFi
	Diode compression point:	Dcpi
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter)

dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

 $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

Vi:	compensated signal of channel ($i = x, y, z$)
Normi:	sensor sensitivity of channel ($i = x, y, z$),
	[mV/(V/m)2] for E-field Probes
ConvF:	sensitivity enhancement in solution
aij:	sensor sensitivity factors for H-field probes
f:	carrier frequency [GHz]
Ei:	electric field strength of channel i in V/m
Hi:	magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

- SAR: local specific absorption rate in W/kg
- Etot: total field strength in V/m
- σ: conductivity in [mho/m] or [Siemens/m]
- ρ: equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. Dielectric Property Measurements & System Check

8.1. Tissue Dielectric Parameters

The temperature of the tissue-equivalent medium used during measurement must also be within 18° to 25° and within $\pm 2^{\circ}$ of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

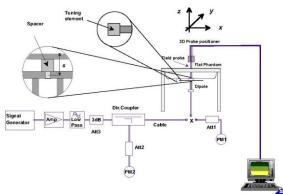
The dielectric constant (ε_r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ε_r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	Tissue dielectric parameters for	Head
Target Frequency		Head
(MHz)	٤ _r	σ(S/m)
750	41.9	0.89
835	41.5	0.90
1750	40.1	1.37
1800-2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
5200	36.0	4.66
5300	35.9	4.76
5500	35.6	4.96
5600	35.5	5.07
5800	35.3	5.27

Measurement Results:


		Dielectric	c performa	ance of Head	d tissue si	mulating	liquid		
Frequency		٤ _r	σ(S/m)	Delta	Delta	Limit	Temp	Date
(MHz)	Target	Measured	Target	Measured	(ε _r)	(σ)	LIIIII	(°C)	Dale
2450	39.20	37.31	1.800	1.726	-4.82%	-4.11%	±5%	22.2	2023/3/30

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- The results are normalized to 1 W input power.

System Performance Check Setup

Photo of Dipole Setup

Measurement Results:

					Hea	d					
Frequency		1g SAR			10g SAR		Delta	Delta	L instit	Temp	Data
(MHz)	Target 1W	Normalize to 1W	Measured 250mW	Target 1W	Normalize to 1W	Measured 250mW	(1g)	(10g)	Limit	(°C)	Date
2450	52.00	52.80	13.20	23.90	24.60	6.15	1.54%	2.93%	±10%	22.4	2023/3/30

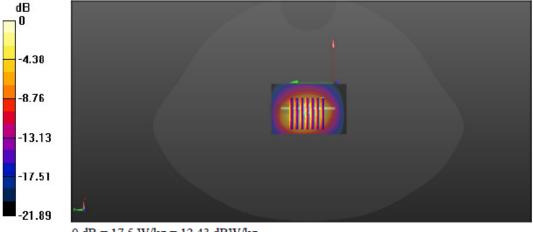
Note:

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 10\%$ of the manufacturer calibrated dipole SAR target.

Plots of System Performance Check

SystemPerformanceCheck-Head 2450MHz

Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.726 S/m; ϵ_r = 37.314; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 5/16/2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/12/2022
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.8 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 94.65 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 17.5 W/kg

0 dB = 17.5 W/kg = 12.43 dBW/kg

9. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

	Limit (V	V/kg)
Type Exposure	General Population/ Uncontrolled Exposure Environment	Occupational/ Controlled Exposure Environment
Spatial Average SAR (whole body)	0.08	0.4
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0
Spatial Peak SAR (10g for limb)	4.0	20.0

Note:

- 1. Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.
- 2. Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

10. Conducted Power Measurement Results and Tune-up

Please refer to appendix report

11. Antenna Location

12. Measured and Reported SAR Results

Measurement Results:

Please refer to appendix report

Measurement data plots:

Please refer to appendix D

Note:

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D04 Interim General RF Exposure Guidance v01:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. Additional 1-g SAR testing at 5 mm is not required when hotspot mode 10-g extremity SAR is not required for the surfaces and edges; since all 1-g reported SAR < 1.2 W/kg.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

13. Test Setup Photos

14. External and Internal Photos of the EUT

-----End of Report-----

Shenzhen Huatongwei International Inspection Co., Ltd.

Project No.	SHT2303112601EW		
Test sample No.	YPHT23031126001	Model No.	FS-ST8B
Start test date	2023/3/29	Finish date	2023/3/31
Temperature	22.4 ℃	Humidity	46%
Test Engineer	Weiyang.Xiang	Auditor	Xiaodory Zheo

Appendix clause	Test Item	Result
А	Conducted Power Measurement Results	PASS
В	SAR Measurement Results	PASS

Appendix A:Conducted Power Measurement Results

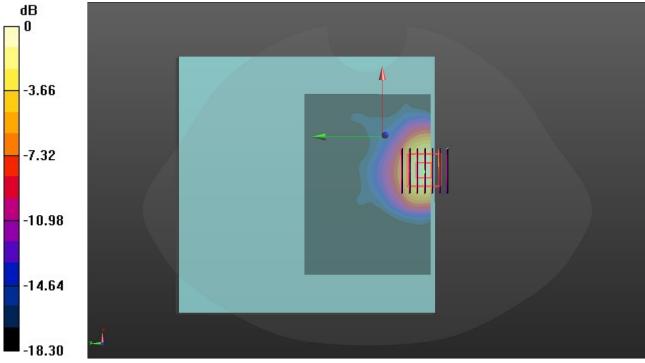
		2.4	4G		
Mode	Channel	Frequency (MHz)	Average Power (dBm)	Tune-up limit (dBm)	Duty Cycle
	1	2406	13.71	14.00	26.91%
GMSK ANT1	2	2440	13.69	14.00	28.47%
	3	2472	13.72	14.00	28.86%
	1	2406	12.06	12.50	21.28%
GMSK ANT2	2	2440	12.06	12.50	21.26%
	3	2472	12.06	12.50	21.36%

