GTS Global United Technology Services Co., Ltd.

Report No.: GTS201811000172F01

FCC Report

Applicant:	FLYSKY RC MODEL TECHNOLOGY CO., LTD		
Address of Applicant:	West building3, Huangjianyuan Ind, Park QIAOLI North Gate Changping Town, Dongguan, China		
Manufacturer:	ShenZhen FLYSKY Technology Co.,Ltd		
Address of Manufacturer:	ADD 16F, Huafeng Building, No. 6006 Shennan Road, Futian District, Shenzhen, Guangdong, China		
Factory:	Dongguan Flysky RC Model technology Co.,Ltd		
Address of Factory:	West building3, Huangjianyuan Ind, Park QIAOLI North Gate Changping Town, Dongguan, China		
Equipment Under Test (I	EUT)		
Product Name:	Mini two-way receive		
Model No.:	FS-iA8X		
Trade Mark:	FLYSKY		
FCC ID:	N4ZIA8X00		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	November 20, 2018		
Date of Test:	November 21, 2018-December 12, 2018		
Date of report issued:	December 13, 2018		
Test Result :	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

el.

Robinson Lo Laboratory Manager This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	December 13, 2018	Original

Prepared By:

e~

Date:

December 13, 2018

December 13, 2018

Project Engineer

Check By:

Date: obinsor

Reviewer

3 Contents

			i age
1	COV	ER PAGE	1
2	VER	SION	2
2	001	TENTS	2
3	CON	IIENIS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
_			
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	8
	5.3	TEST FACILITY	8
	5.4	TEST LOCATION	
	5.5	OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
	5.6	DESCRIPTION OF SUPPORT UNITS	8
	5.7	Additional Instructions	8
6	TES	T INSTRUMENTS LIST	9
7	TES	T RESULTS AND MEASUREMENT DATA	11
'	_		
	7.1		
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	-
	7.4	20DB EMISSION BANDWIDTH	
	7.5	CARRIER FREQUENCIES SEPARATION	
	7.6 7.7	HOPPING CHANNEL NUMBER	
	7.7 7.8	DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	7.8 7.9	BAND EDGE	
	7.9.1		
	7.9.1		
	7.10	SPURIOUS EMISSION	
	7.10		
	7.10		
~			
8	TES	Г ЅЕТИР РНОТО	
9	EUT	CONSTRUCTIONAL DETAILS	40
Э	EUI	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard. Remark : Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz ± 4.34dB		(1)
Radiated Emission	30MHz ~ 1000MHz	\pm 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	\pm 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

5 General Information

5.1 General Description of EUT

•	
Product Name:	Mini two-way receive
Model No.:	FS-iA8X
Serial No.:	N/A
Hardware version:	FS-iA8X-V1.2
Software version:	FS-iA8X V1.0.6
Test sample(s) ID:	GTS201811000172-1
Sample(s) Status	Engineer sample
Operation Frequency:	2408MHz~2475.0MHz
Channel numbers:	135
Channel separation:	500kHz
Modulation technology:	GFSK
Antenna Type:	Integral Antenna
Antenna gain:	0dBi
Power supply:	DC 4V ~ 8.4V

Remark: The system works in the frequency range of 2408MHz to 2475MHz. This band has been divided to 135 independent channels. Each radio system uses 16 different channels; the minimum channel separation is ≥2.0MHz. By using various switch-on times, hopping scheme and channel frequencies, the system can guarantee a jamming free radio transmission. The channel list is below.

Operation F	requency eac	h of channel					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1		36	2423.00	71	2440.50	106	2458.00
2		37	2423.50	72	2441.00	107	2458.50
3		38	2424.00	73	2441.50	108	2459.00
4		39	2424.50	74	2442.00	109	2459.50
5		40	2425.00	75	2442.50	110	2460.00
6	2408.00	41	2425.50	76	2443.00	111	2460.50
7	2408.50	42	2426.00	77	2443.50	112	2461.00
8	2409.00	43	2426.50	78	2444.00	113	2461.50
9	2409.50	44	2427.00	79	2444.50	114	2462.00
10	2410.00	45	2427.50	80	2445.00	115	2462.50
11	2410.50	46	2428.00	81	2445.50	116	2463.00
12	2411.00	47	2428.50	82	2446.00	117	2463.50
13	2411.50	48	2429.00	83	2446.50	118	2464.00
14	2412.00	49	2429.50	84	2447.00	119	2464.50
15	2412.50	50	2430.00	85	2447.50	120	2465.00
16	2413.00	51	2430.50	86	2448.00	121	2465.50
17	2413.50	52	2431.00	87	2448.50	122	2466.00
18	2414.00	53	2431.50	88	2449.00	123	2466.50
19	2414.50	54	2432.00	89	2449.50	124	2467.00
20	2415.00	55	2432.50	90	2450.00	125	2467.50
21	2415.50	56	2433.00	91	2450.50	126	2468.00
22	2416.00	57	2433.50	92	2451.00	127	2468.50
23	2416.50	58	2434.00	93	2451.50	128	2469.00
24	2417.00	59	2434.50	94	2452.00	129	2469.50
25	2417.50	60	2435.00	95	2452.50	130	2470.00
26	2418.00	61	2435.50	96	2453.00	131	2470.50
27	2418.50	62	2436.00	97	2453.50	132	2471.00
28	2419.00	63	2436.50	98	2454.00	133	2471.50
29	2419.50	64	2437.00	99	2454.50	134	2472.00
30	2420.00	65	2437.50	100	2455.00	135	2472.50
31	2420.50	66	2438.00	101	2455.50	136	2473.00
32	2421.00	67	2438.50	102	2456.00	137	2473.50
33	2421.50	68	2439.00	103	2456.50	138	2474.00
34	2422.00	69	2439.50	104	2457.00	139	2474.50
35	2422.50	70	2440.00	105	2457.50	140	2475.00

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2408.0MHz
The middle channel	2440.0MHz
The Highest channel	2475.0MHz

5.2 Test mode

Transmitting mode	Keep the EUT in transmitting mode.	

