GTS Global United Technology Services Co., Ltd.

Report No.: GTS201806000240F01

FCC Report

Applicant:	FLYSKY RC MODEL TECHNOLOGY CO., LTD		
Address of Applicant:	West building3, Huangjianyuan Ind, Park QIAOLI North Gate Changping Town, Dongguan, China		
Manufacturer:	ShenZhen FLYSKY Technology Co.,Ltd		
Address of Manufacturer:	16F, Huafeng Building, No. 6006 Shennan Road, Futian District, Shenzhen, Guangdong, China		
Factory:	FLYSKY RC MODEL TECHNOLOGY CO., LTD		
Address of Factory:	West building3, Huangjianyuan Ind, Park QIAOLI North Gate Changping Town, Dongguan, China		
Equipment Under Test (EUT)		
Product Name:	Nirvana		
Model No.:	NV14		
Trade Mark:	FLYSKY		
FCC ID:	N4ZNV1400		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	June 21, 2018		
Date of Test:	June 22- August 15, 2018		
Date of report issued:	August 15, 2018		
Test Result :	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager iis results shown in this

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	August 15, 2018	Original

August 15, 2018 s~ Prepared By: Date: **Project Engineer**

Date:

Check By:

Reviewer

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 August 15, 2018

3 Contents

			i age
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	2
ა	CON	1 EN 1 5	
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
5	GEN		-
	5.1	GENERAL DESCRIPTION OF EUT	-
	5.2	TEST MODE	
	5.3	TEST FACILITY	-
	5.4	TEST LOCATION	
	5.5	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	ADDITIONAL INSTRUCTIONS	8
6	TES	T INSTRUMENTS LIST	9
7	TES	T RESULTS AND MEASUREMENT DATA	11
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	20DB EMISSION BANDWIDTH	
	7.5	CARRIER FREQUENCIES SEPARATION	21
	7.6	HOPPING CHANNEL NUMBER	25
	7.7	DWELL TIME	
	7.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	7.9	BAND EDGE	
	7.9.1		
	7.9.2		
	7.10	SPURIOUS EMISSION	
	7.10	••••••••	
	7.10	2 Radiated Emission Method	51
8	TES	Г SETUP PHOTO	68
9	EUT	CONSTRUCTIONAL DETAILS	70
3	CUI		

4 Test Summary

Test Item	Section	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard. Remark : Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	\pm 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

5 General Information

5.1 General Description of EUT

Product Name:	Nirvana
Model No.:	NV14
Serial No.:	H1073061
Test sample(s) ID:	GTS201806000240-1
Sample(s) Status	Engineer sample
Operation Frequency:	2408MHz~2475.0MHz
Channel numbers:	135
Channel separation:	500kHz
Modulation technology:	GFSK
Antenna Type:	Integral Antenna
Antenna gain:	2dBi
Power supply:	DC 3.7V ~ 4.2V

Remark: The system works in the frequency range of 2408MHz to 2475MHz. This band has been divided to 135 independent channels. Each radio system uses 16 different channels; the minimum channel separation is ≥2.5MHz. By using various switch-on times, hopping scheme and channel frequencies, the system can guarantee a jamming free radio transmission. The channel list is below.

Two antennas can't transmit at the same time. While the ANT 1 (Left ANT) transmitting, the ANT 2(Right ANT) act as a receiver antenna and vice versa.

Operation F	requency eac	h of channel					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1		36	2423.00	71	2440.50	106	2458.00
2		37	2423.50	72	2441.00	107	2458.50
3		38	2424.00	73	2441.50	108	2459.00
4		39	2424.50	74	2442.00	109	2459.50
5		40	2425.00	75	2442.50	110	2460.00
6	2408.00	41	2425.50	76	2443.00	111	2460.50
7	2408.50	42	2426.00	77	2443.50	112	2461.00
8	2409.00	43	2426.50	78	2444.00	113	2461.50
9	2409.50	44	2427.00	79	2444.50	114	2462.00
10	2410.00	45	2427.50	80	2445.00	115	2462.50
11	2410.50	46	2428.00	81	2445.50	116	2463.00
12	2411.00	47	2428.50	82	2446.00	117	2463.50
13	2411.50	48	2429.00	83	2446.50	118	2464.00
14	2412.00	49	2429.50	84	2447.00	119	2464.50
15	2412.50	50	2430.00	85	2447.50	120	2465.00
16	2413.00	51	2430.50	86	2448.00	121	2465.50
17	2413.50	52	2431.00	87	2448.50	122	2466.00
18	2414.00	53	2431.50	88	2449.00	123	2466.50
19	2414.50	54	2432.00	89	2449.50	124	2467.00
20	2415.00	55	2432.50	90	2450.00	125	2467.50
21	2415.50	56	2433.00	91	2450.50	126	2468.00
22	2416.00	57	2433.50	92	2451.00	127	2468.50
23	2416.50	58	2434.00	93	2451.50	128	2469.00
24	2417.00	59	2434.50	94	2452.00	129	2469.50
25	2417.50	60	2435.00	95	2452.50	130	2470.00
26	2418.00	61	2435.50	96	2453.00	131	2470.50
27	2418.50	62	2436.00	97	2453.50	132	2471.00
28	2419.00	63	2436.50	98	2454.00	133	2471.50
29	2419.50	64	2437.00	99	2454.50	134	2472.00
30	2420.00	65	2437.50	100	2455.00	135	2472.50
31	2420.50	66	2438.00	101	2455.50	136	2473.00
32	2421.00	67	2438.50	102	2456.00	137	2473.50
33	2421.50	68	2439.00	103	2456.50	138	2474.00
34	2422.00	69	2439.50	104	2457.00	139	2474.50
35	2422.50	70	2440.00	105	2457.50	140	2475.00

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2408.0MHz/2409.5MHz
The middle channel	2440.0MHz
The Highest channel	2475.0MHz/2469.5MHz

5.2 Test mode

	Transmitting mode	Keep the EUT in transmitting mode.	
--	-------------------	------------------------------------	--

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration No.: 381383, January 08, 2018.

• Industry Canada (IC) — Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.4 Test Location

All other tests were performed at: Global United Technology Services Co., Ltd. Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.5 Other Information Requested by the Customer

None.

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC Approval
DELTA	ADAPTER	ADP-60ADT	N/A	DELTA

5.7 Additional Instructions

EUT Software Settings:

Mode Special test firmware was pre-built-in by manufacturer					
Mode	Channel	Frequency (MHz)	Level Set		
GFSK	CH01 2408				
	CH70	2440	TX level : default		
	CH140	2475			

6 Test Instruments list

Rad	Radiated Emission:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019	
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019	
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019	
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019	
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019	
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019	

Gene	General used equipment:						
ltem	Item Test Equipment Manufacturer Model No. Inventory Cal.Date Cal.Due d (mm-dd-yy)						
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019	
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019	

Conducted Emission						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019

RF Co	RF Conducted Test:						
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019	
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

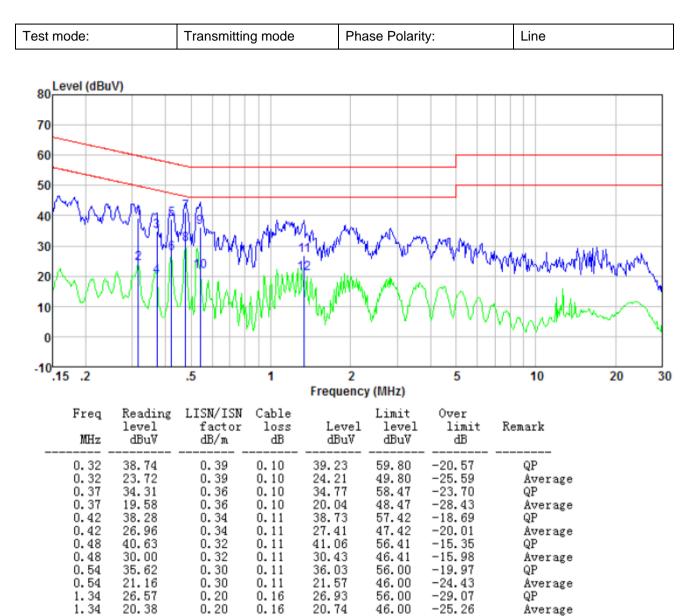
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

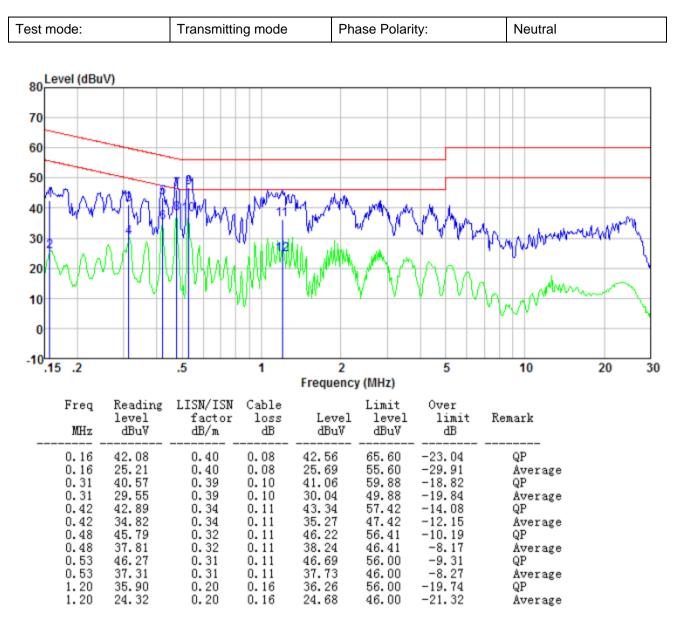
EUT Antenna:

The antenna is integral Antenna, the best case gain of the antenna is 2dBi

Two antenna can't transmit at the same time. While the ANT 1 (Left ANT) transmitting, the ANT 2(Right ANT) act as a receiver antenna and vice versa.