Appendix B:SAR Measurement Results

						2.4G						
Mode	Test Position	Frequ	Jency	Conducted Power	Tune-up limit (dBm)	Tune-up scaling	Duty Cycle	Duty Cycle Scaling	Power Drift(dB)	Measured SAR(10g)	Report SAR(10g)	Plot No.
	1 0311011	СН	MHz	(dBm)	innit (dbin)	factor	Oycie	Factor	Dint(GD)	(W/kg)	(W/kg)	
	Front	3	2472	13.72	14.00	1.067	28.86%	3.465	0.16	0.403	1.489	-
GMSK ANT1	Rear	3	2472	13.72	14.00	1.067	28.86%	3.465	-0.15	0.477	1.763	1
	Тор	3	2472	13.72	14.00	1.067	28.86%	3.465	0.18	0.369	1.364	-
	Front	2	2440	12.06	12.50	1.107	21.26%	4.704	-0.15	0.268	1.395	-
GMSK	Rear	2	2440	12.06	12.50	1.107	21.26%	4.704	0.06	0.223	1.161	-
ANT2	Тор	2	2440	12.06	12.50	1.107	21.26%	4.704	0.08	0.326	1.697	-
	Top with ant 90°	2	2440	12.06	12.50	1.107	21.26%	4.704	0.10	0.373	1.942	2

Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab

2.4G-H-ANT 1-Limbs


Communication System: UID 0, Generic WIFI (0); Frequency: 2472 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2472 MHz; $\sigma = 1.742$ S/m; $\varepsilon_r = 37.195$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.6°C;Liquid Temperature:22.4°C;

DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.9, 7.9, 7.9) @ 2472 MHz; Calibrated: 5/16/2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/12/2022
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 3/Area Scan (101x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.17 W/kg

Rear/CH 3/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.078 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 1.59 W/kg SAR(1 g) = 0.911 W/kg; SAR(10 g) = 0.477 W/kg Maximum value of SAR (measured) = 1.20 W/kg

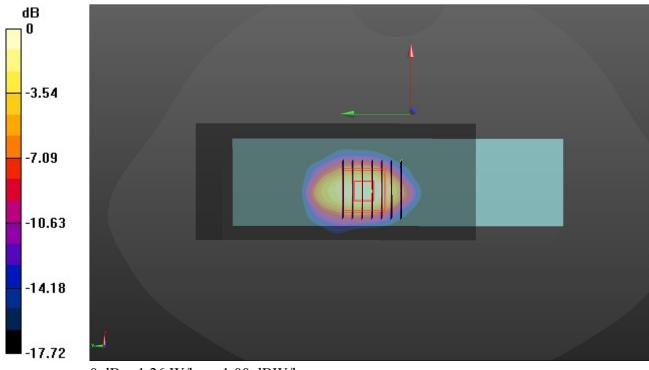
0 dB = 1.20 W/kg = -0.93 dBW/kg

Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab

2.4G-L-ANT 2-Limbs

Communication System: UID 0, Generic WIFI (0); Frequency: 2440 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2440 MHz; $\sigma = 1.72$ S/m; $\varepsilon_r = 37.236$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;

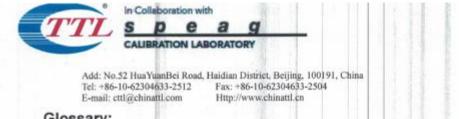
DASY Configuration:


- Probe: EX3DV4 SN7494; ConvF(7.9, 7.9, 7.9) @ 2440 MHz; Calibrated: 5/16/2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/12/2022
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Top ANT 90°/CH 2/Area Scan (51x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.38 W/kg

Top ANT 90°/CH 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.24 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 2.19 W/kg

