

Global United Technology Services Co., Ltd.

Report No.: GTS201911000020F01

TEST REPORT

Applicant: FLYSKY RC MODEL TECHNOLOGY CO., LTD

West building3, Huangjianyuan Ind, Park QIAOLI North Gate Address of Applicant:

Changping Town, Dongguan, China

ShenZhen FLYSKY Technology Co., Ltd Manufacturer:

Address of ADD 16F, Huafeng Building, No. 6006 Shennan Road, Futian

District, Shenzhen, Guangdong, China Manufacturer:

Dongguan Flysky RC Model technology Co.,Ltd **Factory:**

Address of Factory: West building3, Huangjianyuan Ind Park QIAOLI North Gate

Changping Town Dongguan, China

Equipment Under Test (EUT)

Product Name: Digtal propotional radio control system

Model No.: FS-G4P, FS-HW-G4P

Trade Mark: **FLYSKY**

FCC ID: N4ZG4P00

FCC CFR Title 47 Part 15 Subpart C Section 15.247 Applicable standards:

Date of sample receipt: June 22, 2020

Date of Test: June 23, 2020-July 01, 2020

July 01, 2020 Date of report issued:

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 44

2 Version

Version No.	Date	Description
00	July 01, 2020	Original

Prepared By:	Tigor. Cha	Date:	July 01, 2020
	Project Engineer		
Check By:	Reviewer	Date:	July 01, 2020

3 Contents

			Page
1	COVER	R PAGE	1
2	VERSIO	ON	2
_			
3	CONTE	ENTS	3
4	TEST S	SUMMARY	4
	4.1 M	EASUREMENT UNCERTAINTY	4
5	GENER	RAL INFORMATION	5
	5.1 G	ENERAL DESCRIPTION OF EUT	5
		EST MODE	
		EST FACILITY	
		EST LOCATION	
		ESCRIPTION OF SUPPORT UNITS	
		EVIATION FROM STANDARDS	
		BNORMALITIES FROM STANDARD CONDITIONS	
	5.8 Aı	DDITIONAL INSTRUCTIONS	7
6	TEST II	NSTRUMENTS LIST	8
7	TEST F	RESULTS AND MEASUREMENT DATA	10
	7.1 A	NTENNA REQUIREMENT	10
	_	ONDUCTED PEAK OUTPUT POWER	
		DDB EMISSION BANDWIDTH	
		ARRIER FREQUENCIES SEPARATION	
		OPPING CHANNEL NUMBER	
		WELL TIME	
		AND EDGE	
	7.7.1	Conducted Emission Method	
	7.7.2	Radiated Emission Method	
		PURIOUS EMISSION	_
	7.8.1	Conducted Emission Method	
	7.8.2	Radiated Emission Method	
8	TEST S	SETUP PHOTO	44
9	EUT Co	ONSTRUCTIONAL DETAILS	44

4 Test Summary

Test Item	Section	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of ke	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Digtal propotional radio control system
FS-G4P, FS-HW-G4P
N/A
GTS201911000020-1
Engineer sample
2406MHz~2472MHz
23
FHSS
Integral Antenna
0dBi
DC 6V(4*1.5V Size"AA" Battery)

Operation F	Operation Frequency each of channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2406	7	2424	13	2442	19	2460	
2	2409	8	2427	14	2445	20	2463	
3	2412	9	2430	15	2448	21	2466	
4	2415	10	2433	16	2451	22	2469	
5	2418	11	2436	17	2454	23	2472	
6	2421	12	2439	18	2457			

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2406MHz
The middle channel	2439MHz
The Highest channel	2472MHz

5.2 Test mode

Transmitting mode	Keep the EUT in transmitting mode.
Remark: New battery was	s used during test

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.4 Test Location

All other tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number
MEILI	DC POWER SUPPLY	MCH-305A	011121168

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

5.8 Additional Instructions

Software (Used for test) from client

Built-in by manufacturer, power set default.