7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KH	z, VBW=30KH	Hz, Sweep ti	me=auto		
Limit:	E			Limit	: (dBuV)	
	Frequen	cy range (MH	^{IZ)} Q	uasi-peak		verage
	(0.15-0.5		66 to 56*	56	6 to 46*
		0.5-5		56		46
		5-30		60		50
	* Decrease	s with the log	arithm of the	frequency.		
Test setup:		Reference	Plane			
Toot procedure:	 LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test procedure:						des a oment. wer through a ith 50ohm
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1 012mbar
Test Instruments:	Refer to se	ction 6.0 for d	etails			
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement data:

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

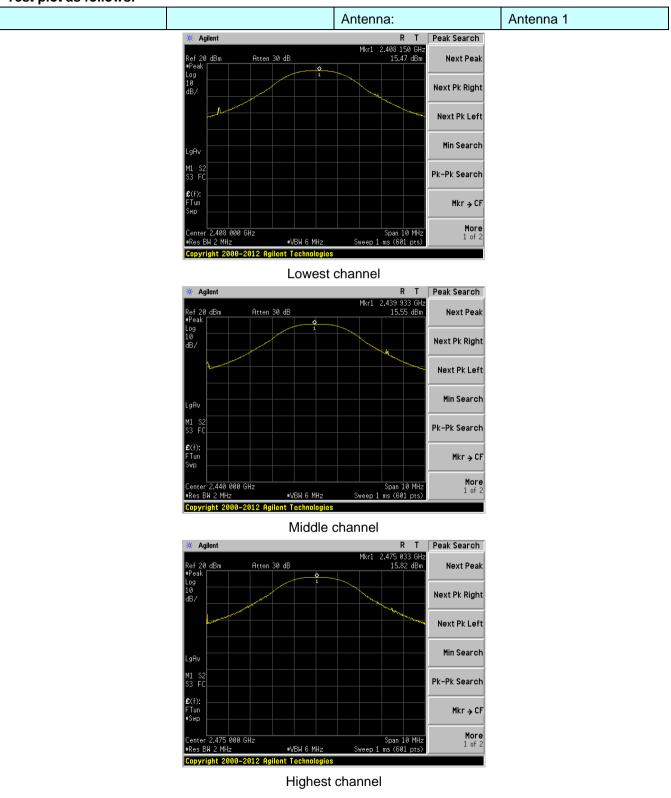
3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

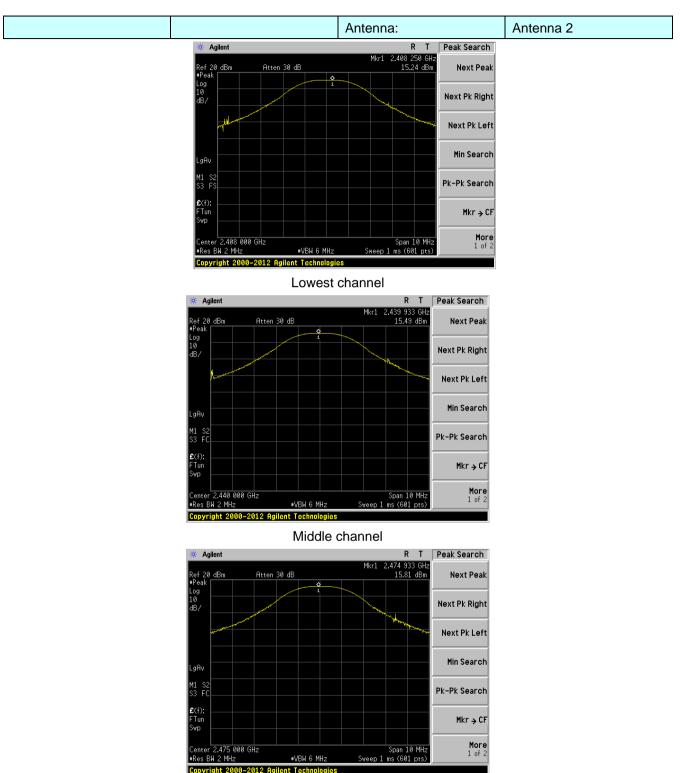
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013		
Limit:	20.97dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Antenna 1:


Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	15.47		
Middle	15.55	20.97	Pass
Highest	15.82		

Antenna 2:


Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	15.24		
Middle	15.49	20.97	Pass
Highest	15.81		

Test plot as follows:

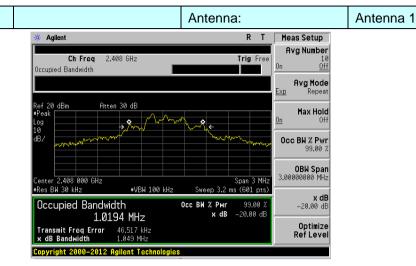
Highest channel

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

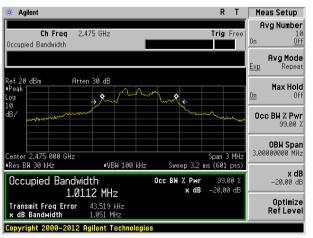
Measurement Data

Antenna 1:


Test channel	20dB Emission Bandwidth (MHz)	Result
Lowest	1.019	
Middle	1.048	Pass
Highest	1.051	

Antenna 2:

Test channel	20dB Emission Bandwidth (MHz)	Result
Lowest	1.015	
Middle	1.052	Pass
Highest	1.047	


Test plot as follows:

Lowest channel

🔆 Agilent 🛛 🛛 R T	Meas Setup
Ch Freq 2.44 GHz Trig Free Occupied Bandwidth	Avg Number 10 On <u>Off</u>
	Avg Mode Exp Repeat
Ref 20 dBm Atten 30 dB ■Peak Log 10 → ♥ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Max Hold On Off
dB/	Occ BW % Pwr 99.00 %
Center 2.440 000 GHz Span 3 MHz •Res BX 30 kHz •VBW 100 kHz Sweep 3.2 ms (601 pts)	
Occupied Bandwidth осс ви % Риг зумер 3,2 ms (601 pts) 1.0101 MHz × dB -20.00 dB	x dB –20.00 dB
Transmit Freq Error 41.601 kHz x dB Bandwidth 1.048 MHz	Optimize RefLevel

Middle channel

Highest channel

 Cccupied Bandwidth
 Осс ВМ Х. Рыг
 99.00 %
 20.00 dB

 1.0094 MHz
 x dB
 -20.00 dB
 -20.00 dB

 Transmit Freq Error
 41.575 kHz
 0ptimize
 0ptimize

 x dB Bandwidth
 1.052 MHz
 Ref Level

 Copyright 2000-2012 Agilent Technologies
 -20.00 dB
 -20.00 dB

Middle channel

Highest channel

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) ANSI C63.10:2013 RBW=100KHz, VBW=300KHz, detector=Peak	
Test Method:		
Receiver setup:		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

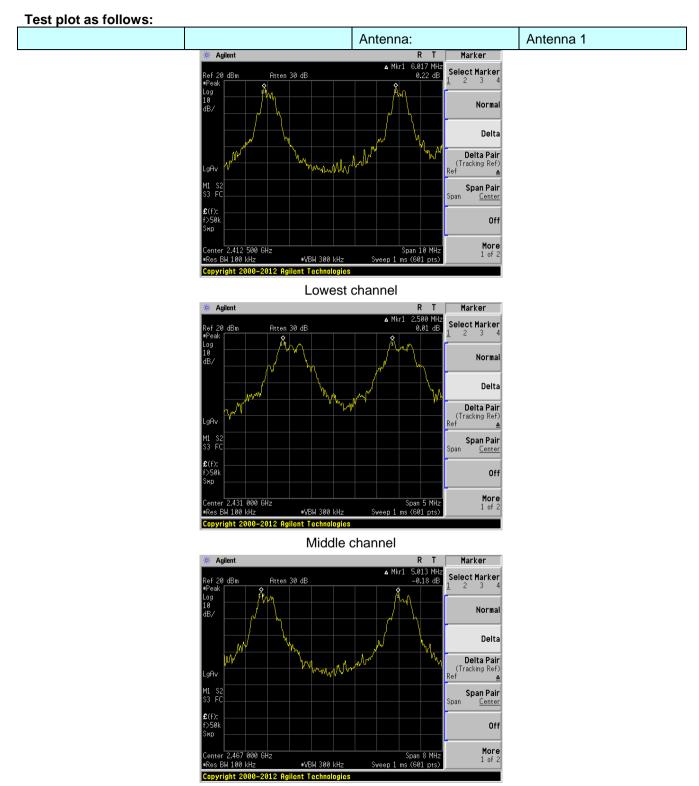
Measurement Data

Antenna 1:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	6017	704	Pass
Middle	2500	704	Pass
Highest	5013	704	Pass