SAR(1 g) = 0.906 W/kg; SAR(10 g) = 0.375 W/kg

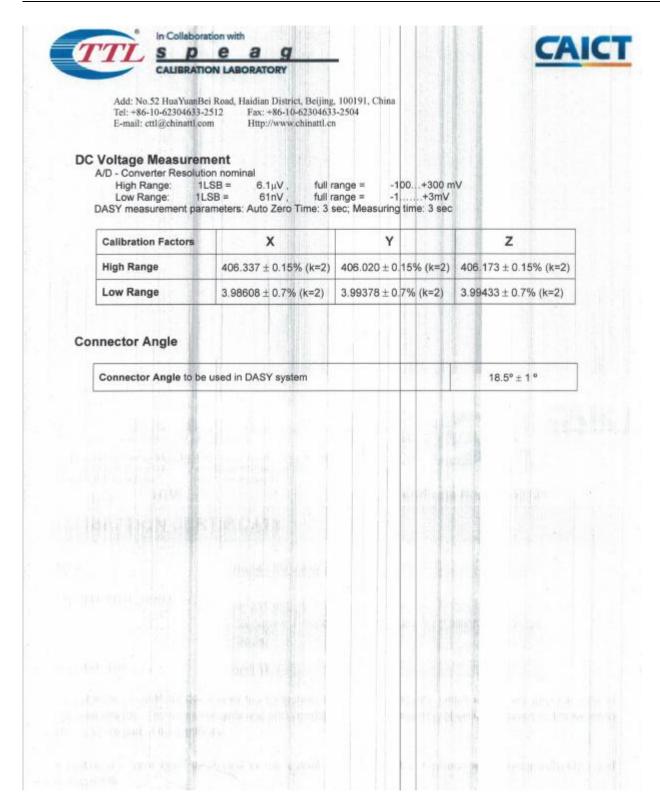

Maximum value of SAR (measured) = 1.26 W/kg

0 dB = 1.26 W/kg = 1.00 dBW/kg

1.1.1. DAE4 Calibration Certificate

Add: No.52 HuaYuanBei Road Tel: +86-10-62304633-2512 E-mail: ettl@chinattl.com	I, Haidian District, Beijin, Fax: +86-10-6230463 Http://www.chinattl.c	33-2504 Walada	CALIBRATION CNAS L0570
Client : HTV	1000		No: Z22-60121
CALIBRATION	CERTIFICAT	E	Superintering and the
Object	DAE4 -	SN: 1549	
Calibration Procedure(s)	FF-Z11- Calibrat (DAEx)	tion Procedure for the Data Acquir	sition Electronics
Calibration date:	April 12	, 2022	A CONTRACTOR OF
measurements(SI). The n pages and are part of the All calibrations have be humidity<70%.	neasurements and t certificate. en conducted in ti	raceability to national standards, wh the uncertainties with confidence prot he closed laboratory facility: enviro	pability are given on the following
measurements(SI). The n pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us	neasurements and t certificate. en conducted in ti ed (M&TE critical fo	the uncertainties with confidence prot	pability are given on the followin
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	neasurements and to certificate. en conducted in to ed (M&TE critical for ID # Cal	the uncertainties with confidence prot he closed laboratory facility: enviro or calibration)	pability are given on the followin
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	neasurements and the certificate. en conducted in the ced (M&TE critical for ID # Call 1971018	the uncertainties with confidence prot he closed laboratory facility: enviro m calibration) Date(Calibrated by, Certificate No.) 15-Jun-21 (CTTL, No.J21X04465)	oability are given on the following nment_temperature(22±3)℃ and Scheduled Calibration Jun-22
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	neasurements and to certificate. en conducted in to ed (M&TE critical for ID # Cal	the uncertainties with confidence prot he closed laboratory facility: enviro r calibration) Date(Calibrated by, Certificate No.)	pability are given on the following nment_temperature(22±3)℃ and Scheduled Calibration
measurements(SI). The n pages and are part of the All calibrations have be	neasurements and to certificate. en conducted in to ed (M&TE critical for ID # Cal 1971018	the uncertainties with confidence prot he closed laboratory facility: enviro or calibration) Date(Calibrated by, Certificate No.) 15-Jun-21 (CTTL, No.J21X04465) Function	oability are given on the following nment_temperature(22±3)℃ and Scheduled Calibration Jun-22

Glossary: DAE

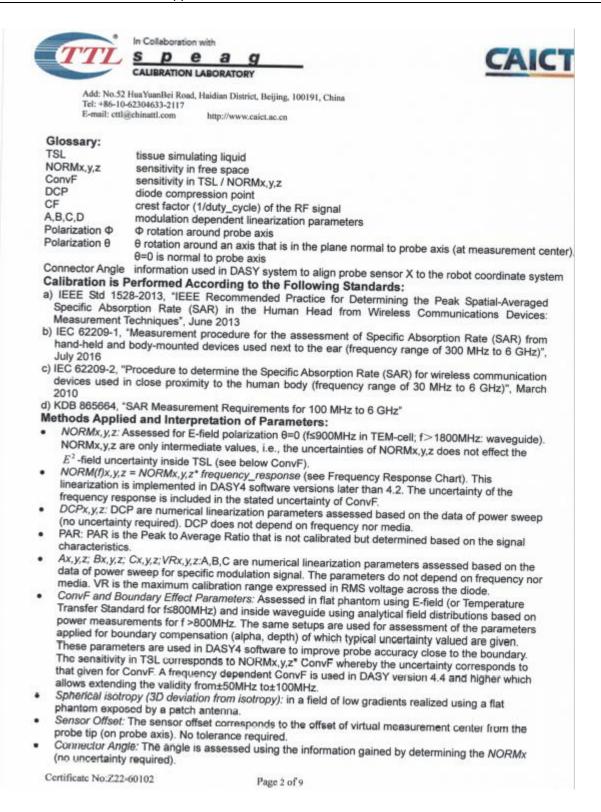

Connector angle inform

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.