6 Test Instruments list

	o restinstruments list							
Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021		
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021		
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021		
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021		
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021		
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021		

RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021	

Gene	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021	
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021	

7 Test results and Measurement Data

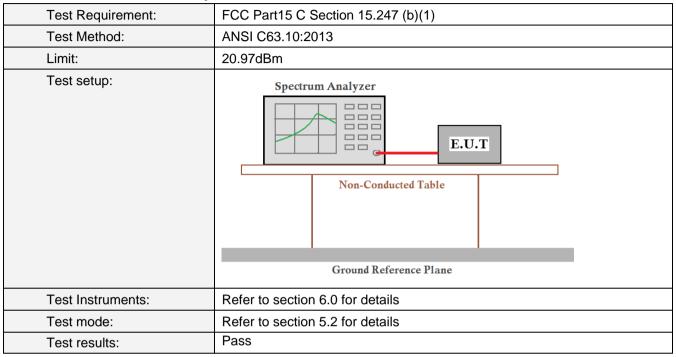
7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:


(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is integral antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details.

7.2 Conducted Peak Output Power



Measurement Data

Test channel	Test channel Peak Output Power (dBm)		Result
Lowest	15.941		
Middle	15.875	20.97	Pass
Highest	15.337		

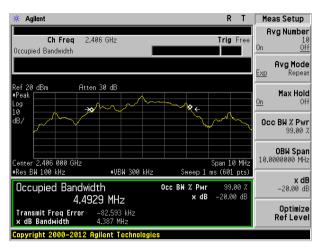
Test plot as follows:

Lowest channel

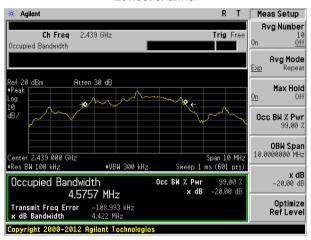
Middle channel

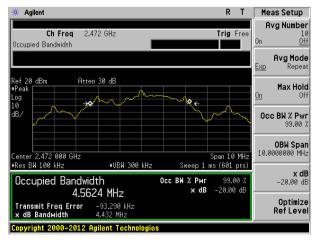
Highest channel

7.3 20dB Emission Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Limit:	N/A	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data


Test channel	20dB Emission Bandwidth (MHz)	Result
Lowest	4.387	
Middle	4.422	Pass
Highest	4.432	


Test plot as follows:

Lowest channel

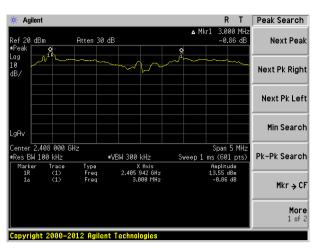
Middle channel

Highest channel

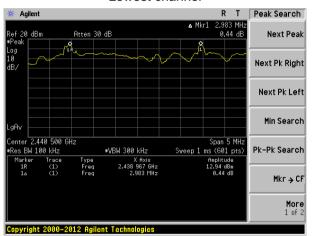
7.4 Carrier Frequencies Separation

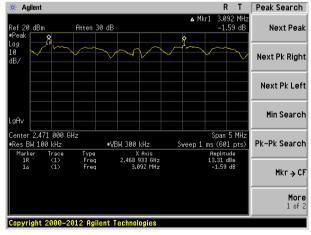
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data


Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	3000	2955	Pass
Middle	2983	2955	Pass
Highest	3092	2955	Pass

Note: According to section 7.3

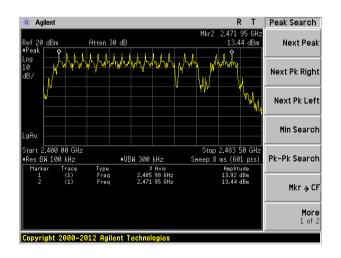

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
FHSS 4432		2955


Test plot as follows:

Lowest channel

Middle channel

Highest channel



7.5 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data:

Hopping channel numbers	Limit	Result	
20	15	Pass	

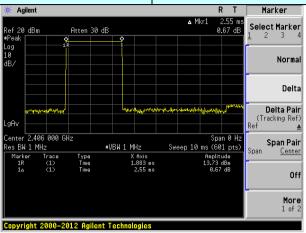
7.6 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