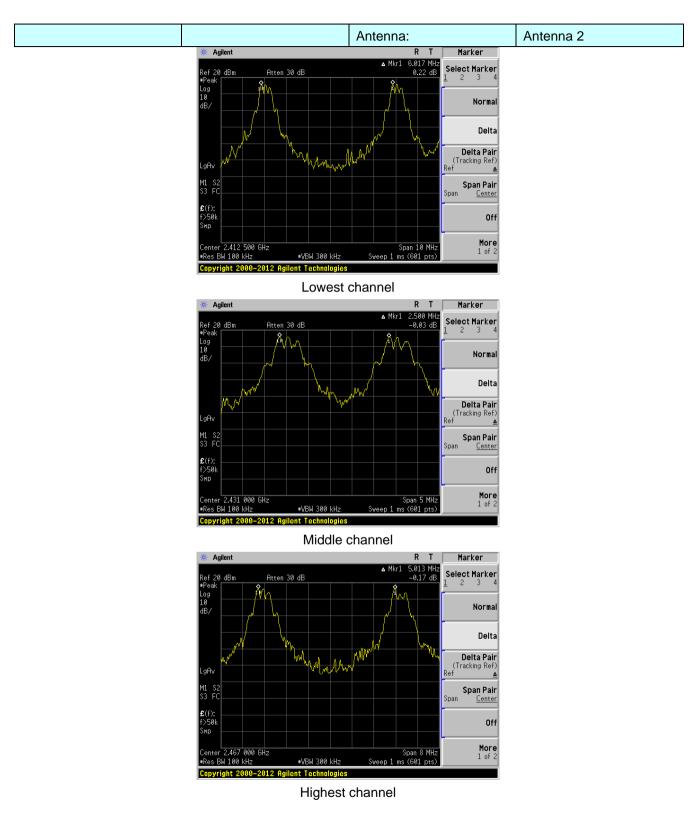
Note: According to section 7.4

Mode	20dB bandwidth (kHz)	Limit (kHz)	
wode	(worse case)	(Carrier Frequencies Separation)	
GFSK	1056	704	


Antenna 2:

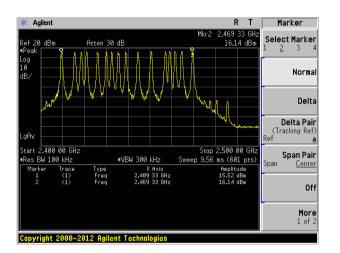
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	6017	703	Pass
Middle	2500	703	Pass
Highest	5013	703	Pass

Note: According to section 7.4

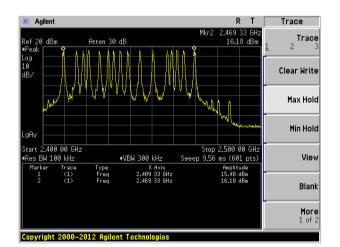

Mode	20dB bandwidth (kHz)	Limit (kHz)
Mode	(worse case)	(Carrier Frequencies Separation)
GFSK	1054	703

Highest channel

7.6 Hopping Channel Number


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data:


Antenna 1:

Antenna 2:

Hopping channel numbers	Limit	Result
16	15	Pass

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

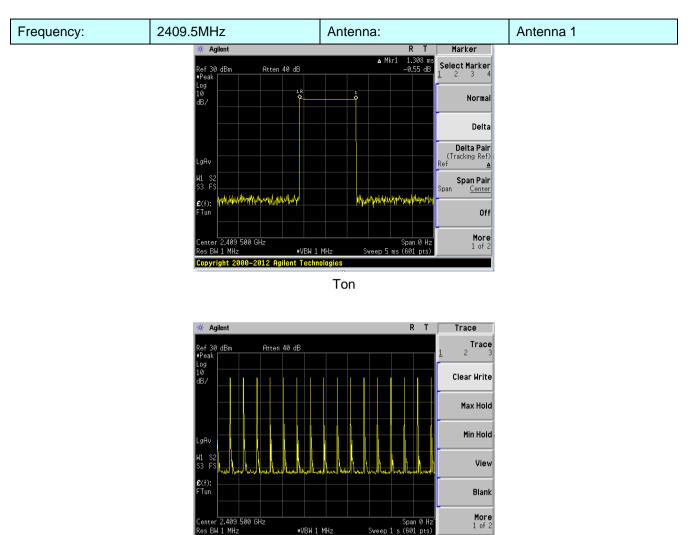
Antenna 1:

Frequency	Ton (ms)	Dwell time(ms)	Limit(ms)	Result
2.4095GHz	1.308	133.94	400	Pass
2.440GHz	1.305	133.63	400	Pass
2.4695GHz	1.310	134.14	400	Pass

The formula as below:

2409.5MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=1.308ms*16*0.4*16=133.94ms2440MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=1.305ms*16*0.4*16=133.63ms2469.5MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=1.310ms*16*0.4*16=134.14ms

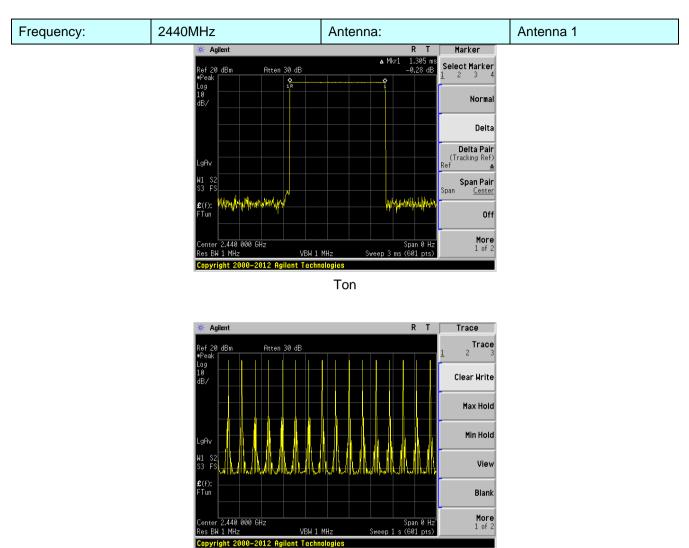
Antenna 2:


Frequency	Ton (ms)	Dwell time(ms)	Limit(ms)	Result
2.4055GHz	1.308	133.94	400	Pass
2.440GHz	1.315	134.66	400	Pass
2.475GHz	1.310	134.14	400	Pass

The formula as below:

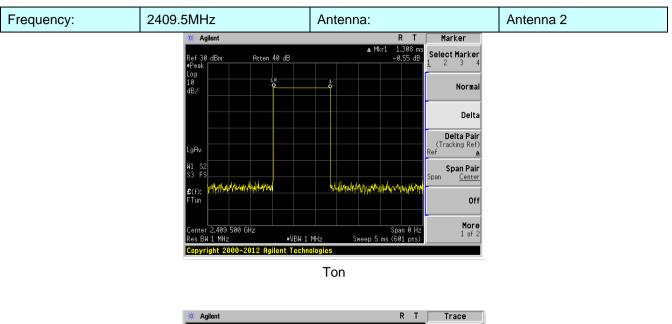
2409.5MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=1.308ms*16*0.4*16=133.94ms2440MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=1.315ms*16*0.4*16=134.66ms2469.5MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=1.310ms*16*0.4*16=134.14ms

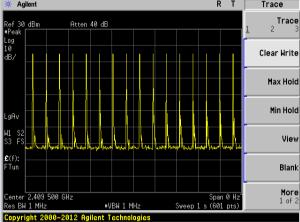
Test plot as follows:

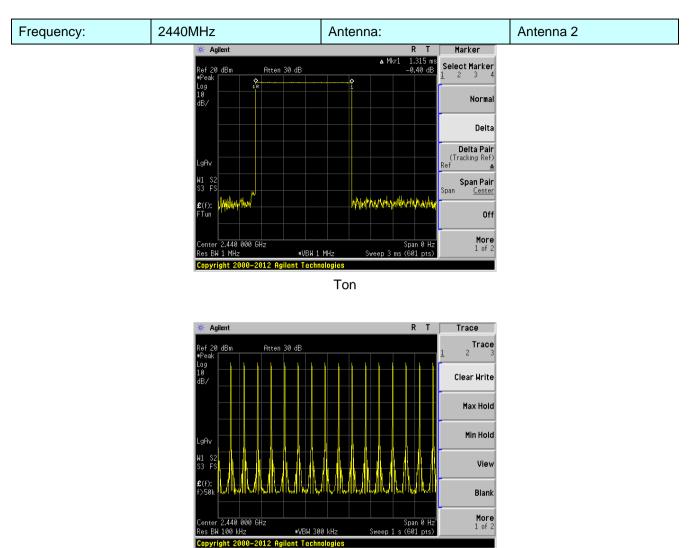


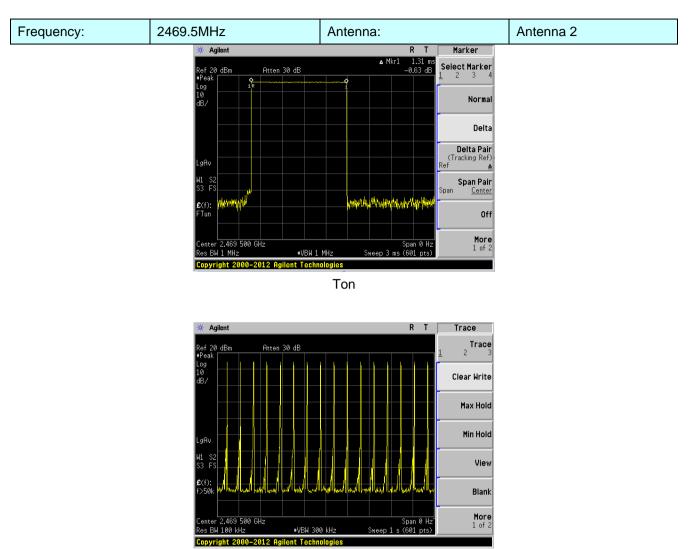

Ton times in 1s

Copyright 2000-2012 Agilent Technologies



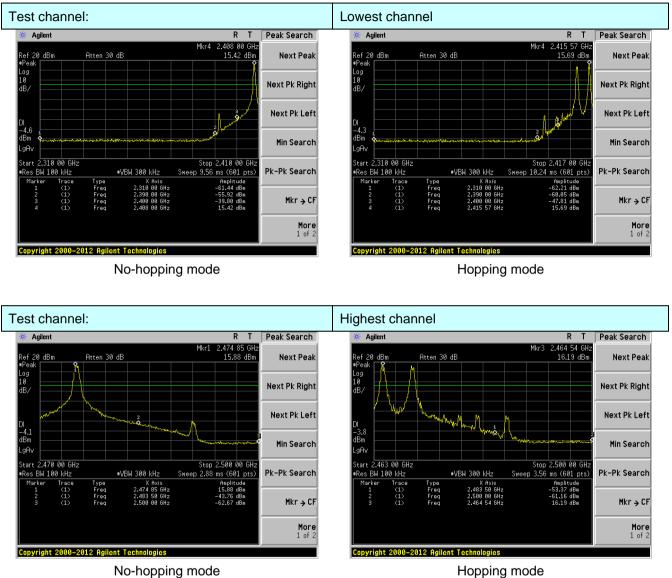




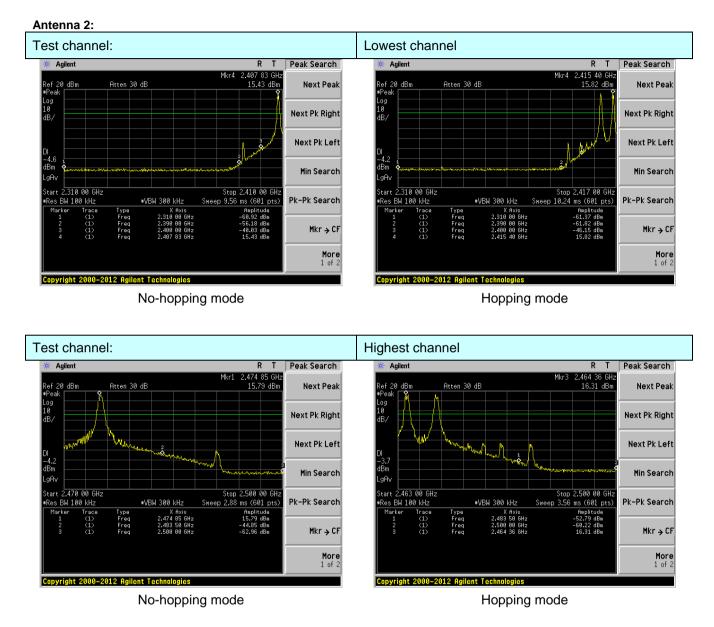


	Pseudorandom Frequency Hopping Sequence		
	Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:		
	a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.		
	 Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. 		
	(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.		
	EUT Pseudorandom Frequ	ency Hopping Sequence	
	 stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹-1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) 		
	• Length of pseudo-random	sequence: $2^9 - 1 = 511$ bits	
	• Length of pseudo-random	sequence: $2^9 - 1 = 511$ bits	
	 Length of pseudo-random Longest sequence of zeros 	sequence: $2^9 - 1 = 511$ bits s: 8 (non-inverted signal)	
	Length of pseudo-random Longest sequence of zeros	sequence: 2 ⁹ - 1 = 511 bits s: 8 (non-inverted signal) + + + + + + + + + + + + + + + + + +	
	Length of pseudo-random Longest sequence of zeros	sequence: $2^9 - 1 = 511$ bits s: 8 (non-inverted signal)	
	Length of pseudo-random Longest sequence of zeros Linear Feedback S An example of Pseudorando	sequence: 2 ⁹ - 1 = 511 bits s: 8 (non-inverted signal) 	
	 Length of pseudo-random Longest sequence of zeros Linear Feedback S An example of Pseudorando 0 2 4 6 	sequence: $2^9 - 1 = 511$ bits s: 8 (non-inverted signal) thift Register for Generation of the PRBS sequence om Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Length of pseudo-random Longest sequence of zeros Linear Feedback S An example of Pseudorando 0 2 4 6 Each frequency used equally of The system receivers have input	sequence: 2 ⁹ - 1 = 511 bits s: 8 (non-inverted signal) 	

7.9 Band Edge


7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

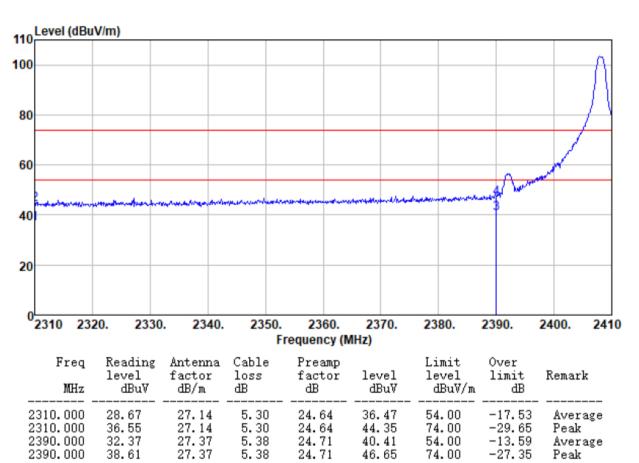

Test plot as follows:

Antenna 1:

		Postion 15 200	and 15 205						
Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	All restriction band have been tested, and 2.3GHz to 2.5GHz band is the worse case								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency Detector RBW VBW Remark								
	Above 1GHz Peak 1MHz 3MHz Peak Value								
	Above TOTIZ	Peak	1MHz	10Hz	Average Value				
Limit:	Freque	ency	Limit (dBuV	/m @3m)		Remark			
	Above 1		54.0	0	Ave	Average Value			
	ADUA	19112	74.0	0	P	eak Value			
	<pre></pre>								
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 								
Test Instruments:	Refer to section								
Test mode:	Refer to section								
Temp. / Hum.		°C Hun		% Pr	ess.:	1 012mbar			
Test results:	Pass	<u> </u>	02		5551	· · · Linbar			

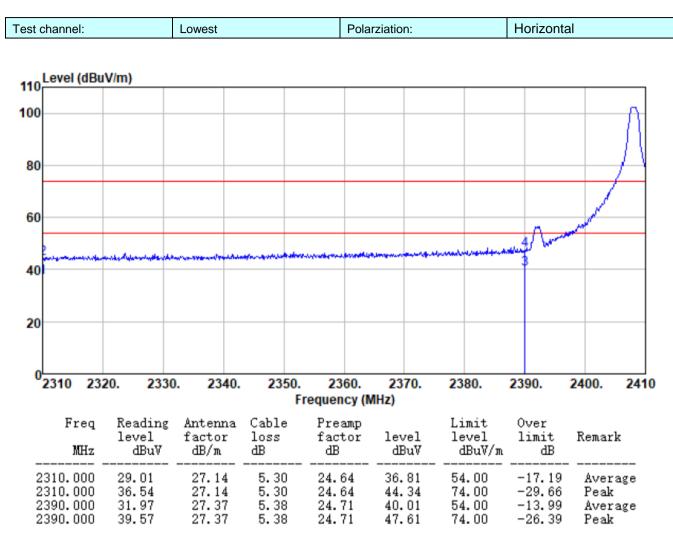
7.9.2 Radiated Emission Method

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

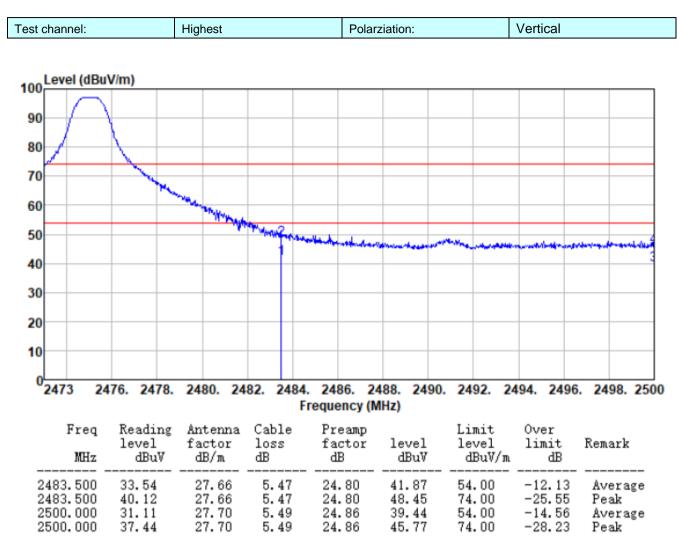


Remark:

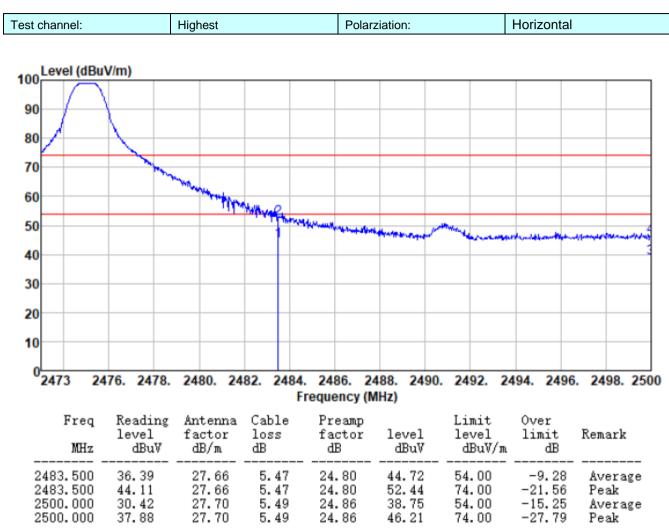
1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


Antenna 1:

Test channel:	Lowest	Polarziation:	Vertical

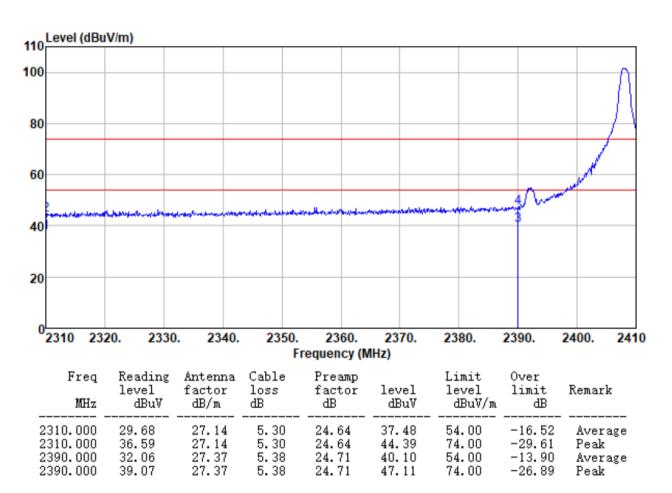


Report No.: GTS201806000240F01

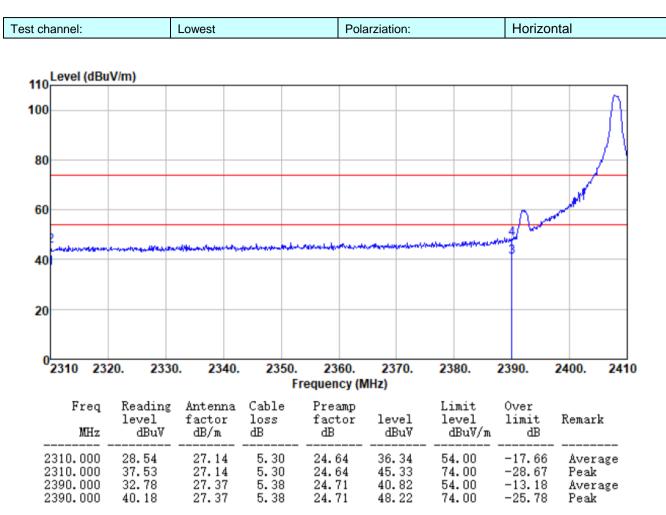


Report No.: GTS201806000240F01

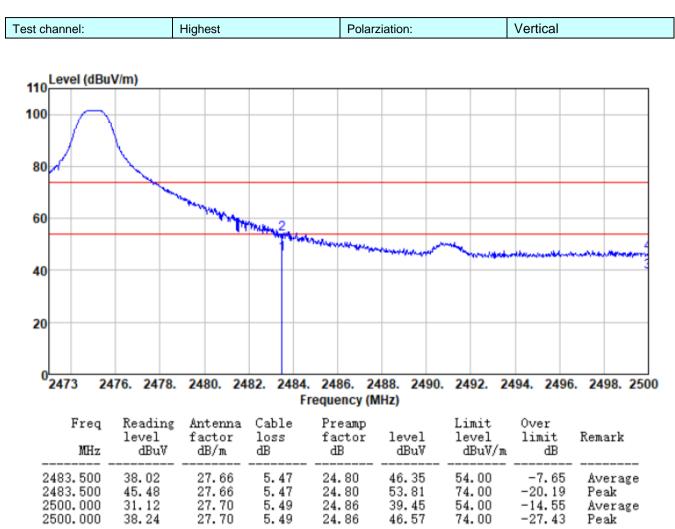
Report No.: GTS201806000240F01


1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

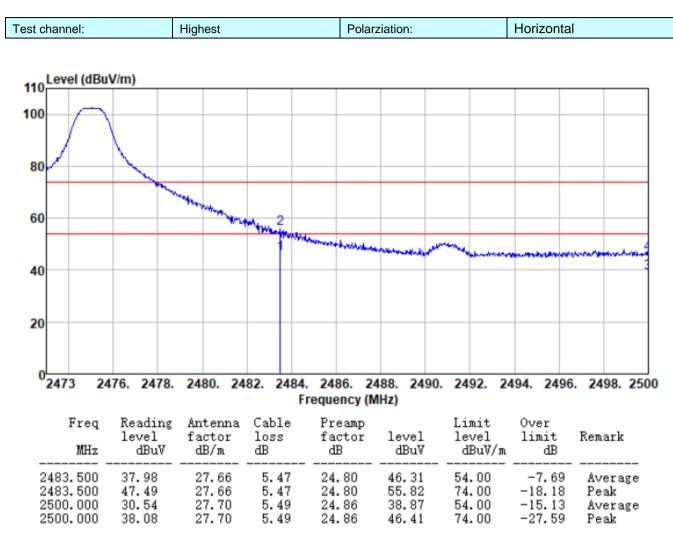
2. The emission levels of other frequencies are very lower than the limit and not show in test report.


Antenna 2:

|--|



Report No.: GTS201806000240F01



Report No.: GTS201806000240F01

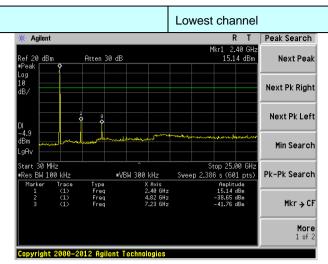
Report No.: GTS201806000240F01

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

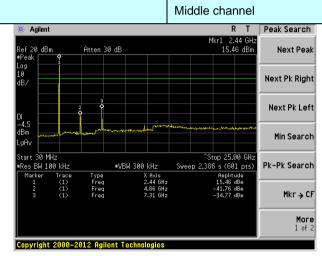
7.10 Spurious Emission

7.10.1 Conducted Emission Method

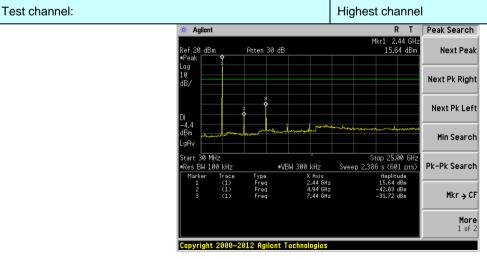
Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 Meas Guidance V04			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			



Antenna 1:

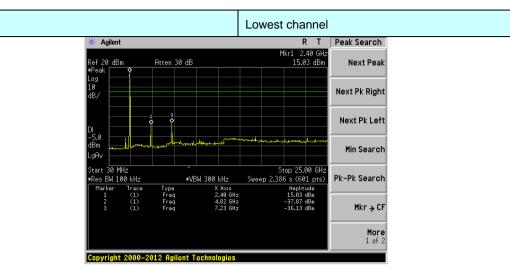

Test channel:

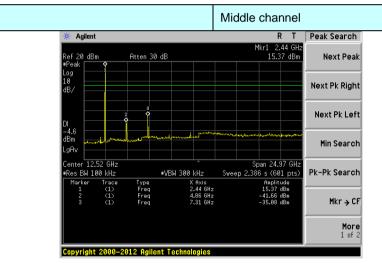
Test channel:


Report No.: GTS201806000240F01

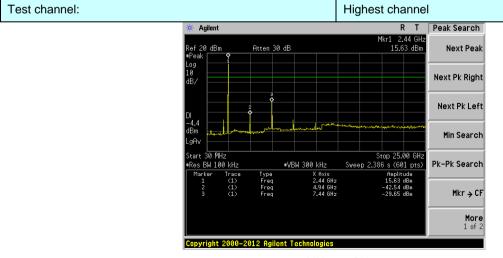
30MHz~25GHz

30MHz~25GHz





Antenna 2: Test channel:


Test channel:

30MHz~25GHz

30MHz~25GHz

7.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Ľ	Detector	RB	W	VBW		Value
	9KHz-150KHz	Qı	lasi-peak	200	Hz	600Hz	2	Quasi-peak
	150KHz-30MHz	Qı	uasi-peak	9KH	Ηz	30KHz	z	Quasi-peak
					Quasi-peak			
	Above 1GHz Peak 1MHz 3MHz						Peak	
	Above 1GHz Peak 1MHz 10Hz Average						Average	
Limit: (Spurious Emissions)	Frequency Limit (uV/m) Value Measurement Distance							
(0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705MHz 24000/F(KHz) QP 300m						300m	
	1.705MHz-30MHz 30 QP 30m						30m	
	30MHz-88MHz		100			QP		
	88MHz-216MHz 150 QP					QP		
	216MHz-960MHz 200 QP 960MHz-1GHz 500 QP				3m			
					511			
	Above 1GHz 500 Average							
	Above 1GHz 5000 Peak							
Test setup:	Below 30MHz							
	Below 1GHz							

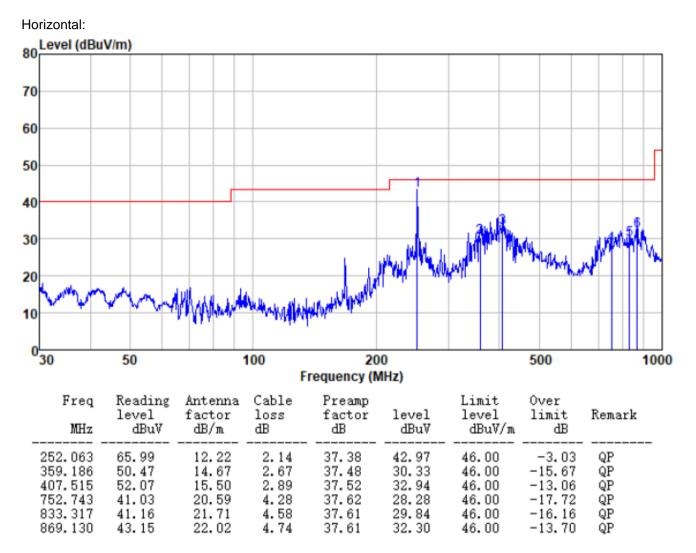
< 3m >4 Test Antenna < 1m 4m >EUT+ < 80cm Turn Table+ 1 Preamplifier. Receiver+ Above 1GHz < 3m >. Test Antenna+ < 1m ... 4m > EUT Turn Table+ <150cm> < h Preamplifier+ Receiver+ Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8 meters for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or

				поронна	01020	
	average method as specified and then reported in a data sheet.					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.2 for details					
Temp. / Hum.	Temp.:	25 °C	Humid.:	52%	Press.:	1 012mbar
Test results:	Pass					

Remark:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

2. The measured filed strength at frequencies below 30MHz are lower than the limit over 30dB. So the data isn't reported.


Measurement data:

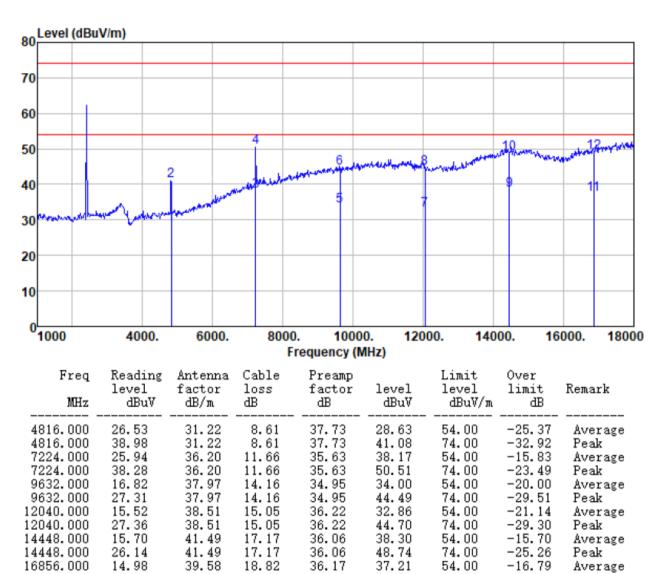
Below 30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ 30MHz ~ 1GHz

Vertical: Level (dBuV/m) 80 70 60 50 40 Harmon And March Martin 30 20 10 0<mark>___</mark> 30 50 100 200 500 1000 Frequency (MHz) Freq Reading Antenna Cable Preamp Limit 0ver Remark level factor loss factor level level limit MHz dBuV dB/m dB dB dBu∛ dBu∛/m dB 37.548 43.93 11.80 0.6435.52 20.85 40.00 -19.15QP 47.28 -20.85 91.495 10.90 36.65 22.65 43.50 QΡ 1.12 252.063 357.929 52.94 12.22 37.38 29.92 46.00 -16.08QP 2.14 2.66 3.56 21.77 QP 41.95 14.64 37.48 46.00 -24.23560.693 36.75 37.53 46.00 -24.55 QP 18.67 21.45 863.056 38.44 21.95 4.71 37.61 27.49 46.00 -18.51 QΡ

■ Above 1GHz


16856.000

26.86

Report No.: GTS201806000240F01

Antenna 1:

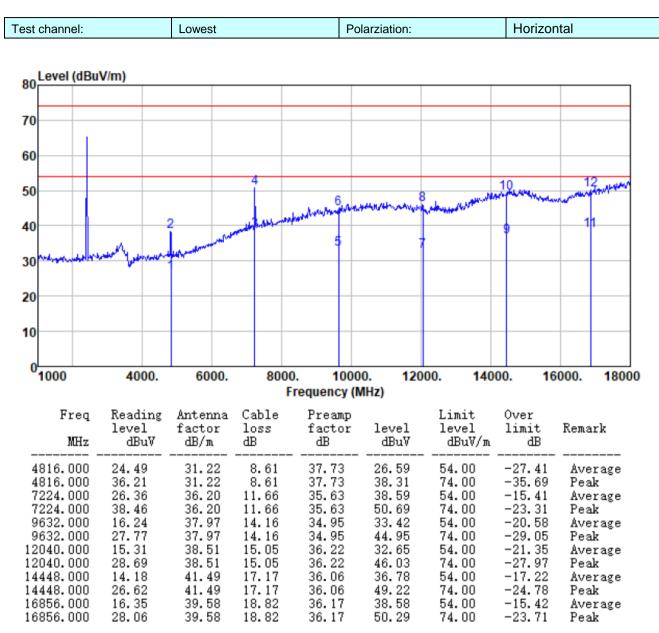
Test channel: Lowest Polarziation: Vertical	l est channel:	Lowest	Polarziation:	Vertical

36.17

49.09

74.00

-24.91


Peak

39.58

18.82

Report No.: GTS201806000240F01

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7320.000

9760.000

9760.000

12200.000

12200.000

14640.000

14640.000

17080.000

17080.000

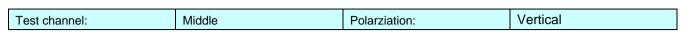
42.11

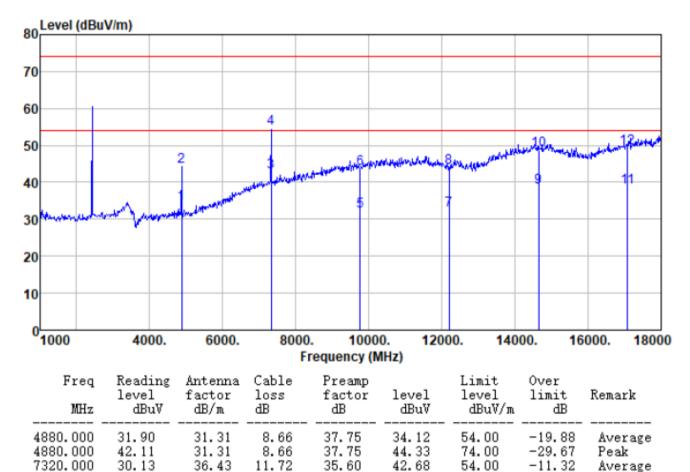
14.86

26.28

14.97

26.44


15.98


26.15

15.63

26.28

Report No.: GTS201806000240F01

35.60

35.03

35.03

36.31

36.31

35.77

35.77

36.29

36.29

54.66

32.18

43.60

32.37

43.84

38.59

48.76

38.55

49.20

11.72

14.25

14.25

15.14

15.14

17.28

17.28

18.99

18.99

36.43

38.10

38.10

38.57

38.57

41.10

41.10

40.22

40.22

74.00

54.00

74.00

54.00

74.00

54.00

74.00

54.00

74.00

-19.34

-21.82

-30.40

-21.63

-30.16

-15.41

-25.24

-15.45

-24.80

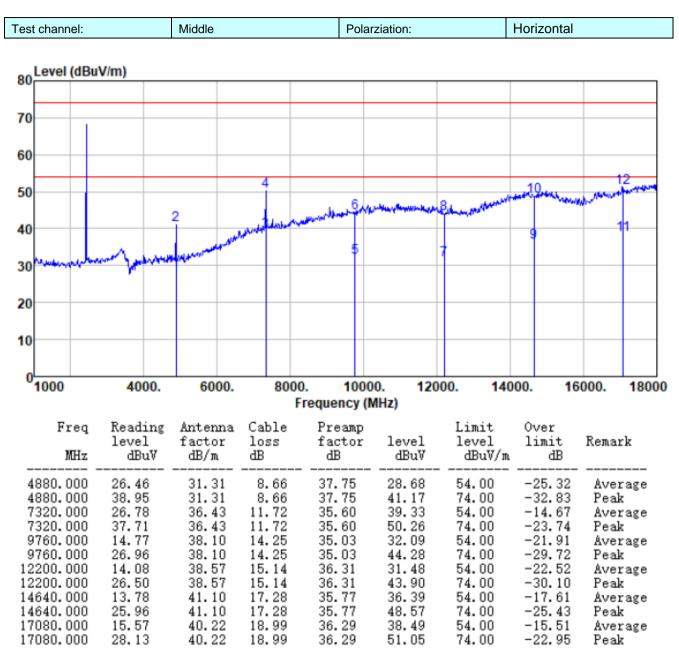
Peak

Peak Average

Peak

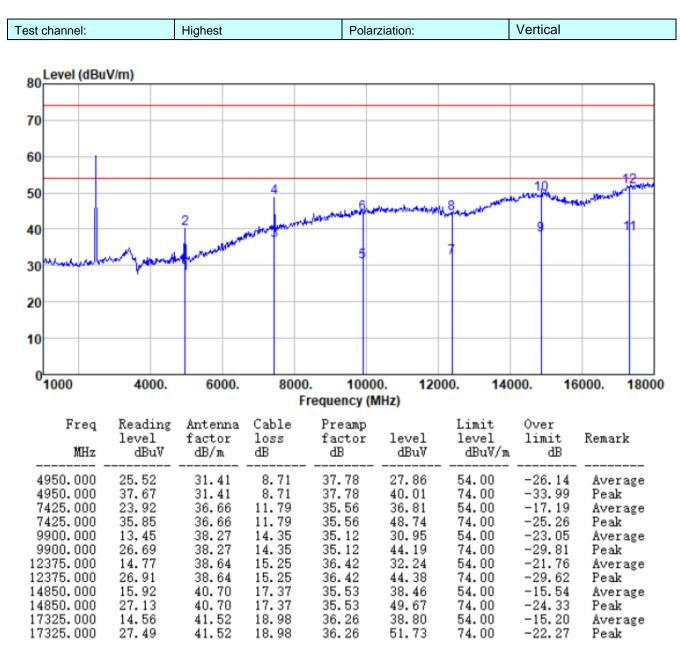
Peak

Peak

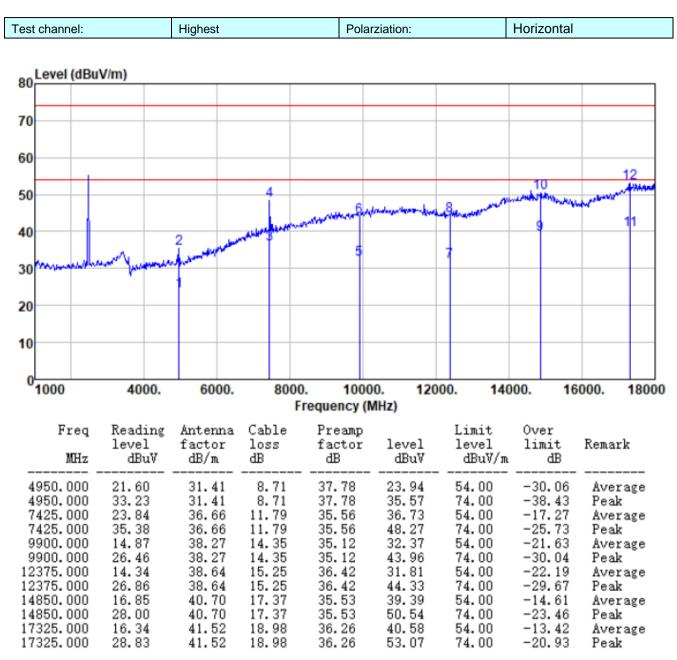

Average

Average

Average

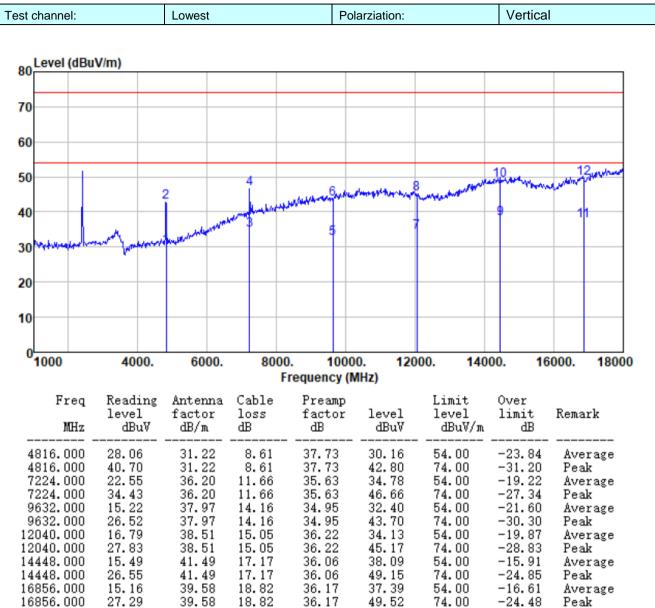

Report No.: GTS201806000240F01

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



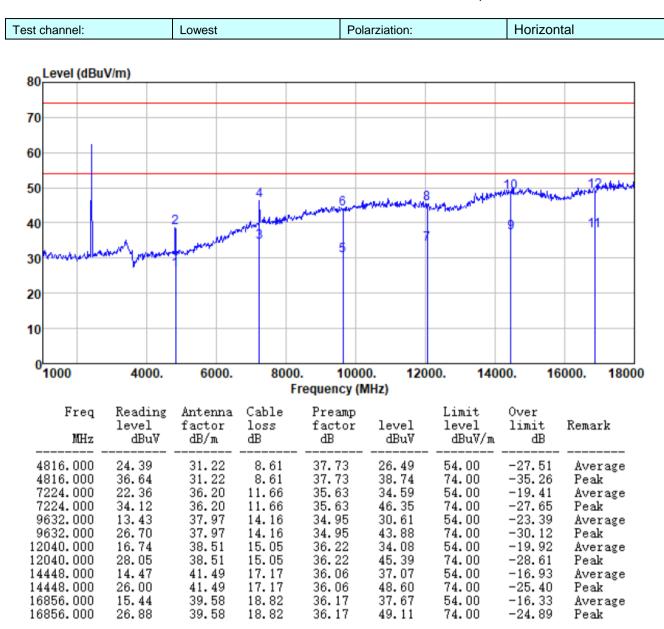
Report No.: GTS201806000240F01

Report No.: GTS201806000240F01

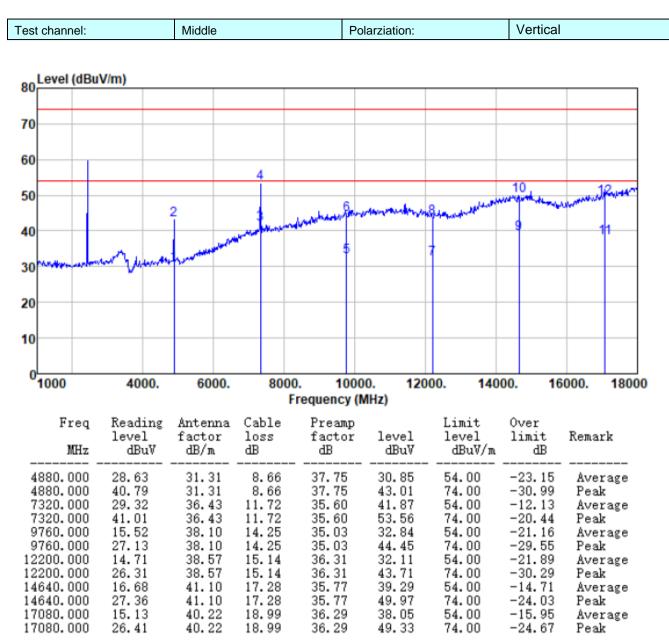


1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

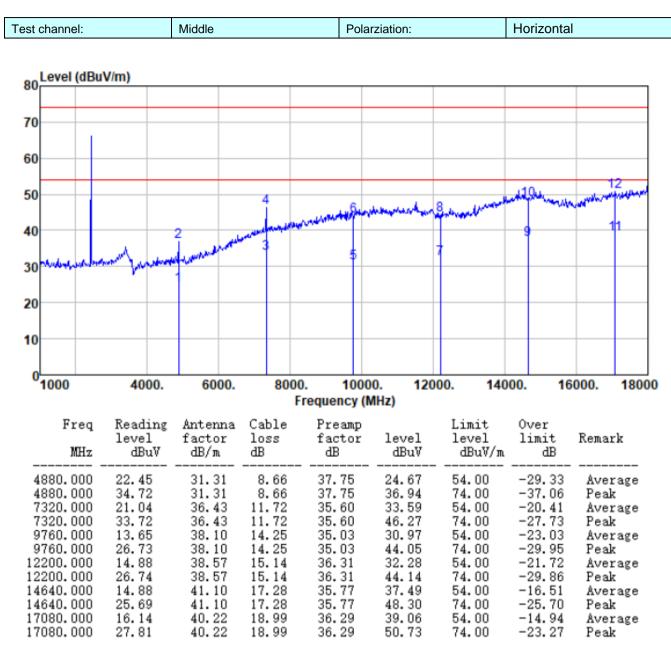
2. The emission levels of other frequencies are very lower than the limit and not show in test report.



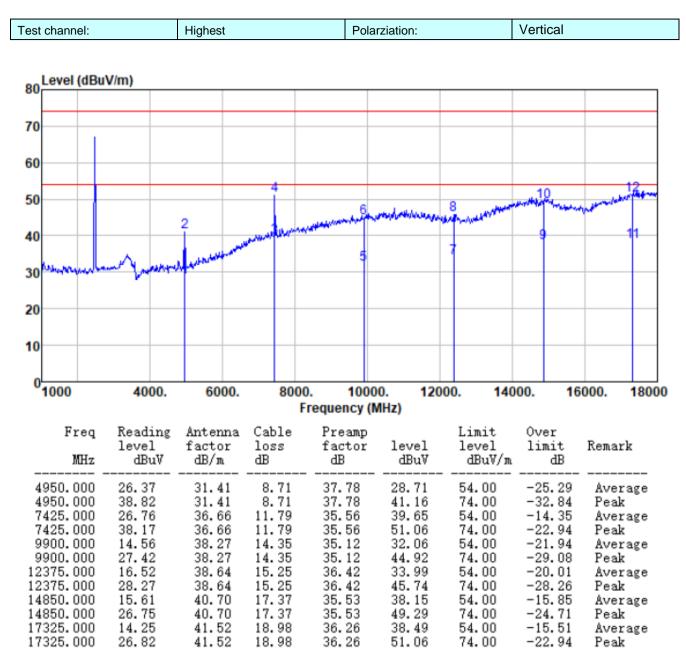
Antenna 2:


Report No.: GTS201806000240F01

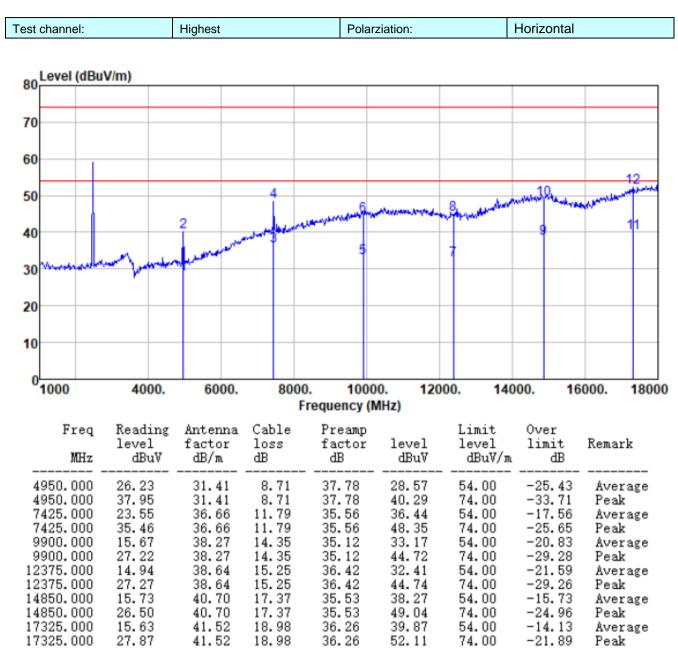
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Report No.: GTS201806000240F01

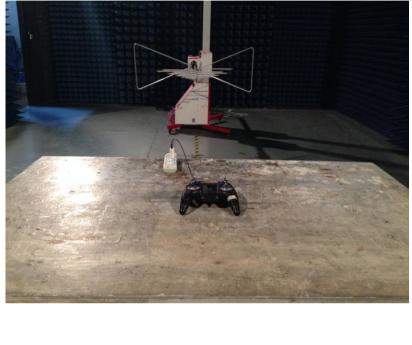

Report No.: GTS201806000240F01

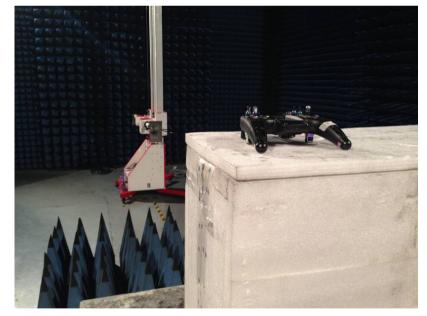
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Report No.: GTS201806000240F01

Report No.: GTS201806000240F01


1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

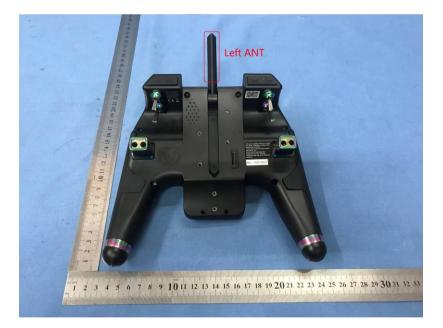

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

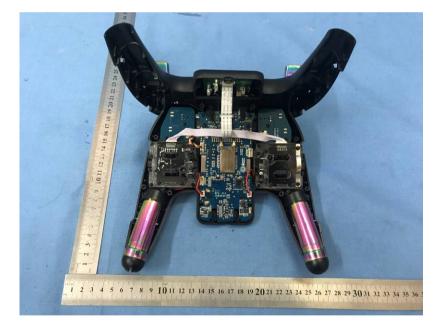
8 Test Setup Photo

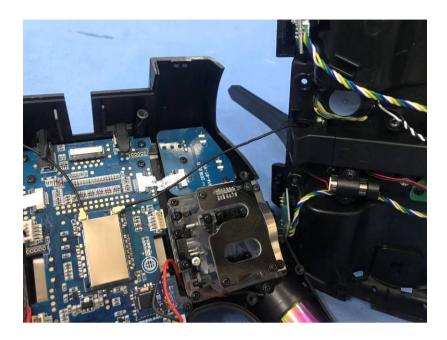
Radiated Emission

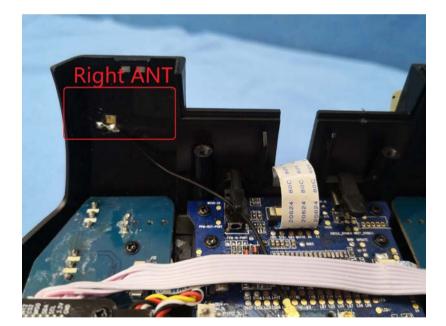
Conducted Emission

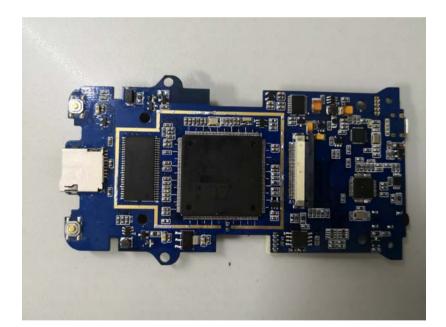
9 EUT Constructional Details











---End----