1.2. Probe Calibration Certificate

Client CALIBRATIC Object Calibration Procedu Calibration date:				No: Z22	-60102			
Object Calibration Procedu								
Calibration Procedu	ure(s)	EX3DV4 -	SN : 7494					
	ire(s)		EX3DV4 - SN : 7494					
Calibration date:		FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes						
		May 16, 20		obes				
noning 1010.		onducted in the	closed laboratory facility: environm	ent temper	ature(22±3)°C and			
		ID #	Cal Data/Callback (L) 0 115					
Primary Standards		ID #	Cal Date(Calibrated by, Certificate N	No.) Sche	duled Calibration			
	2	ID # 101919 101547	15-Jun-21(CTTL, No.J21X04466)	No.) Sche	Jun-22			
Primary Standards Power Meter NRP	2 P-Z91	101919	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466)	No.) Sche	Jun-22 Jun-22			
Primary Standards Power Meter NRP Power sensor NR Power sensor NR Reference 10dBA	2 P-Z91 P-Z91 Ittenuator	101919 101547	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466)	No.) Sche	Jun-22 Jun-22 Jun-22			
Primary Standards Power Meter NRP Power sensor NRI Power sensor NRI Reference 10dBA Reference 20dBA	2 P-Z91 P-Z91 Ittenuator Ittenuator	101919 101547 101548	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486)	No.) Sche	Jun-22 Jun-22 Jun-22 Jan-23			
Primary Standards Power Meter NRP Power sensor NRI Power sensor NRI Reference 10dBA Reference 20dBA Reference Probe	2 P-Z91 P-Z91 Ittenuator Ittenuator	101919 101547 101548 18N50W-10dB	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485)		Jun-22 Jun-22 Jun-22 Jan-23 Jan-23			
Primary Standards Power Meter NRP Power sensor NRI Power sensor NRI Reference 10dBA Reference 20dBA Reference Probe	2 P-Z91 P-Z91 Ittenuator Ittenuator	101919 101547 101548 18N50W-10dB 18N50W-20dB	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486)	Jan22)	Jun-22 Jun-22 Jun-22 Jan-23			
Primary Standards Power Meter NRP Power sensor NRI Power sensor NRI Reference 10dBA Reference 20dBA Reference Probe E DAE4 Secondary Standard	2 P-Z91 P-Z91 Ittenuator ttenuator EX3DV4	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7464	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J 20-Aug-21(SPEAG, No.DAE4-1555)	lan22) _Aug21/2)	Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug-22			
Primary Standards Power Meter NRP Power sensor NRI Power sensor NRI Reference 10dBA Reference 20dBA Reference Probe E DAE4 Secondary Standard SignalGenerator M	P-Z91 P-Z91 Ittenuator Ittenuator EX3DV4 Is IG3700A	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7464 SN 1555	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J 20-Aug-21(SPEAG, No.DAE4-1555) Cal Date(Calibrated by, Certificate No.)	lan22) _Aug21/2)	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug-22			
Primary Standards Power Meter NRP Power sensor NRI Power sensor NRI Reference 10dBA Reference 20dBA Reference Probe E DAE4 Secondary Standard SignalGenerator M	P-Z91 P-Z91 ttenuator ttenuator EX3DV4 IS IG3700A E5071C	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7464 SN 1555 ID # 6201052605 MY46110673	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J 20-Aug-21(SPEAG, No.DAE4-1555)	lan22) _Aug21/2)	Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug-22 Iled Calibration Jun-22			
Primary Standards Power Meter NRP Power sensor NRI Power sensor NRI Reference 10dBA Reference 20dBA Reference Probe E DAE4 Secondary Standard SignalGenerator M Network Analyzer E	P-Z91 P-Z91 ttenuator ttenuator EX3DV4 IS IG3700A E5071C Nan	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7464 SN 1555 ID # 6201052605 MY46110673 ne	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J 20-Aug-21(SPEAG, No.DAE4-1555) Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467)	lan22) _Aug21/2) Schedu	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug-22			
Primary Standards Power Meter NRP Power sensor NRI Power sensor NRI Reference 10dBA Reference 20dBA Reference Probe B DAE4 Secondary Standard SignalGenerator M Network Analyzer E	P-Z91 P-Z91 ttenuator ttenuator EX3DV4 IS IG3700A E5071C Nan	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7464 SN 1555 ID # 6201052605 MY46110673	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J 20-Aug-21(SPEAG, No.DAE4-1555) Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406)	lan22) _Aug21/2) Schedu Sign	Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug-22 Ied Calibration Jun-22 Jan-23			
Primary Standards Power Meter NRP Power sensor NR Power sensor NRI Reference 10dBA Reference 20dBA Reference Probe	P-Z91 P-Z91 Ittenuator Ittenuator EX3DV4 IS IG3700A E5071C Nan Yu	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7464 SN 1555 ID # 6201052605 MY46110673 ne	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J 20-Aug-21(SPEAG, No.DAE4-1555) Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406) Function SAR Test Engineer	lan22) _Aug21/2) Schedu Sign	Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug-22 Ided Calibration Jun-22 Jan-23 ature			

Certificate No: Z22-60102

Page 1 of 9

	<u>speag</u>	
and the second second	CALIBRATION LABORATORY	
	Add: No.52 HuaYuanBei Rond, Haidian District, Beijing, 100191, China	
	Tel: +86-10-62304633-2117	

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7494

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.41	0.48	0.42	±10.0%
DCP(mV) ^B	99.2	100.0	100.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	c	D dB	VR mV	Unc ^E (k=2)
0	cw	X	0.0	0.0	1.0	0.00	145.6	±1.9%
		Y	0.0	0.0	1.0		160.4	
		Z	0.0	0.0	1.0		149.0	1