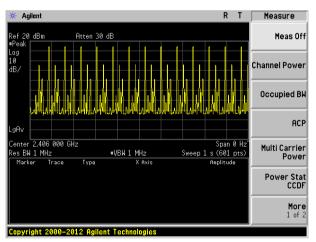
Measurement Data

Frequency(MHz)	Ton (ms)	Dwell time(ms)	Limit(ms)	Result
2406	2.55	265.2	400	Pass
2439	2.55	265.2	400	Pass
2472	2.55	285.6	400	Pass

The formula as below:

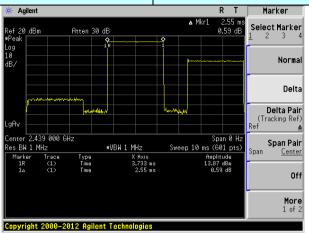

2406MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=2.55ms*13*0.4*20=265.2ms 2439MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=2.55ms*13*0.4*20=265.2ms 2472MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=2.55ms*14*0.4*20=285.6ms

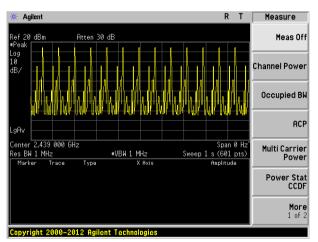
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 18 of 44



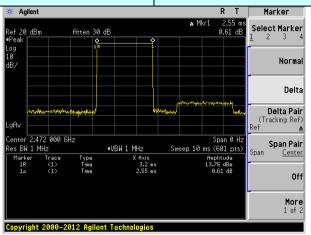
Test plot as follows:

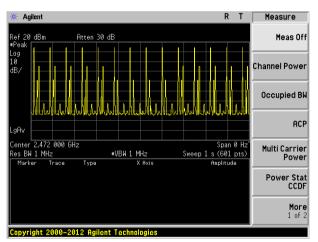
Frequency: 2406MHz


Ton


Ton times in 1s

Frequency: 2439MHz


Ton

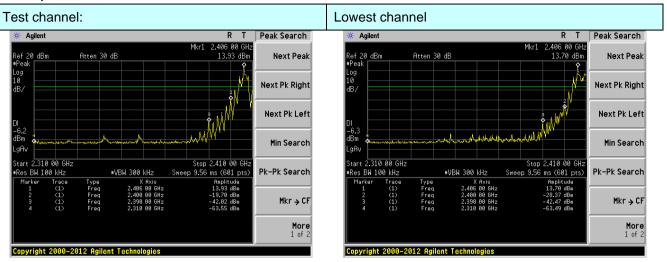

Ton times in 1s

Frequency: 2472MHz

Ton

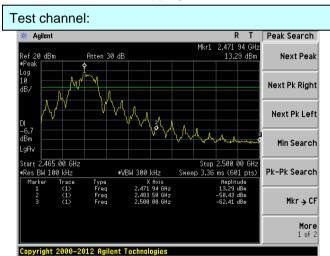
Ton times in 1s

7.7 Band Edge


7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013		
rest Method.	1		
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Test plot as follows:


Report No.: GTS201911000020F01

Highest channel

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

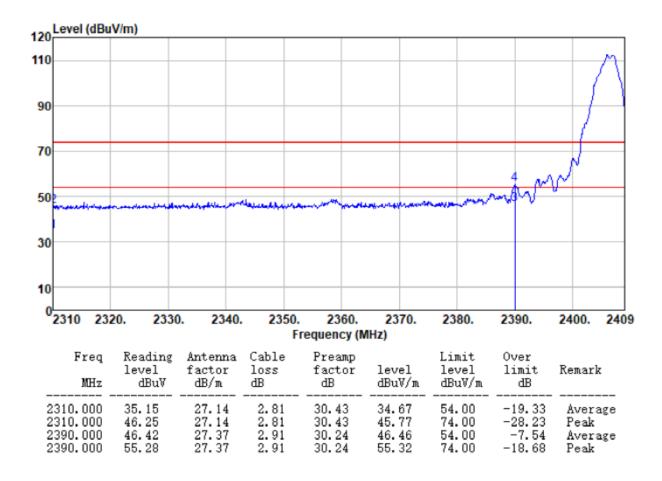
Copyright 2000-2012 Agilent Technologies