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration No.: 381383, January 08, 2018.

• Industry Canada (IC) — Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.4 Test Location

All other tests were performed at: Global United Technology Services Co., Ltd. Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.5 Other Information Requested by the Customer

None.

5.6 Description of Support Units

Manufacturer	acturer Description		nufacturer Description		Serial Number	FCC Approval
FLYSKY	Remote controller	FS-i10	N/A	Certificated		
MEILI	DC POWER SUPPLY	MCH-305A	011121168	Voc		

5.7 Additional Instructions

EUT Software Settings:

Mode Special test firmware was pre-built-in by manufacturer				
Mode	Channel	Frequency (MHz)	Level Set	
GFSK	CH01 2408			
	CH70	2440	TX level : default	
	CH140	2475		

6 Test Instruments list

Rad	Radiated Emission:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019		
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019		
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019		
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019		
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019		
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019		

Gene	General used equipment:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019	
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019	

RF C	RF Conducted Test:						
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019	
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019	

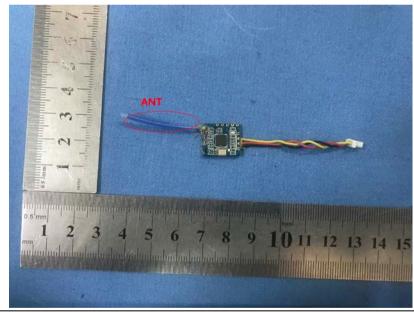
Cond	Conducted Emission					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	КТЈ	TA328	GTS233	June. 27 2018	June. 26 2019
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

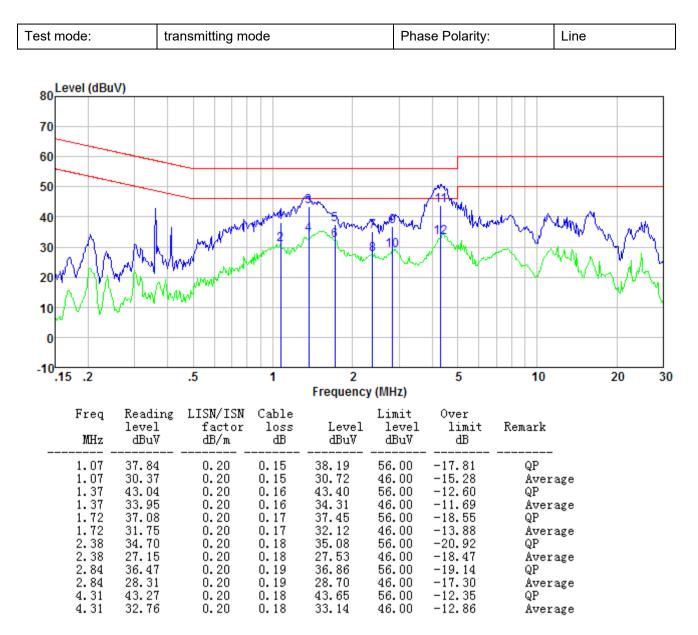

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

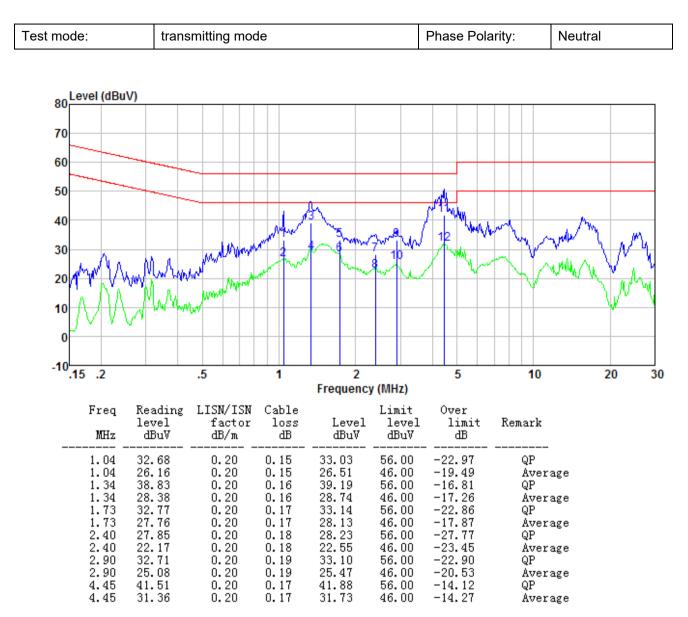
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is integral Antenna, the best case gain of the antenna is 0dBi



7.2 Conducted Emissions

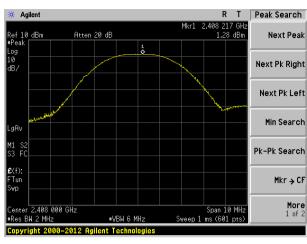

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz	, VBW=30KH	lz, Sweep tir	ne=auto		
Limit:				Limit	(dBuV)	
	Frequenc	cy range (MH	Z) Qu	asi-peak	A	verage
	0	.15-0.5		6 to 56*		6 to 46*
		0.5-5		56		46
		5-30		60		50
	* Decreases	with the loga	arithm of the	frequency.		
Test setup:		Reference				
	LISN 40cm 80cm Filter AC power Equipment E.U.T EMI Receiver Remark: E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
 Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
 Test results:	Pass					
	1 400					

Measurement data:

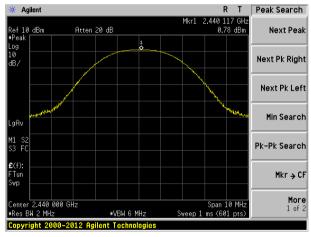
Notes:

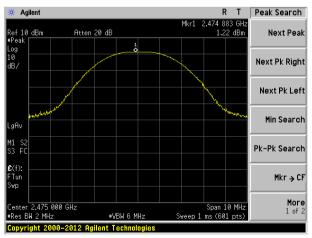
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power


Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013		
Limit:	20.97dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data


Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	1.28		
Middle	0.78	20.97	Pass
Highest	1.22		

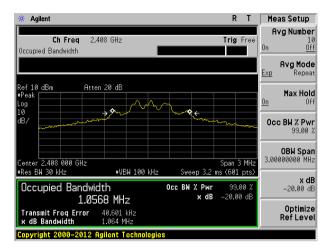

Test plot as follows:

Lowest channel

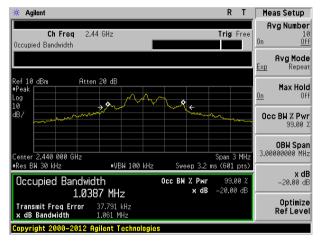
Middle channel

Highest channel

7.4 20dB Emission Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data


Test channel	20dB Emission Bandwidth (MHz)	Result
Lowest	1.064	
Middle	1.061	Pass
Highest	1.056	

Test plot as follows:

Lowest channel

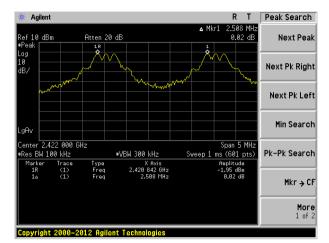
Middle channel

Highest channel

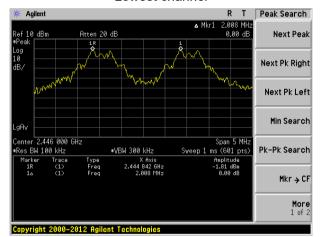
7.5 Carrier Frequencies Separation

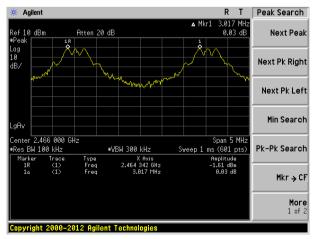
FCC Part15 C Section 15.247 (a)(1)		
ANSI C63.10:2013		
RBW=100KHz, VBW=300KHz, detector=Peak		
25MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Refer to section 6.0 for details		
Refer to section 5.2 for details		
Pass		

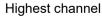
Measurement Data


Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	2508	709	Pass
Middle	2008	709	Pass
Highest	3017	709	Pass

Note: According to section 7.3

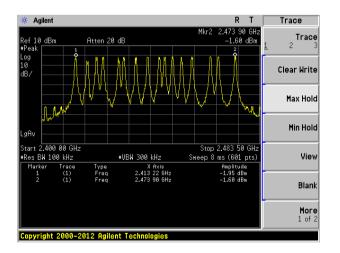

Mode	20dB bandwidth (kHz)	Limit (kHz)
Mode	(worse case) (Carrier Frequencies Separa	
GFSK	1064	709


Test plot as follows:



Lowest channel

Middle channel



7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data:

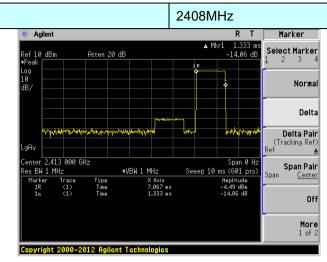
Hopping channel numbers	Limit	Result
16	15	Pass

7.7 Dwell Time

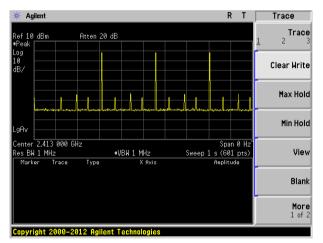
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Frequency	Ton (ms)	Dwell time(ms)	Limit(ms)	Result
2.408GHz	1.333	25.59	400	Pass
2.440GHz	1.333	17.06	400	Pass
2.475GHz	1.333	25.59	400	Pass

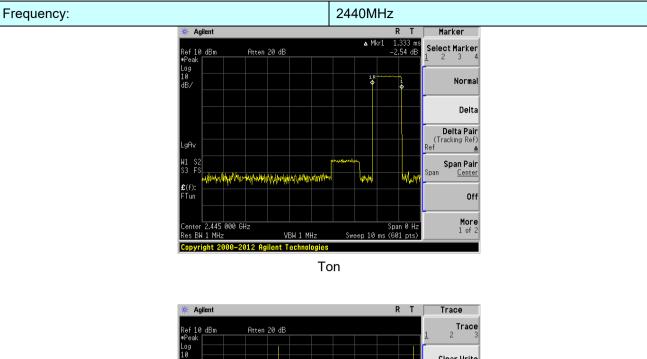

The formula as below:

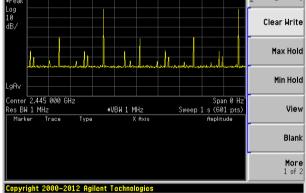
2408MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=1.333ms*3*0.4*16=25.59ms 2440MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=1.333ms*2*0.4*16=17.06ms 2475MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=1.333ms*3*0.4*16=25.59ms



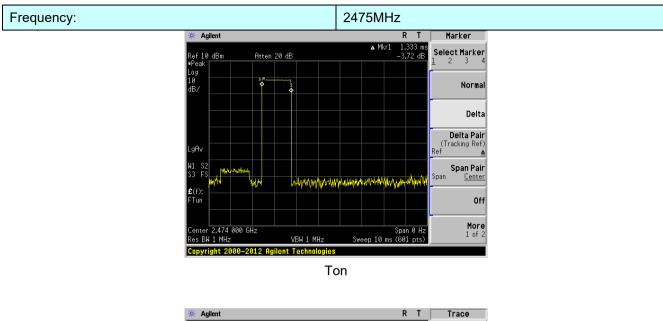
Test plot as follows:

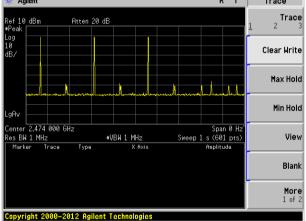
Frequency:




Ton

Ton times in 1s

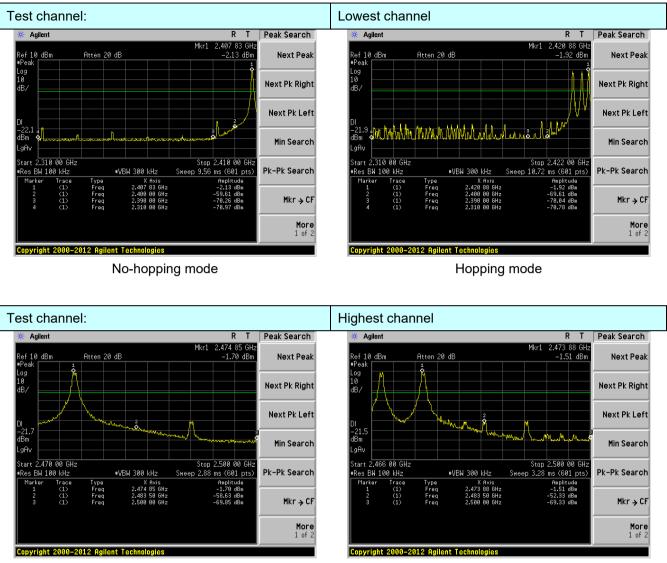




Ton times in 1s

Ton times in 1s

٦	Test Requirement:	FCC Part15 C Section 15.247 (a)(1) requirement:	
ć	a(1): Frequency hopping sys	tems shall have hopping channel carrier frequencies separated by a minimum of 25 kl e hopping channel, whichever is greater.	
/ 0 1 / / /	Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shal hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.		
e c i f	each transmission. Howeve comply with all of the regula information) stream. In addit	In the systems are not required to employ all available hopping channels during the system, consisting of both the transmitter and the receiver, must be designed to ions in this section should the transmitter be presented with a continuous data (or on, a system employing short transmission bursts must comply with the definition of a and must distribute its transmissions over the minimum number of hopping channels	
(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.			
E	EUT Pseudorandom Frequency Hopping Sequence		
0	The pseudorandom sequ outputs are added in a m	quency hopping Sequence ence may be generated in a nine-stage shift register whose 5th and 9th stage odulo-two addition stage. And the result is fed back to the input of the first ins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized	
	The pseudorandom seque outputs are added in a m stage. The sequence beg with nine ones. • Number of shift register • Length of pseudo-rando	ence may be generated in a nine-stage shift register whose 5th and 9th stage odulo-two addition stage. And the result is fed back to the input of the first ins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized	
	The pseudorandom seque outputs are added in a m stage. The sequence beg with nine ones. • Number of shift register • Length of pseudo-rando	stages: 9 merce $2^9 - 1 = 511$ bits	
	The pseudorandom seque outputs are added in a m stage. The sequence beg with nine ones. • Number of shift register • Length of pseudo-rando • Longest sequence of ze	stages: 9 merce $2^9 - 1 = 511$ bits	
	The pseudorandom seque outputs are added in a m stage. The sequence beg with nine ones. • Number of shift register • Length of pseudo-rando • Longest sequence of ze Linear Feedbac	Since may be generated in a nine-stage shift register whose 5th and 9th stage bodulo-two addition stage. And the result is fed back to the input of the first ins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized stages: 9 m sequence: $2^9 - 1 = 511$ bits ros: 8 (non-inverted signal)	
	The pseudorandom seque outputs are added in a m stage. The sequence beg with nine ones. • Number of shift register • Length of pseudo-rando • Longest sequence of ze Linear Feedback	The first of the result is fed back to the input of the first ins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized stages: 9 m sequence: 2 ⁹ - 1 = 511 bits ros: 8 (non-inverted signal)	
	The pseudorandom seque outputs are added in a m stage. The sequence beg with nine ones. • Number of shift register • Length of pseudo-rando • Longest sequence of ze Linear Feedback	The first of the stage shift register whose 5th and 9th stage bodulo-two addition stage. And the result is fed back to the input of the first ins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized stages: 9 m sequence: $2^9 - 1 = 511$ bits ros: 8 (non-inverted signal)	
	The pseudorandom seque outputs are added in a m stage. The sequence beg with nine ones. • Number of shift register • Length of pseudo-rando • Longest sequence of ze Linear Feedback An example of Pseudoral 0 2 4 6	ence may be generated in a nine-stage shift register whose 5th and 9th stage bodulo-two addition stage. And the result is fed back to the input of the first ins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized stages: 9 m sequence: 2 ⁹ -1 = 511 bits ros: 8 (non-inverted signal) Shift Register for Generation of the PRBS sequence adom Frequency Hopping Sequence as follow:	
	The pseudorandom seque outputs are added in a m stage. The sequence beg with nine ones. • Number of shift register • Length of pseudo-rando • Longest sequence of zec Linear Feedback An example of Pseudorat 0 2 4 6 Each frequency used equal The system receivers have	ance may be generated in a nine-stage shift register whose 5th and 9th stage odulo-two addition stage. And the result is fed back to the input of the first ins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized stages: 9 m sequence: 2 ⁹ -1 = 511 bits ros: 8 (non-inverted signal) Image: Shift Register for Generation of the PRBS sequence addition Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77 Image: Shift Register by each transmitter. Point and widths that match the hopping channel bandwidths of their corresponding	
	The pseudorandom seque outputs are added in a m stage. The sequence beg with nine ones. • Number of shift register • Length of pseudo-rando • Longest sequence of ze Linear Feedback An example of Pseudorat 0 2 4 6 Each frequency used equal The system receivers have transmitters and shift freque	ance may be generated in a nine-stage shift register whose 5th and 9th stage odulo-two addition stage. And the result is fed back to the input of the first ins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized stages: 9 m sequence: 2 ⁹ - 1 = 511 bits ros: 8 (non-inverted signal) Image: Provide the input of the first of the	


7.9 Band Edge

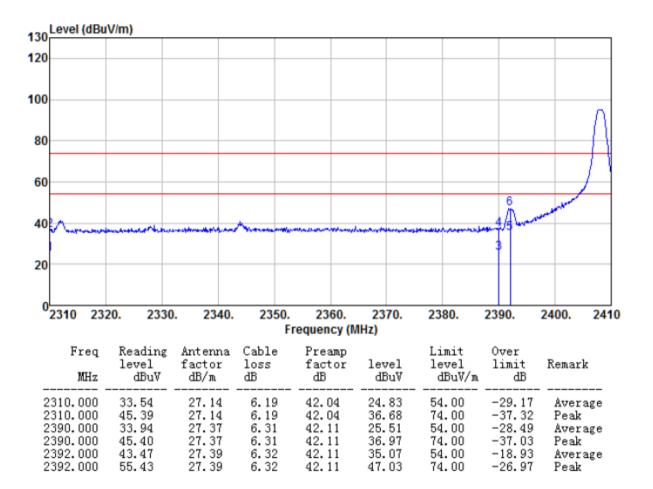
7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer F.U.T Non-Conducted Table	
Test Instruments:	Refer to section6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

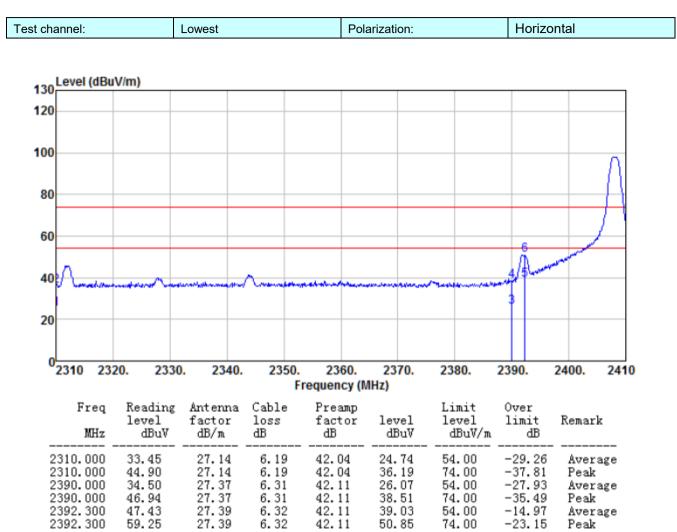
Test plot as follows:

No-hopping mode

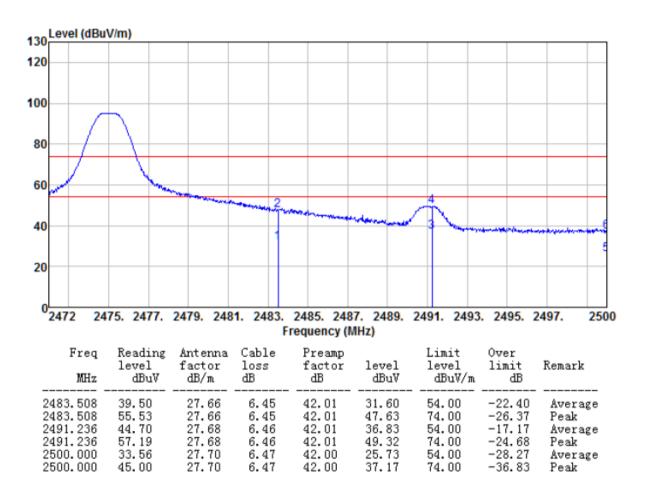
Hopping mode

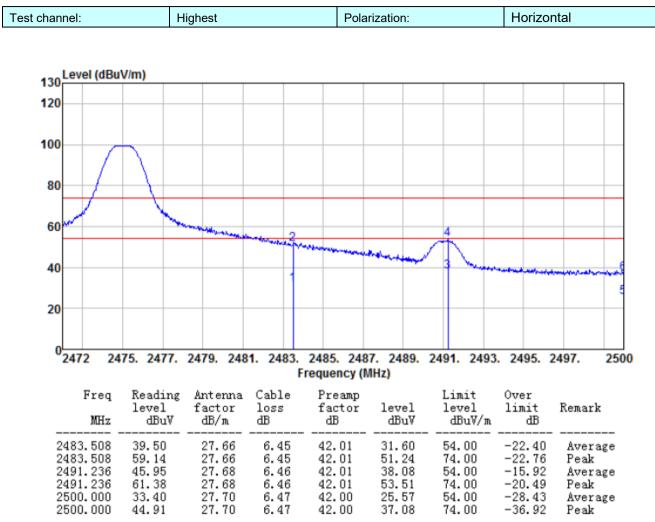

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	All restriction band have been tested, and 2.3GHz to 2.5GHz band is the worse case					
Test site:	Measurement [Measurement Distance: 3m				
Receiver setup:	Frequency Detector RBW VBW			Remark		
	Above 1CHz Peak		1MHz 3MH		z Peak Value	
	Above 1GHz	Peak	1MHz	10Hz	Ave	erage Value
Limit:	Frequency Limit (dBuV/m @3m)			Remark		
	Above 1GHz		54.00			erage Value
			74.0	74.00		Peak Value
	Image: Simple state Image: Simple state Imag					
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 			egrees to ceiving th antenna rs above the gth. Both t to make the s worst case o 4 meters ees to find the and ower than the c values of the not have guasi-peak or		
Test Instruments:	Refer to section		ied and then i s		u uutu	
Test mode:	Non hopping m			reported		
Temp. / Hum.			mid.: 52	-	Press.:	1 012mbar
Test results:				70 F	1033	
I COLICOUILO.	Pass					

7.9.2 Radiated Emission Method


Remark:

Test channel: Lowest Polarization: Vertical


Report No.: GTS201811000172F01


Report No.: GTS201811000172F01

Report No.: GTS201811000172F01

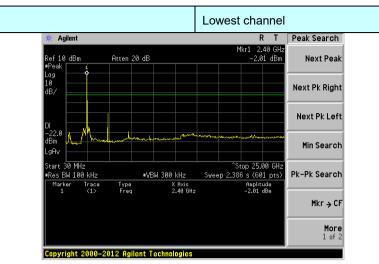
Remark:

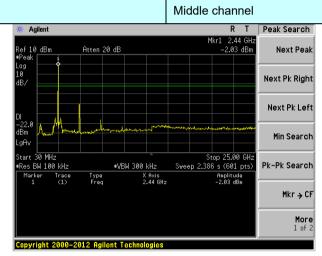
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

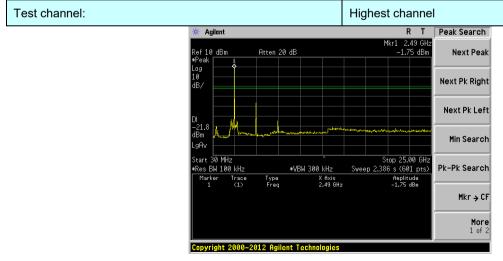
7.10 Spurious Emission

7.10.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 Meas Guidance V04	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:		
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Non hopping mode is worse case and only reported	
Test results:	Pass	

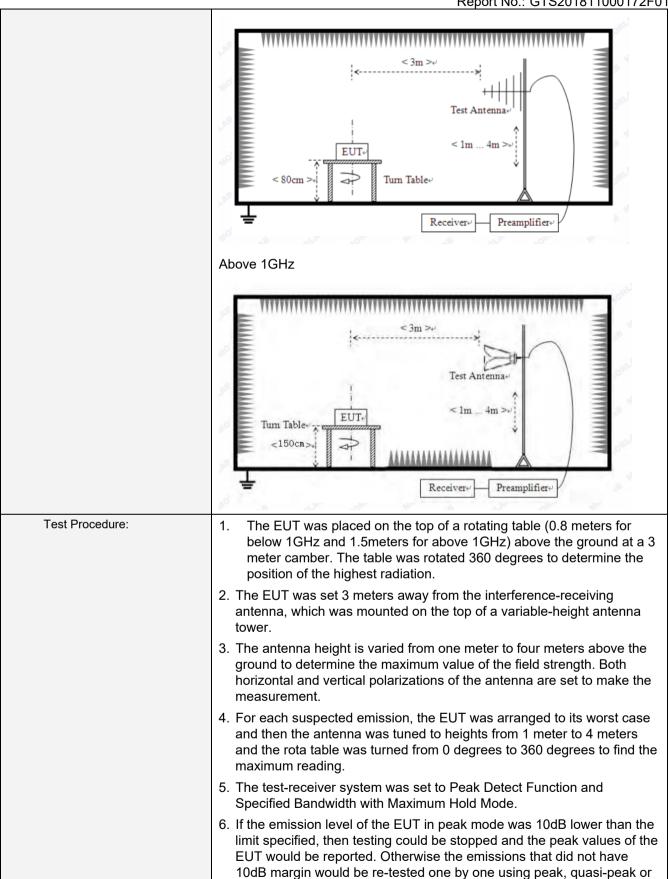

Test channel:

Test channel:


Report No.: GTS201811000172F01

30MHz~25GHz

30MHz~25GHz



7.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distan	ice: 3	3m				
Receiver setup:	Frequency	D)etector	RB	W	VBW	Value
	30MHz-1GHz	Qı	lasi-peak	120K	Ήz	300KH	z Quasi-peak
	Above 1GHz		Peak	1MF	Ηz	3MHz	Peak
	Above TOTIZ		Peak	1MF	Ηz	10Hz	Average
Limit:							Measurement
(Spurious Emissions)	Frequency		Limit (u	V/m)	١	/alue	Distance
	30MHz-88MHz		100			QP	
	88MHz-216MHz		150			QP	
	216MHz-960MHz	Z	200			QP	3m
	960MHz-1GHz		500			QP	5111
	Above 1GHz		500		Av	reage	
	715070 1012		5000		F	Peak	
Test setup:	Below 30MHz						
	Turntable EUT Ground Plane	3		Coaxial Cat	ble /		Test eceiver
	Below 1GHz						

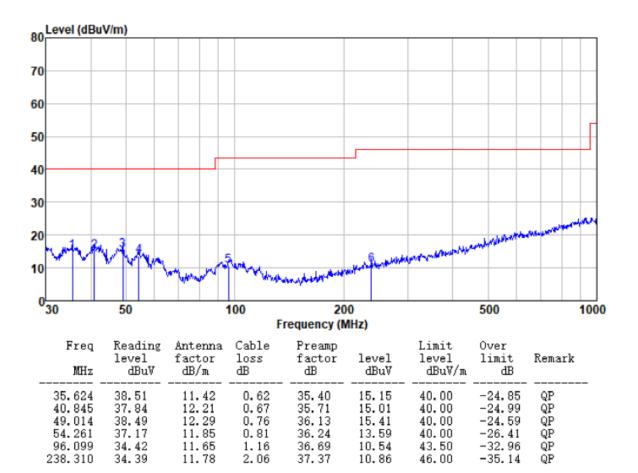
					<u></u>	1011000172101
	average	method as s	pecified and t	hen reported	l in a data	sheet.
Test Instruments:	Refer to see	ction 5.8 for o	details			
Test mode:	Non hoppin	g mode is wo	orse case and	d only reporte	ed	
Temp. / Hum.	Temp.:	25 °C	Humid.:	52%	Press.:	1 012mbar
Test results:	Pass					

Remark:

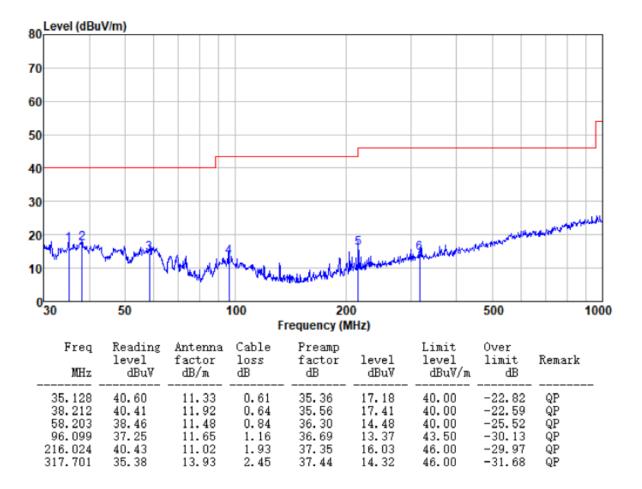
1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

2. The measured filed strength at frequencies below 30MHz are lower than the limit over 30dB. So the data isn't reported.

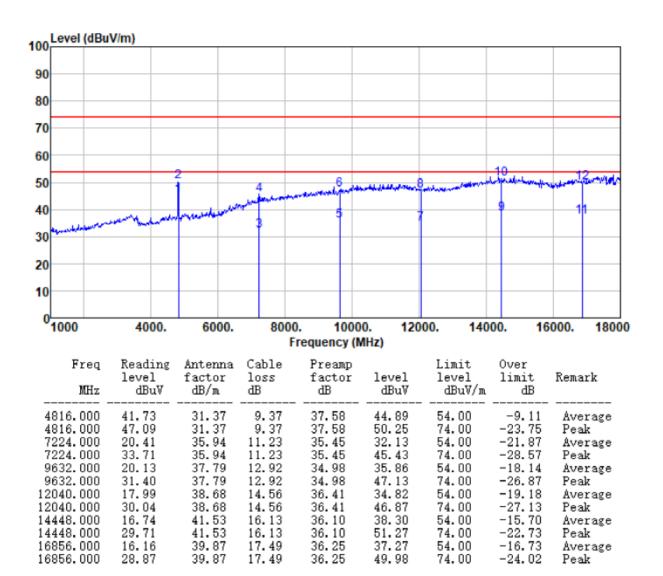
Measurement data:


Below 30MHz

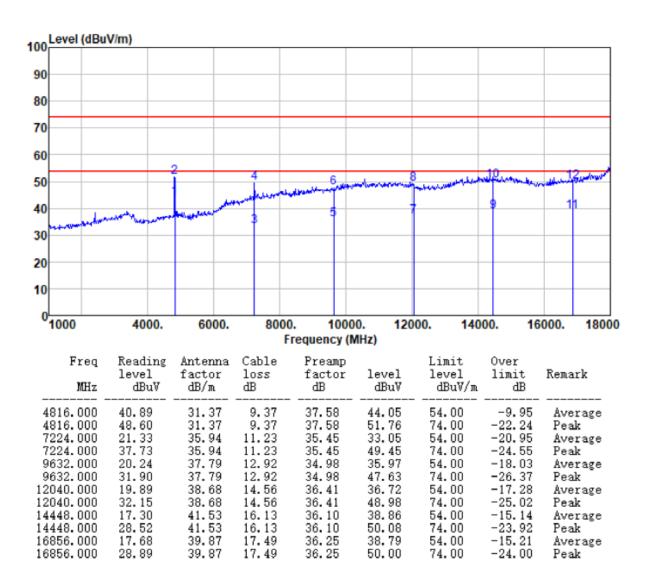
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


■ 30MHz ~ 1GHz

Horizontal:

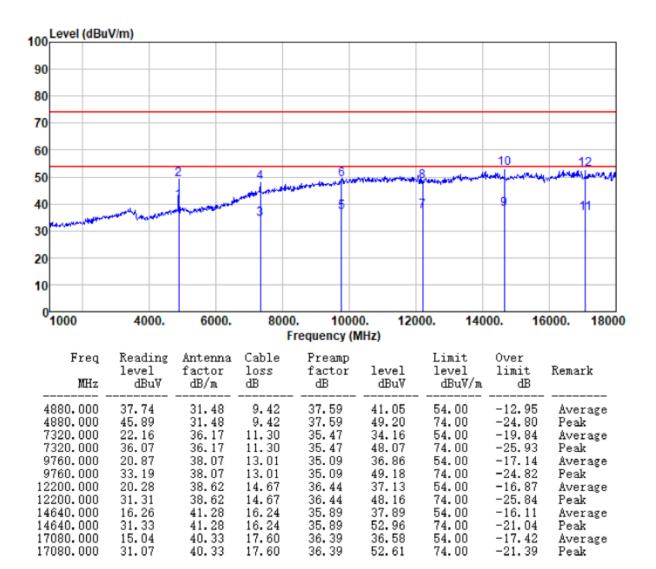

Vertical:

Above 1GHz


Test channel: Lowest Polarization: Vertical

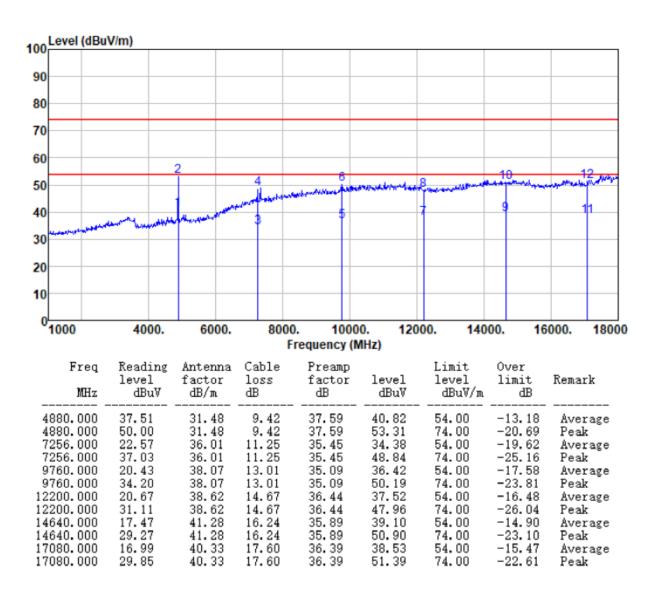
Report No.: GTS201811000172F01

Test channel: Lowest Polarization: Horizontal			Test channel:	Lowest	Polarization:	Horizontal
---	--	--	---------------	--------	---------------	------------

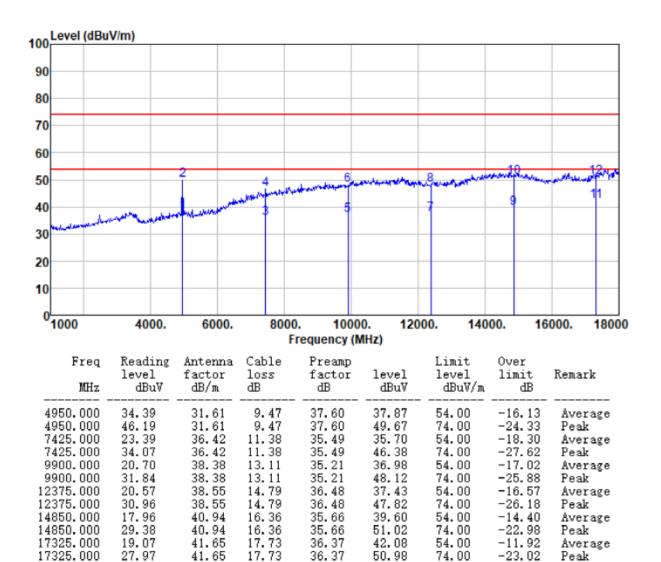

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

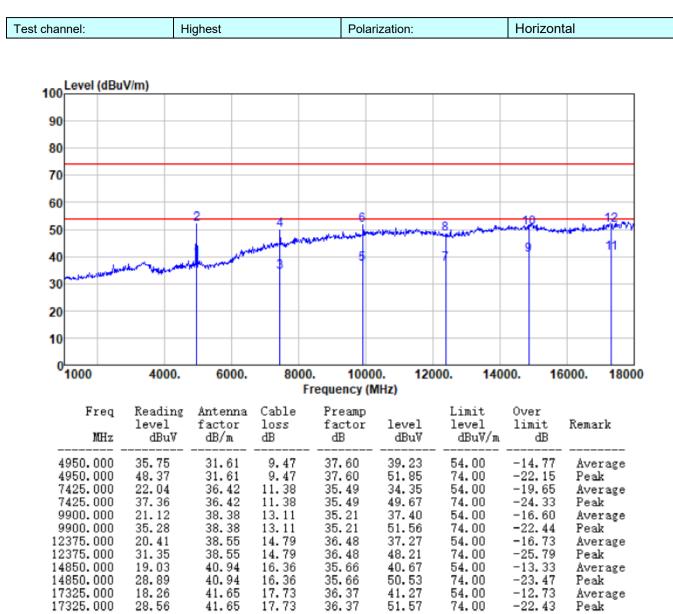

Report No.: GTS201811000172F01


Test channel: Middle Polarization: Vertical

Report No.: GTS201811000172F01


Remark:

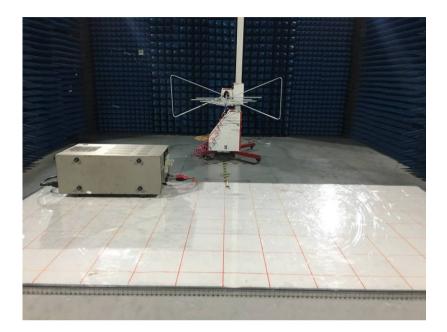
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

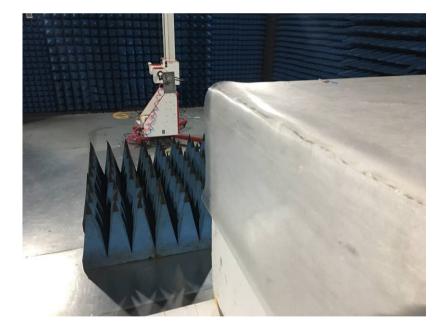

Report No.: GTS201811000172F01

lest channel: Highest Polarization: Vertical
--

Report No.: GTS201811000172F01

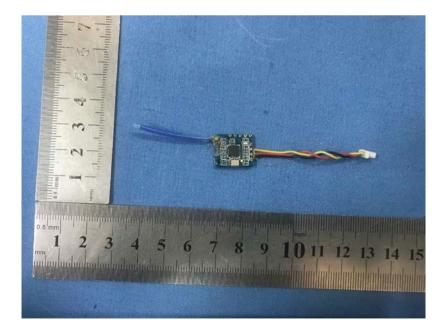
Remark:


1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor


2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Radiated Emission



Conducted Emission



9 EUT Constructional Details

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

---End---