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

⁸ Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z22-60102

Page 3 of 9

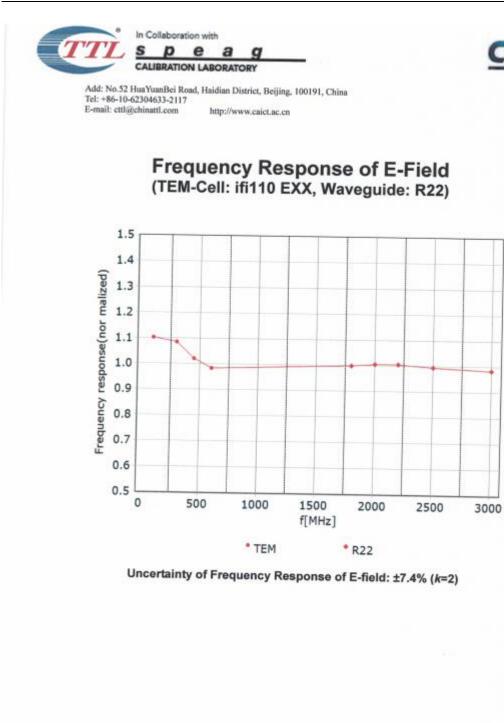
CAIC

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattLoom http://www.caiet.ac.en

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7494

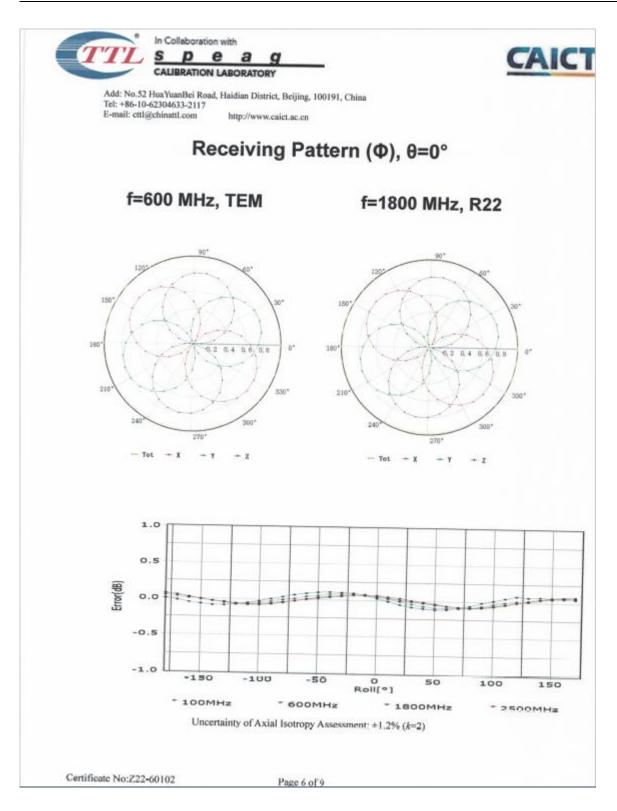
f [MHz] ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.60	10.60	10.60	0.12	1.43	±12.1%
835	41.5	0.90	10.30	10.30	10.30	0.12	1.48	±12.1%
1750	40.1	1.37	8.81	8.81	8.81	0.25	0.92	±12.1%
1900	40.0	1.40	8.45	8.45	8.45	0.25	1.04	±12.1%
2000	40.0	1.40	8.42	8.42	8.42	0.26	1.04	±12.1%
2300	39.5	1.67	8.25	8.25	8.25	0.62	0.63	±12.1%
2450	39.2	1.80	7.90	7.90	7.90	0.41	0.84	±12.1%
2600	39.0	1.96	7.65	7.65	7.65	0.49	0.74	±12.1%
5250	35.9	4.71	5.61	5.61	5.61	0.50	1.20	±13.3%
5600	35.5	5.07	5.01	5.01	5.01	0.45	1.38	±13.3%
5750	35.4	5.22	4.97	4.97	4.97	0.50	1.30	±13.3%

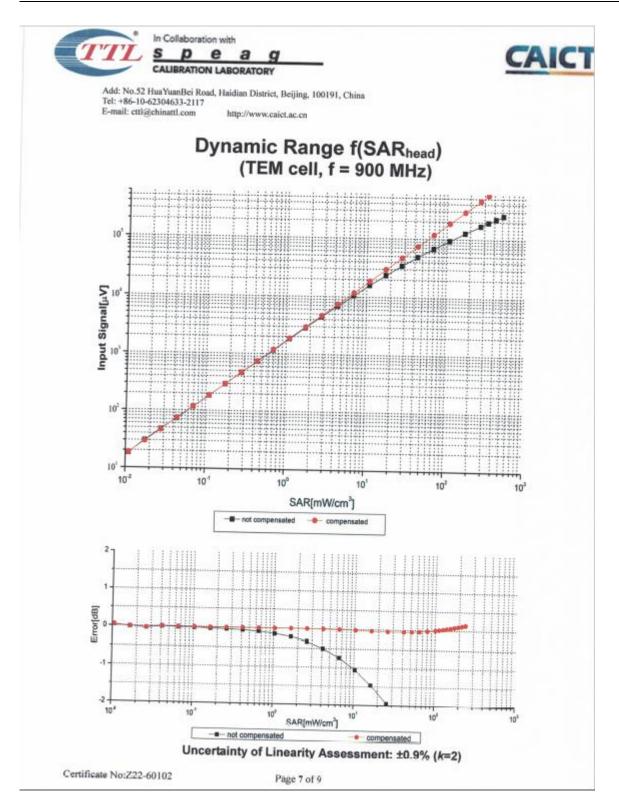
Calibration Parameter Determined in Head Tissue Simulating Media