Mkr → CF

More 1 of 2

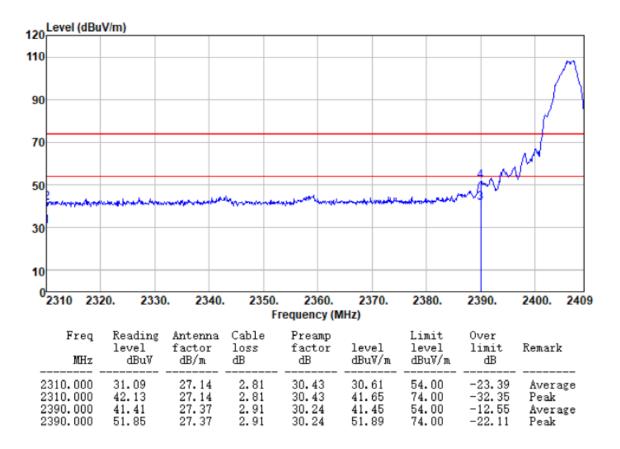
7.7.2 Radiated Emission Method

7.7.2 Radiated Lillission We						
Test Requirement:	FCC Part15 C S		9 and 15.205			
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	All of the restric 2500MHz) data			ne worst ba	nd's (2310MHz to	
Test site:	Measurement D	Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
	Above 1G112	Peak	1MHz	10Hz	Average Value	
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark	
	Above 1	ICH ₇	54.0	00	Average Value	
	Above	IGHZ	74.0	0	Peak Value	
Test setup:	Turn Table < 150cm > 1	EUT+	Test Antenna	1		
Test Procedure:	1 The FLIT we	a placed on th			1.5 meters above the	
	ground at a 3 determine the 2. The EUT was antenna, whistower. 3. The antennas ground to deshorizontal and measuremer. 4. For each sussand then the and the rotal maximum resonant specified Basis of the emission limit specified EUT would be 10dB margin.	a meter camble position of the position of the set 3 meters in the set 4 meters in the	er. The table of the highest races away from the ted on the top ed from one reaximum value arizations of the tuned to height hed from 0 de was set to Pea Maximum Hole EUT in peaking could be stoot therwise the ested one by	was rotated diation. The interfere of a variable of the field the antenna was arrangints from 1 in grees to 36 at Detect Fid Mode. The mode was apped and the missions to one using	nce-receiving ple-height antenna r meters above the d strength. Both are set to make the ed to its worst case meter to 4 meters of degrees to find the unction and 10dB lower than the he peak values of the hat did not have peak, quasi-peak or	
Test Instruments:	Refer to section					
Test mode:	Refer to section	5.2 for detail	S			
Temp. / Hum.			mid.: 52	% Pr	ress.: 1 012mbar	
Test results:	Pass		<u> </u>	ı		
	I.					

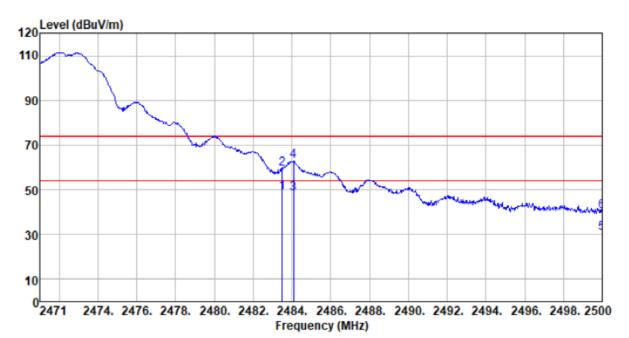


Measurement Data

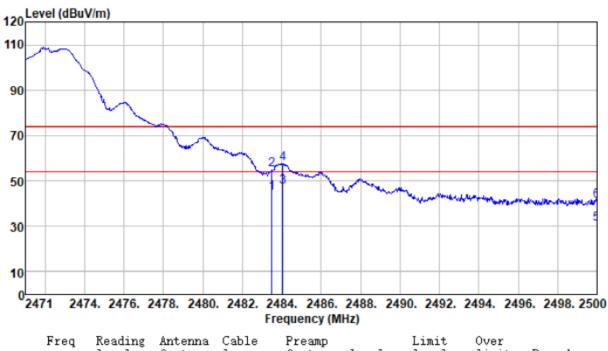
Remark:


1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Test channel: Lowest Polarization: Vertical	
---	--



Test channel:	Lowest	Polarization:	Horizontal
---------------	--------	---------------	------------


Test channel: Highest	Polarization:	Vertical
-----------------------	---------------	----------

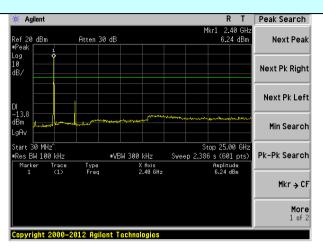
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
2483.500	48.30	27.66	2.99	30. 12	48.83	54.00	-5.17	Average
2483.500	58.84	27.66	2.99	30. 12	59.37	74.00	-14.63	Peak
2484.079	47.91	27.66	2.99	30. 12	48.44	54.00	-5.56	Average
2484.079	62.33	27.66	2.99	30.12	62.86	74.00	-11.14	Peak
2500.000	29.85	27.70	3.01	30.13	30.43	54.00	-23.57	Average
2500.000	39.89	27.70	3.01	30.13	40.47	74.00	-33.53	Peak

hannel: Highest	Polarziation:	Horizontal	
-----------------	---------------	------------	--

Freq	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
2483.499	44.34	27.66	2.99	30.12	44.87	54.00	-9.13	Average
2483.499	54.16	27.66	2.99	30.12	54.69	74.00	-19.31	Peak
2484.050	46.66	27.66	2.99	30.12	47.19	54.00	-6.81	Average
2484.050	57.25	27. 66	2. 99	30.12	57.78	74.00	-16.22	Peak
2500.000	30.57	27. 70	3. 01	30.13	31.15	54.00	-22.85	Average
2500.000	40.48	27. 70	3. 01	30.13	41.06	74.00	-32.94	Peak

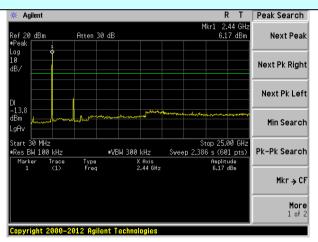
Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

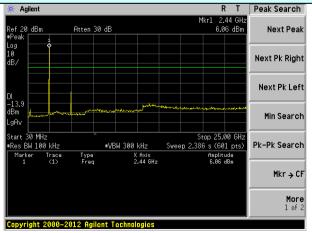

7.8 Spurious Emission

7.8.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass



Lowest channel


30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

7.8.2 Radiated Emission Method

1.6.2 Radiated Emission We	tilou						
Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distar	nce: (3m				
Receiver setup:	Frequency		Detector	RB\	N	VBW	Value
	9KHz-150KHz	Qi	uasi-peak	200l	Ηz	600Hz	Quasi-peak
	150KHz-30MHz	ď	uasi-peak	9KH	łz	30KHz	Quasi-peak
	30MHz-1GHz	Q	uasi-peak	120K	Ήz	300KHz	z Quasi-peak
	Above 1GHz		Peak	1MF	Ηz	3MHz	Peak
	Above IGIIZ		Peak	1MF	Ηz	10Hz	Average
Limit: (Spurious Emissions)	Frequency		Limit (u\	//m)	٧	/alue	Measurement Distance
,	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	300m
	0.490MHz-1.705M	lHz	24000/F(I	KHz)		QP	30m
	1.705MHz-30MH	lz	30			QP	30m
	30MHz-88MHz		100			QP	
	88MHz-216MHz	<u> </u>	150			QP	
	216MHz-960MH	Z	200			QP	3m
	960MHz-1GHz		500			QP	3111
	Above 1GHz 500			Average			
	7.5575 151.12		5000		Peak		
Test setup:	Below 30MHz Tum Table < 80cm > Below 1GHz		< 3m > Test A	ntenna lm		***************************************	
	D010W 10112						

Report No.: GTS201911000020F01 Test Antenna EUT Turn Table < 80cm Turn Tables Receiver-Preamplifier. Above 1GHz Test Antenna+ < 1m ... 4m > FUT. Tum Table <150cm> Receiver-Preamplifier+ Test Procedure: The EUT was placed on the top of a rotating table (0.8 meters for below 1GHz and 1.5meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.8 for details Test mode: Refer to section 5.2 for details Temp. / Hum. Temp.: 25 °C Humid.: 52% Press.: 1 012mbar

	Re	port No.: GTS201911000020F01
Test results:	Pass	

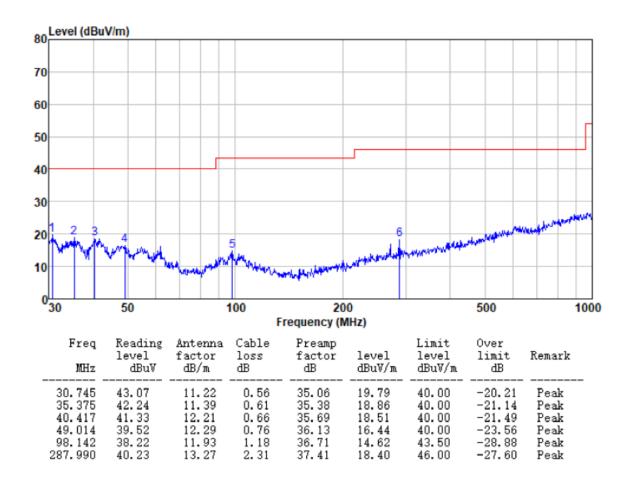
Remark:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:

■ Below 30MHz

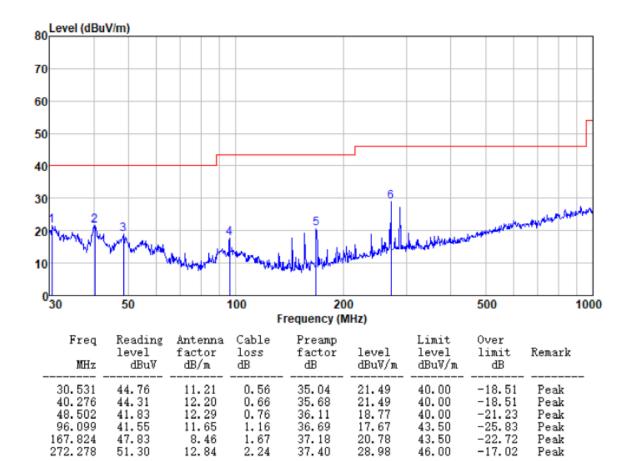
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

■ 30MHz ~ 1GHz

Pre-scan all test modes, found worst case at 2406MHz, and so only show the test result of 2406MHz.

FS-G4P: Horizontal



Vertical

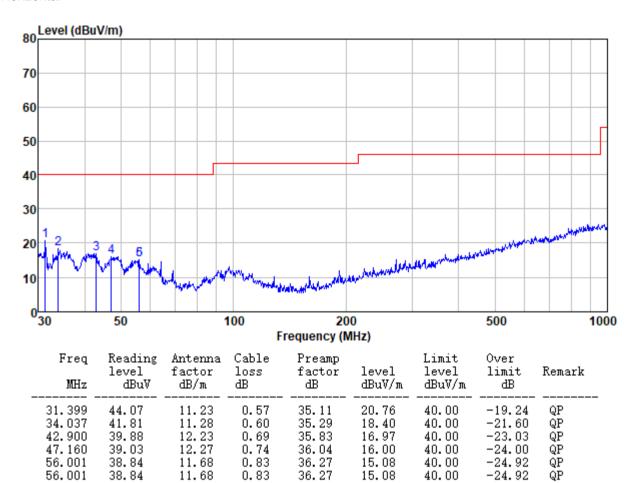
Report No.: GTS201911000020F01

Peak

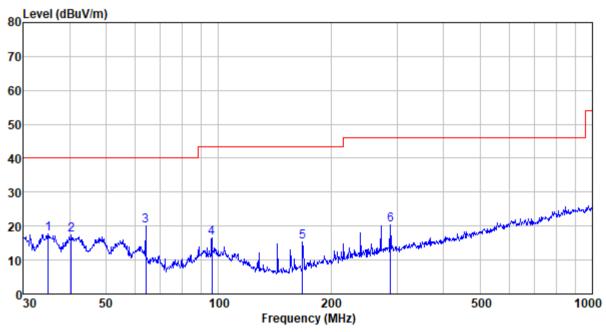
37.40

28.98

46.00

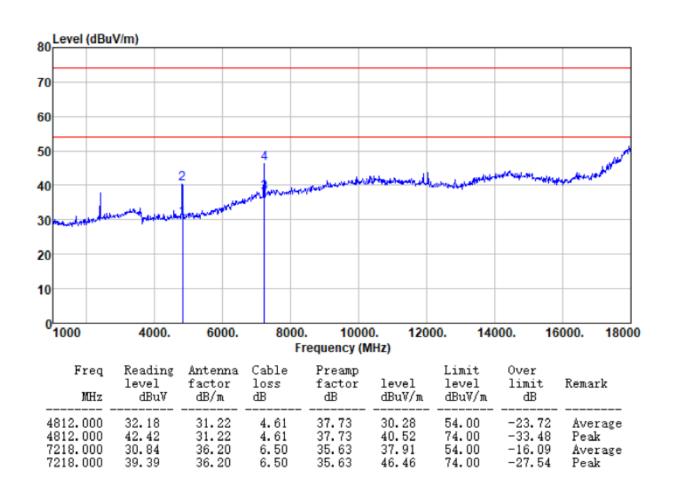

2.24

51.30

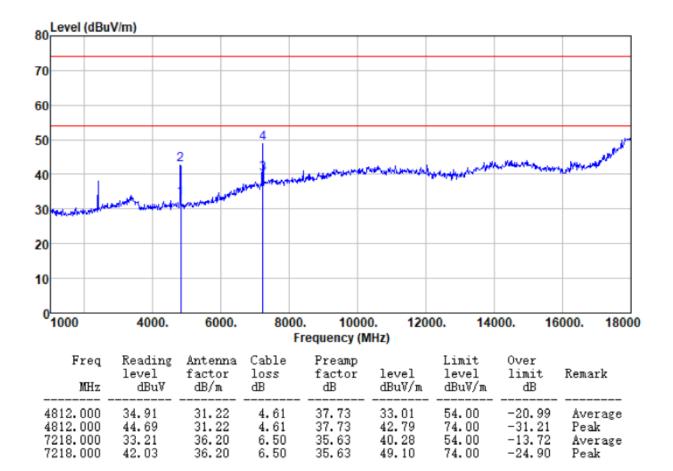

FS-HW-G4P:

Horizontal

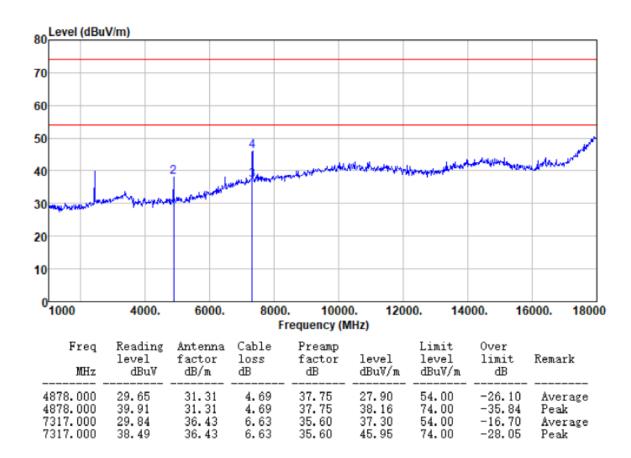
Vertical

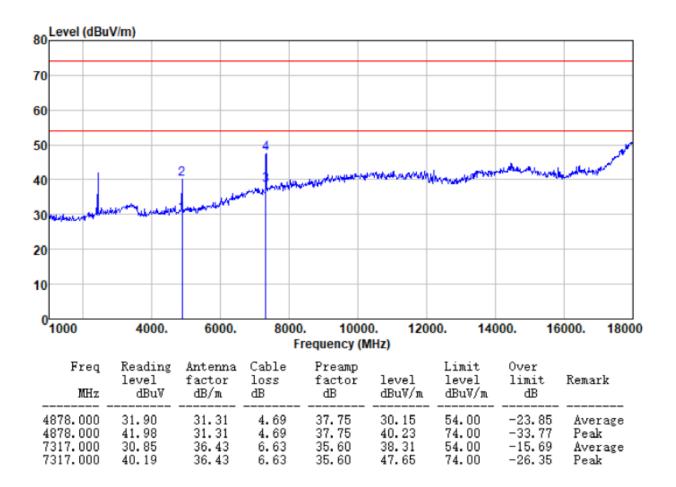


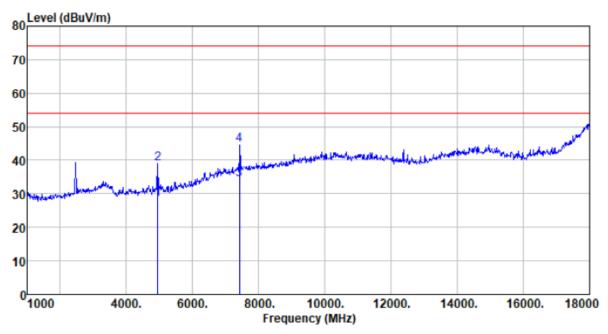
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark	
35.005	41.27	11.33	0.61	35.36	17.85	40.00	-22.15	QP	
40.417	40.36	12.21	0.66	35.69	17.54	40.00	-22.46	QP	
63.983	45.63	9.80	0.89	36.37	19.95	40.00	-20.05	QP	
96.099	40.31	11.65	1.16	36.69	16.43	43.50	-27.07	QP	
167.824	42.34	8.46	1.67	37.18	15.29	43.50	-28.21	QP	
287.990	42.26	13.27	2.31	37.41	20.43	46.00	-25.57	QP	

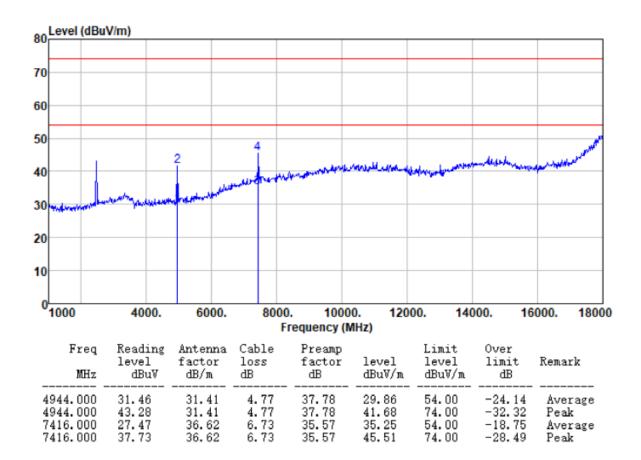

■ Above 1GHz

Test channel: Lowest Polarziation: Horizontal




st channel: Lowest	Polarziation:	Vertical
--------------------	---------------	----------




Test channel:	Highest	Polarziation:	Horizontal
---------------	---------	---------------	------------

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
4944.000	29.84	31.41	4.77	37.78	28.24	54.00	-25.76	Average
4944.000	40.59	31.41	4.77	37.78	38.99	74.00	-35.01	Peak
7416.000	26.39	36.62	6.73	35.57	34.17	54.00	-19.83	Average
7416.000	36.83	36.62	6.73	35.57	44.61	74.00	-29.39	Peak

Test channel:	Highest	Polarziation:	Vertical
---------------	---------	---------------	----------

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. No emission found in frequency above 18GHz.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---End---