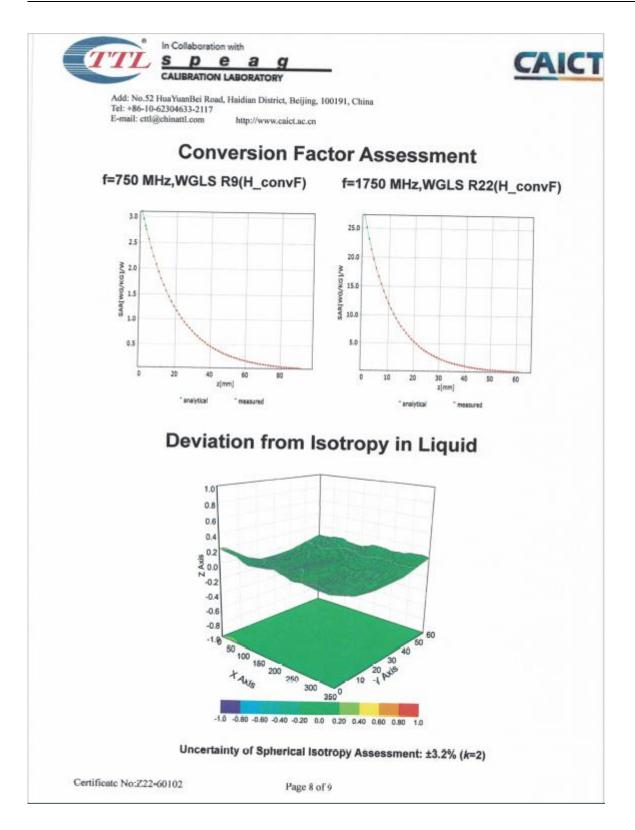

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z22-60102


Page 4 of 9


CAICT



Certificate No.Z22-60102

Page 5 of 9

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.eaict.ac.en

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7494

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	22.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:722-60102

Page 9 of 9

1.1. D2450V2 Dipole Calibration Certificate

	CALIBRATI	ON LABORATORY	AC-MRA	CNA	S 国际互认 校准
Add: No.51 Xueyuan Tel: +86-10-62304633 E-mail: cttl@chinattl.	3-2079 Fax: +8	ct, Beijing, 100191, China 6-10-62304633-2504 ww.chinattl.cn	3		CALIBRATION CNAS L0570
Client HTW			ertificate No:	Z21-6002	0
CALIBRATION CE	RTIFICATI	E	2.9.12		
CALIBRATION OL			1210212-0100	and the second	
Dbject	D2450V	2 - SN: 1009			
Calibration Procedure(s)	FF-Z11-	003-01			
	Calibrati	on Procedures for di	pole validation kits		
Calibration date:	January	25, 2021			
All calibrations have been humidity<70%. Calibration Equipment used			y facility: environ	ment temper	ature(22±3)℃ and
humidity<70%. Calibration Equipment used					duled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical fo	or calibration) Cal Date(Calibrate 12-May-20 (CTTL,	d by, Certificate No.J20X02965)		duled Calibration May-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A	(M&TE critical fo ID # 106276 101369	or calibration) Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL,	d by, Certificate No.J20X02965) No.J20X02965)	o.) Sche	duled Calibration May-21 May-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4	(M&TE critical fo ID # 106276 101369 SN 7600	Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL, 30-Nov-20(CTTL-S	d by, Certificate No.J20X02965) No.J20X02965) PEAG,No.Z20-604	o.) Sche 421)	duled Calibration May-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A	(M&TE critical fo ID # 106276 101369	or calibration) Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL,	d by, Certificate No.J20X02965) No.J20X02965) PEAG,No.Z20-604	o.) Sche 421)	duled Calibration May-21 May-21 Nov-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4	(M&TE critical fo ID # 106276 101369 SN 7600	Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL, 30-Nov-20(CTTL-S	d by, Certificate No No.J20X02965) No.J20X02965) PEAG,No.Z20-604 PEAG,No.Z20-600	0.) Sche 421) 017)	duled Calibration May-21 May-21 Nov-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4	(M&TE critical fo ID # 106276 101369 SN 7600 SN 771 ID # MY49071430	or calibration) Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL, 30-Nov-20(CTTL-S 10-Feb-20(CTTL-S Cal Date(Calibrate 25-Feb-20 (CTTL,	d by, Certificate No No.J20X02965) No.J20X02965) PEAG,No.Z20-600 PEAG,No.Z20-600 d by, Certificate No No.J20X00516)	0.) Sche 421) 017)	duled Calibration May-21 May-21 Nov-21 Feb-21 eduled Calibration Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards	(M&TE critical fo ID # 106276 101369 SN 7600 SN 771 ID # MY49071430	Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL, 30-Nov-20(CTTL-S 10-Feb-20(CTTL-S Cal Date(Calibrated	d by, Certificate No No.J20X02965) No.J20X02965) PEAG,No.Z20-600 PEAG,No.Z20-600 d by, Certificate No No.J20X00516)	0.) Sche 421) 017)	duled Calibration May-21 May-21 Nov-21 Feb-21 eduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 106276 101369 SN 7600 SN 771 ID # MY49071430 MY46110673	or calibration) Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL, 30-Nov-20(CTTL-S 10-Feb-20(CTTL-S Cal Date(Calibrated 25-Feb-20 (CTTL, 10-Feb-20 (CTTL,	d by, Certificate No No.J20X02965) No.J20X02965) PEAG,No.Z20-600 PEAG,No.Z20-600 d by, Certificate No No.J20X00516)	0.) Sche 421) 017)	duled Calibration May-21 May-21 Nov-21 Feb-21 eduled Calibration Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fo ID # 106276 101369 SN 7600 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL, 30-Nov-20(CTTL-S 10-Feb-20(CTTL-S Cal Date(Calibrated 25-Feb-20 (CTTL, 10-Feb-20 (CTTL, 50-Feb-20 (CTTL,	d by, Certificate No. No.J20X02965) PEAG,No.Z20-604 PEAG,No.Z20-604 d by, Certificate No. No.J20X00516) No.J20X00515)	0.) Sche 421) 017)	duled Calibration May-21 May-21 Nov-21 Feb-21 eduled Calibration Feb-21 Feb-21 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 106276 101369 SN 7600 SN 771 ID # MY49071430 MY46110673	or calibration) Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL, 30-Nov-20(CTTL-S 10-Feb-20(CTTL-S Cal Date(Calibrated 25-Feb-20 (CTTL, 10-Feb-20 (CTTL,	d by, Certificate No. No.J20X02965) PEAG,No.Z20-604 PEAG,No.Z20-604 d by, Certificate No. No.J20X00516) No.J20X00515)	0.) Sche 421) 017)	duled Calibration May-21 May-21 Nov-21 Feb-21 eduled Calibration Feb-21 Feb-21 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fo ID # 106276 101369 SN 7600 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL, 30-Nov-20(CTTL-S 10-Feb-20(CTTL-S Cal Date(Calibrated 25-Feb-20 (CTTL, 10-Feb-20 (CTTL, 50-Feb-20 (CTTL,	d by, Certificate No No.J20X02965) PEAG,No.Z20-604 PEAG,No.Z20-604 d by, Certificate No No.J20X00516) No.J20X00515)	0.) Sche 421) 017)	duled Calibration May-21 May-21 Nov-21 Feb-21 eduled Calibration Feb-21 Feb-21 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fo ID # 106276 101369 SN 7600 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL, 30-Nov-20(CTTL-S 10-Feb-20(CTTL-S Cal Date(Calibrated 25-Feb-20 (CTTL, 10-Feb-20 (CTTL, Function SAR Test En	d by, Certificate No No.J20X02965) PEAG,No.Z20-604 PEAG,No.Z20-600 d by, Certificate No No.J20X00516) No.J20X00515) gineer	0.) Sche 421) 017)	duled Calibration May-21 May-21 Nov-21 Feb-21 eduled Calibration Feb-21 Feb-21 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by: Reviewed by:	(M&TE critical fo ID # 106276 101369 SN 7600 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao Qi Dianyuan	Cal Date(Calibrate 12-May-20 (CTTL, 12-May-20 (CTTL, 30-Nov-20(CTTL-S 10-Feb-20(CTTL-S Cal Date(Calibrated 25-Feb-20 (CTTL, 10-Feb-20 (CTTL, 10-Feb-20 (CTTL, SAR Test En SAR Test En SAR Project	d by, Certificate No No.J20X02965) PEAG,No.Z20-604 PEAG,No.Z20-600 d by, Certificate No No.J20X00516) No.J20X00515) gineer gineer Leader	0.) Sche 121) 017) 0.) Sche 1: January 29,	duled Calibration May-21 May-21 Nov-21 Feb-21 eduled Calibration Feb-21 Feb-21 Signature

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60020

Page 2 of 6

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

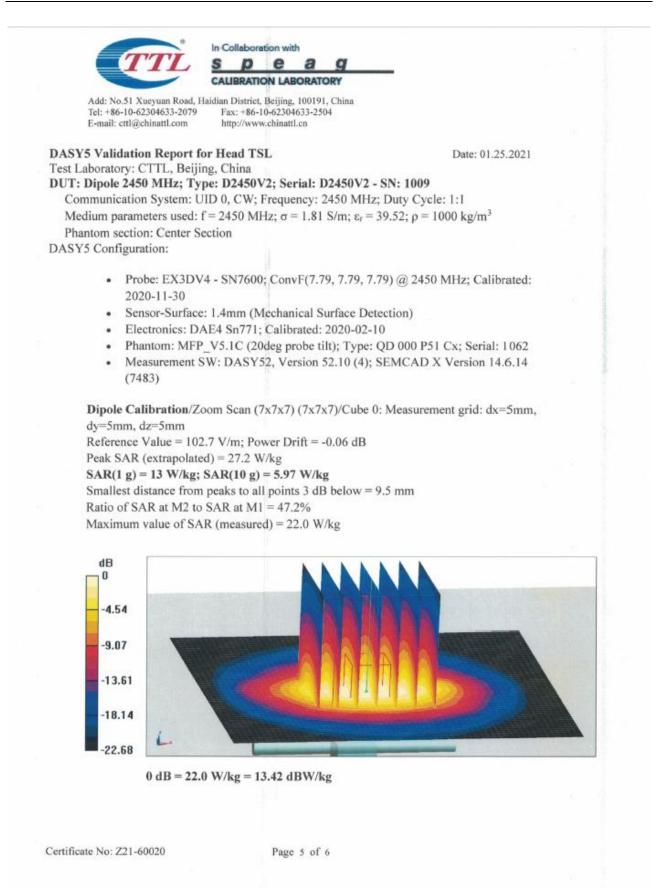
 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

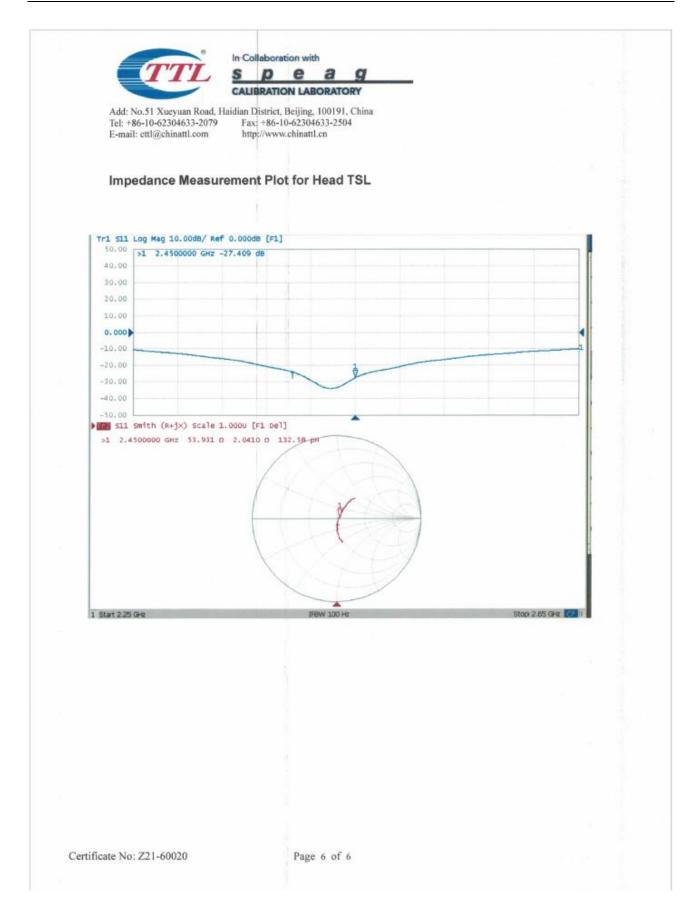
Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters


The following parameters and calculations were applied.


	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		1.000

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.0 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.97 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 18.7 % (k=2)

Tel: +86-10-62304633-2079 Fa	District, Beijing, 100191, China ax: +86-10-62304633-2504 tp://www.chinattl.cn		
L'IOMA CHENCHINA IN			
Appendix (Additional assess	ments outside the scon	e of CNAS L 0570)	
Appendix (Additional assess			
Antenna Parameters with Hea	ad TSL		
Impedance, transformed to feed po	pint	53.9Ω+ 2.04jΩ	
Return Loss		- 27.4dB	
General Antenna Parameters	and Design		
Electrical Delay (one direction)		1.064 ns	
Transferration and and and and and and and and and an			
After long term use with 100W radia be measured.	ated power, only a slight warn	ning of the dipole near the f	eedpoint can
be measured.			
		ar anodustor of the feeding	line is directly
The dipole is made of standard serr	nirigid coaxial cable. The cent	ter conductor of the reeding	Title to unecuty
The dipole is made of standard sem connected to the second arm of the of the dipoles, small and caps are a	dipole. The antenna is there	fore short-circuited for DC-s	ignals. On some
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain	dipole. The antenna is there added to the dipole arms in or ed in the "Measurement Con	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SA	ignals. On some
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall	dipole. The antenna is there added to the dipole arms in or ed in the "Measurement Cond I dipole length is still accordin	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard.	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard.	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard.	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard.	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard.	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard.	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not
connected to the second arm of the of the dipoles, small end caps are a according to the position as explain affected by this change. The overall No excessive force must be applied connections near the feedpoint may Additional EUT Data	dipole. The antenna is therefunded to the dipole arms in or ed in the "Measurement Cone I dipole length is still accordin to the dipole arms, because	fore short-circuited for DC-s der to improve matching wh ditions" paragraph. The SAI g to the Standard. they might bend or the solo	lignals. On some nen loaded R data are not

Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Head-2450								
Date of	Poturn loop (dP)	Dolto (9/)	Real Impedance	Delta	Imaginary	Delta		
measurement	Return-loss (dB)	Delta (%)	(ohm)	(ohm)	impedance (ohm)	(ohm)		
2021-01-25	-27.4		53.9		2.04			
2022-01-17	-27.9	1.82	53.5	0.4	2.34	0.3		
2023-01-15	-27.3	-0.36	53.7	0.2	2.16	0.12		

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration.