GTS Global United Technology Services Co., Ltd.

Report No.: GTS201904000005F01

FCC Report

Applicant:	FLYSKY RC MODEL TECHNOLOGY CO., LTD	
Address of Applicant:	West building3, Huangjianyuan Ind, Park QIAOLI North Gate Changping Town, Dongguan, China	
Manufacturer:	ShenZhen FLYSKY Technology Co.,Ltd	
Address of Manufacturer:	16F, Huafeng Building, No. 6006 Shennan Road, Futian District, Shenzhen, Guangdong, China	
Factory:	FLYSKY RC MODEL TECHNOLOGY CO., LTD	
Address of Factory:	West building3, Huangjianyuan Ind, Park QIAOLI North Gate Changping Town, Dongguan, China	
Equipment Under Test (EUT)	
Product Name:	2.4GHz 4CHANNELS RECEIVER	
Model No.:	FGr4P	
Trade Mark:	FLYSKY	
FCC ID:	N4ZFGR4P00	
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247	
Date of sample receipt:	April 02, 2019	
Date of Test:	April 02-22, 2019	
Date of report issued:	April 23, 2019	
Test Result :	PASS *	

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	April 23, 2019	Original

Prepared By:

Date:

April 23, 2019

April 23, 2019

Project Engineer

Check By:

Date: inson Reviewer \mathcal{C}

3 Contents

			i age
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	-
	5.3	TEST FACILITY	
	5.4		
	5.5	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	Additional Instructions	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.1	CONDUCTED PEAK OUTPUT POWER	
	7.2	20DB EMISSION BANDWIDTH	
	7.4	CARRIER FREQUENCIES SEPARATION	
	7.5	HOPPING CHANNEL NUMBER	
	7.6	Dwell Time	
	7.7	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	22
	7.8	BAND EDGE	23
	7.8.1	1 Conducted Emission Method	23
	7.8.2		
	7.9	SPURIOUS EMISSION	
	7.9.1		
	7.9.2		
8	TES	Т ЅЕТИР РНОТО	43
9	EUT	CONSTRUCTIONAL DETAILS	43

4 Test Summary

Test Item	Section	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(iii)	Pass
Dwell Time	15.247 (a)(iii)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard. Remark : Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

z ~ 30MHz ± 4.34dB (1) z ~ 1000MHz ± 4.24dB (1)	
$7 \sim 1000 \text{MHz} + 4.24 \text{dB}$ (1)	
1GHz ~ 26.5GHz ± 4.68dB	
Hz ~ 30 MHz ± 3.45 dB (1)	

5 General Information

5.1 General Description of EUT

-	
Product Name:	2.4GHz 4CHANNELS RECEIVER
Model No.:	FGr4P
Serial No.:	N/A
Hardware Version:	FGr4P-V1.3
Software Version:	FGr4S V1.0.4
Test sample(s) ID:	GTS201904000005-1
Sample(s) Status	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	63
Modulation technology:	CSS, GMSK
Antenna Type:	Integral Antenna
Antenna gain:	1dBi
Power supply:	DC 3.5-8.4V

Remark: The system works in the frequency range of 2402MHz to 2480MHz. This band has been divided to 63 independent channels. Each radio system uses 32 different channels; the minimum channel separation is ≥1.5MHz. By using various switch-on times, hopping scheme and channel frequencies, the system can guarantee a jamming free radio transmission. The channel list is below.

Operation Frequency each of channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2402	17	2422	33	2441	49	2462
2	2404	18	2423	34	2443	50	2463
3	2405	19	2424	35	2445	51	2464
4	2406	20	2425	36	2446	52	2466
5	2407	21	2427	37	2447	53	2467
6	2409	22	2428	38	2448	54	2468
7	2410	23	2429	39	2449	55	2469
8	2411	24	2430	40	2451	56	2471
9	2412	25	2432	41	2452	57	2472
10	2413	26	2433	42	2454	58	2473
11	2415	27	2434	43	2455	59	2474
12	2416	28	2435	44	2456	60	2475
13	2417	29	2437	45	2457	61	2477
14	2418	30	2438	46	2458	62	2478
15	2419	31	2439	47	2460	63	2480
16	2420	32	2440	48	2461	64	

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402.0MHz
The middle channel	2440.0MHz
The Highest channel	2480.0MHz

5.2 Test mode

J.Z	Test mode				
	Transmitting mode	Keep the EUT in transmitting mode.			
5.3	Test Facility				
	• FCC —Registration N Global United Technology described in a report filed from the FCC is maintain	ized, certified, or accredited by the following organizations: o.: 381383 y Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully with the (FCC) Federal Communications Commission. The acceptance letter ed in files. Registration 381383. —Registration No.: 9079A-2			
	The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.				
	• NVLAP (LAB CODE:600179-0)				
	Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0				
5.4	Test Location				
	All other tests were performed at:				
		y Services Co., Ltd. /F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, n, Guangdong, China 518102			
5.5	Other Information R	equested by the Customer			
	None.				
5.6	Description of Supp	ort Units			
	None				
5.7	Additional Instruction	ons			

EUT Software Settings:

Mode	Special test firmware was pre-built-in by manufacturer				
GFSK	Channel Frequency (MHz) Level Set				
	Lowest				
	Middle 2440.0MHz		TX level : default		
	Highest	2480.0MHz			

6 Test Instruments list

Rad	Radiated Emission:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019		
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019		
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019		
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019		
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019		
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 27 2018	June. 26 2019		

RF C	RF Conducted Test:							
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019		

Gene	eneral used equipment:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

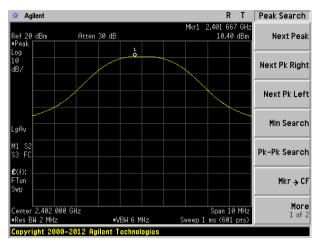
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

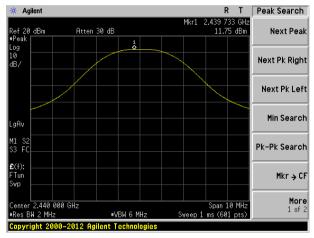
EUT Antenna:

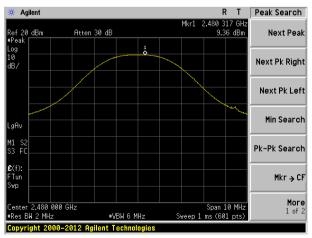
The antenna is integral Antenna, the best case gain of the antenna is 1dBi, reference to the appendix II for details

7.2 Conducted Peak Output Power


Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013	
Limit:	20.97dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data


Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	10.40		
Middle	11.75	20.97	Pass
Highest	9.36		

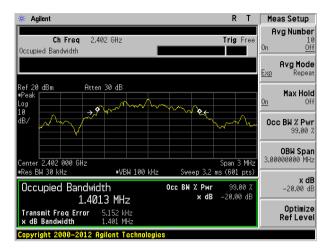

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.3 20dB Emission Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013	
Limit:	N/A	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Test channel	20dB Emission Bandwidth (MHz)	Result
Lowest	1.401	
Middle	1.386	Pass
Highest	1.398	

Test plot as follows:

Lowest channel

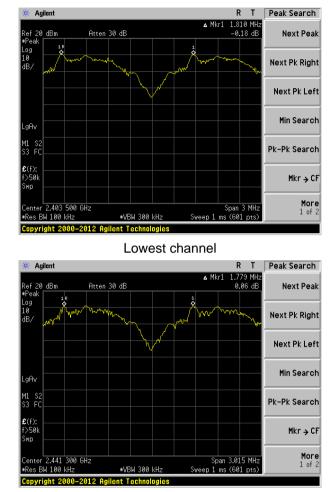
Middle channel

Highest channel

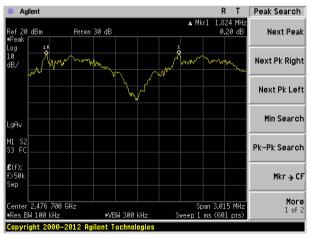
7.4 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data


Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1810	934	Pass
Middle	1779	934	Pass
Highest	1824	934	Pass

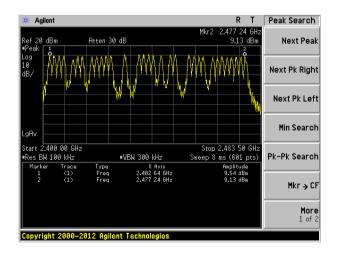
Note: According to section 7.4


Mode	20dB bandwidth (kHz)	Limit (kHz)
MODE	(worse case)	(Carrier Frequencies Separation)
GFSK	1401	934

Test plot as follows:

Middle channel

Highest channel



7.5 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data:

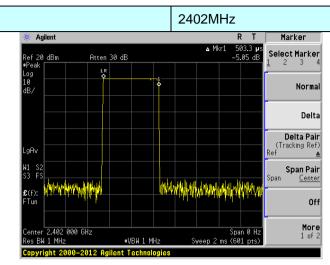
Hopping channel numbers	Limit	Result
32	15	Pass

7.6 Dwell Time

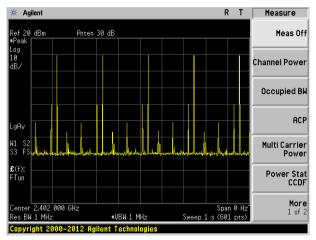
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Frequency	Ton (ms)	Dwell time(ms)	Limit(ms)	Result
2.402GHz	0.5033	32.2112	400	Pass
2.440GHz	0.5033	32.2112	400	Pass
2.478GHz	0.5033	32.2112	400	Pass

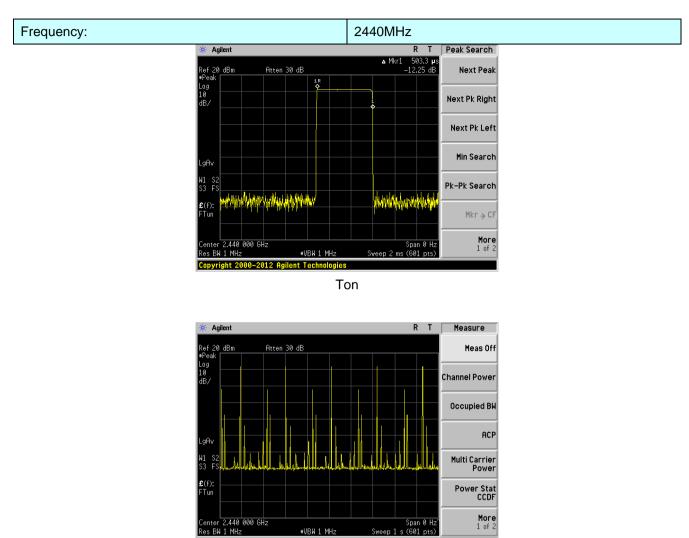

The formula as below:

2402MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=0.5033ms*5*0.4*32=32.2112ms2440MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=0.5033ms*5*0.4*32=32.2112ms2478MHz: Dwell time = Ton * Ton times in 1s * 0.4s * channel numbers=0.5033ms*5*0.4*32=32.2112ms



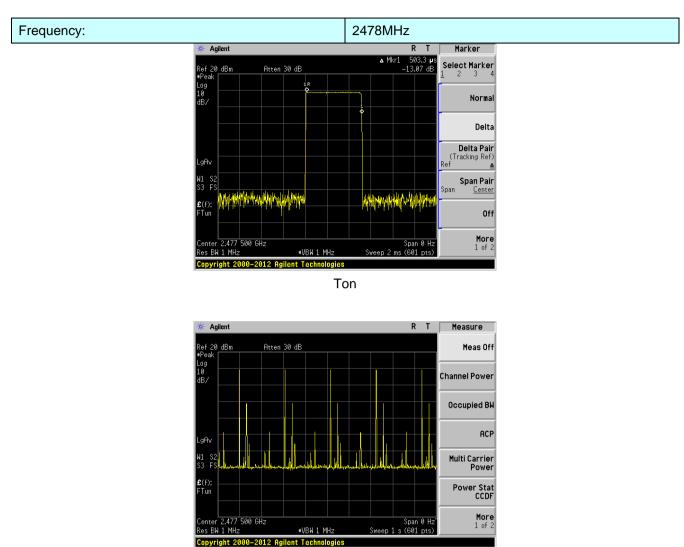
Test plot as follows:

Frequency:



Ton

Ton times in 1s


Ton times in 1s

∗VBW 1 MHz

BW 1 MHz

Copyright 2000–2012 Agilent Technologies

Ton times in 1s

,	Pseudorandom Freque	ency Hopping Sequence
	Test Requirement:	FCC Part15 C Section 15.247 (a)(1) requirement:
		ms shall have hopping channel carrier frequencies separated by a minimum of 25 kHz hopping channel, whichever is greater.
	carrier frequencies that are sep whichever is greater, provided t hop to channel frequencies that hopping frequencies. Each freq receivers shall have input band	ng systems operating in the 2400-2483.5 MHz band may have hopping channel parated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, the systems operate with an output power no greater than 125 mW. The system shall t are selected at the system hopping rate from a Pseudorandom ordered list of puency must be used equally on the average by each transmitter. The system lwidths that match the hopping channel bandwidths of their corresponding uencies in synchronization with the transmitted signals.
	each transmission. However, th comply with all of the regulation information) stream. In addition	spectrum systems are not required to employ all available hopping channels during ne system, consisting of both the transmitter and the receiver, must be designed to ns in this section should the transmitter be presented with a continuous data (or n, a system employing short transmission bursts must comply with the definition of a must distribute its transmissions over the minimum number of hopping channels
	recognize other users within the hopsets to avoid hopping on oc	ence within a frequency hopping spread spectrum system that permits the system to e spectrum band so that it individually and independently chooses and adapts its ccupied channels is permitted. The coordination of frequency hopping systems in any urpose of avoiding the simultaneous occupancy of individual hopping frequencies by nitted.
_		
	outputs are added in a modu stage. The sequence begins	Jency Hopping Sequence ce may be generated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first s with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized
	The pseudorandom sequend outputs are added in a modu	ce may be generated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first s with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: $2^9 - 1 = 511$ bits
	The pseudorandom sequent outputs are added in a modu stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random	ce may be generated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first s with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: 2 ⁹ -1 = 511 bits
	The pseudorandom sequence outputs are added in a modu stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random • Longest sequence of zeros	ce may be generated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first is with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: $2^9 - 1 = 511$ bits s: 8 (non-inverted signal)
	The pseudorandom sequence outputs are added in a modu stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random • Longest sequence of zeros Linear Feedback S	Ce may be generated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first is with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: 2 ⁹ -1 = 511 bits is: 8 (non-inverted signal)
	The pseudorandom sequence outputs are added in a modu stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random • Longest sequence of zeros Linear Feedback S An example of Pseudorando	ce may be generated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first s with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: 2 ⁹ -1 = 511 bits s: 8 (non-inverted signal) Chift Register for Generation of the PRBS sequence for Frequency Hopping Sequence as follow:
	The pseudorandom sequence outputs are added in a modu stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random • Longest sequence of zeros Linear Feedback S	Ce may be generated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first is with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: 2 ⁹ -1 = 511 bits is: 8 (non-inverted signal)
	The pseudorandom sequence outputs are added in a modu stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random • Longest sequence of zeros Linear Feedback S An example of Pseudorando 0 2 4 6	ce may be generated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first is with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: $2^9 - 1 = 511$ bits is: 8 (non-inverted signal) Chift Register for Generation of the PRBS sequence for Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77
	The pseudorandom sequence outputs are added in a modu stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random • Longest sequence of zeros Linear Feedback S An example of Pseudorando 0 2 4 6 Each frequency used equally of	ce may be generated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first is with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: $2^9 \cdot 1 = 511$ bits s: 8 (non-inverted signal) Chift Register for Generation of the PRBS sequence om Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77 Chift a sequence by each transmitter.
	The pseudorandom sequence outputs are added in a modu stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random • Longest sequence of zeros Linear Feedback S An example of Pseudorando 0 2 4 6 Each frequency used equally of The system receivers have input	ce may be generated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first is with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: $2^9 - 1 = 511$ bits is: 8 (non-inverted signal) Chift Register for Generation of the PRBS sequence for Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77
	The pseudorandom sequence outputs are added in a modu stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random • Longest sequence of zeros Linear Feedback S An example of Pseudorando 0 2 4 6 Each frequency used equally of The system receivers have input transmitters and shift frequencies	<pre>cereated in a nine-stage shift register whose 5th and 9th stage ulo-two addition stage. And the result is fed back to the input of the first s with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: 2⁹ -1 = 511 bits s: 8 (non-inverted signal) fift Register for Generation of the PRBS sequence om Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77</pre>

7.8 Band Edge

7.8.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Min Search

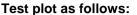
Mkr→CF

More 1 of 2

Pk-Pk Search

Stop 2.500 00 GHz Sweep 2.88 ms (601 pts)

Amplitude 8.24 dBm -44.41 dBm -60.27 dBm

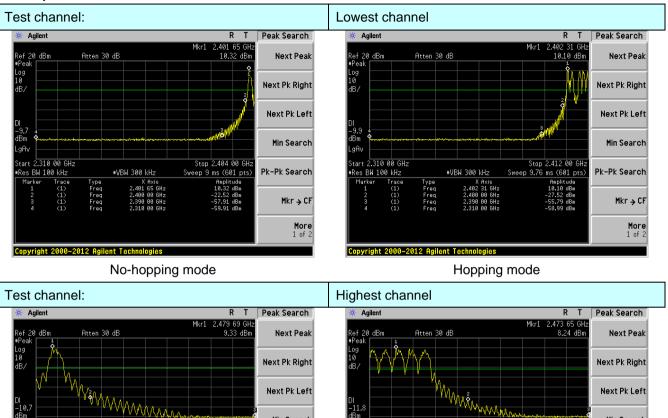

#VBW 300 kHz

X Axis 2.473 65 GHz 2.483 50 GHz 2.683 60 GHz

Hopping mode

Type Freq Freq Freq

Copyright 2000–2012 Agilent Technologies



٥Â١

tart

2.478 00 GHz

3W 100 kHz

Min Search

Mkr→CF

More 1 of 2

Pk-Pk Search

Stop 2.500 00 GHz Sweep 2.12 ms (601 pts)

Amplitude 9.33 dBm -42.44 dBm -68 72 dBm

∎VBW 300 kHz

2.479 69 GHz 2.483 50 GHz

No-hopping mode

Type Freq Freq Freq

Copyright 2000–2012 Agilent Technologies

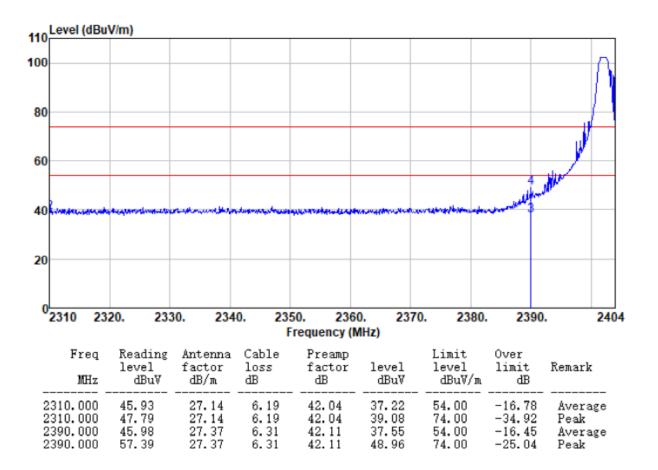
2.470 00 GHz BW 100 kHz

> (1)(1)(1)

tart

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10:20	013				
Test Frequency Range:	All restriction ba	and have bee	n tested, and	2.3GHz to	2.5GF	Iz band is the
Test site:	Measurement D	istance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW		Remark
	Above 1GHz	Peak	1MHz	3MHz	Р	eak Value
		Peak	1MHz	10Hz	Ave	erage Value
Limit:	Freque	ency	Limit (dBuV	/m @3m)		Remark
	Above 1	GHz	54.0	-		erage Value
	7.5010	0112	74.0	0	Р	eak Value
Test setup:	Tum Table+ <150cm>		m >e Test Antenna < 1m 4m 3	1		ه لم لا ه
Test Procedure:	 determine th 2. The EUT wa antenna, whi tower. 3. The antenna ground to de horizontal an measuremen 4. For each sus and then the and the rota maximum rea 5. The test-rece Specified Ba 6. If the emission limit specified EUT would b 10dB margin 	B meter camb e position of t s set 3 meters ch was moun height is vari termine the m id vertical pola it. spected emiss antenna was table was turn ading. eiver system v ndwidth with on level of the d, then testing we reported. O would be re-	er. The table of the highest races away from the ted on the top ed from one r naximum value arizations of the tuned to heig ned from 0 de was set to Pea Maximum Hol EUT in peak g could be stop therwise the e	was rotated diation. he interfere o of a variat neter to fou e of the field he antenna was arrang hts from 1 i grees to 36 ak Detect F d Mode. mode was pped and th emissions t one using	I 360 d nce-reo ble-heig ir mete d stren are se ged to ir meter f 30 degr functior 10dB I he peal hat did peak, o	egrees to ceiving ght antenna rs above the gth. Both t to make the ts worst case to 4 meters ees to find the the and ower than the k values of the not have quasi-peak or
Test Instruments:	Refer to section				a aaiu	
Test mode:	Refer to section					
Temp. / Hum.			mid.: 52	% Pi	ress.:	1 012mbar
Test results:	Pass	1	1	I		·

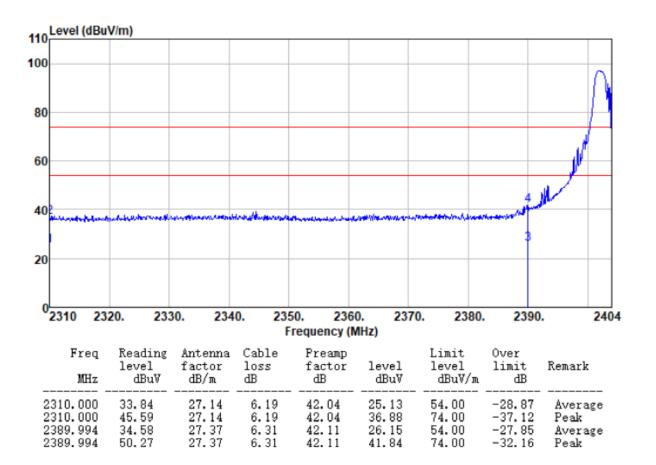
7.8.2 Radiated Emission Method



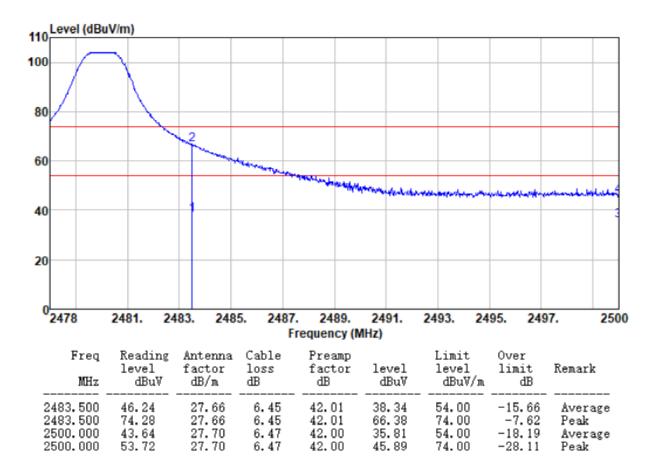
Remark:

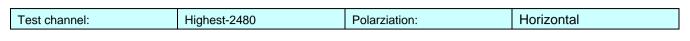
1

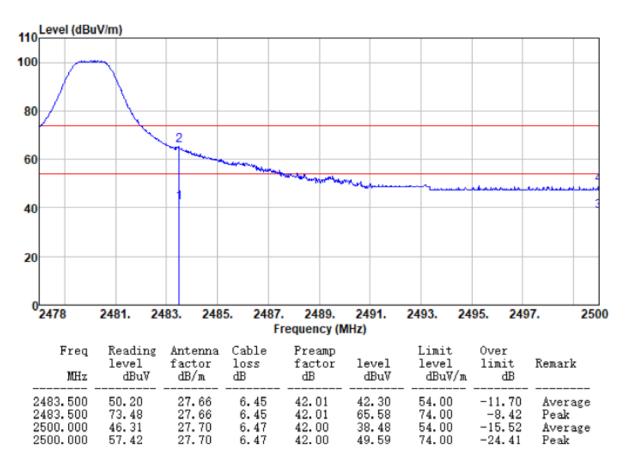
I. Pre-s	scan all kind of the place mode (X-a	axis, Y-axis, Z-axis), and found the	Y-axis which it is worse case.
----------	--------------------------------------	--------------------------------------	--------------------------------


Test channel: Lowest Polarziation: Vertical

Report No.: GTS201904000005F01


Test channel: Lowest Polarziation: Horizontal

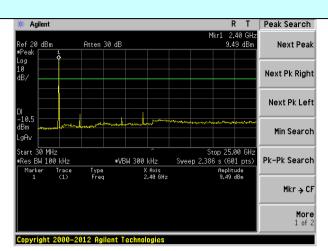

Report No.: GTS201904000005F01


l'est channel: Highest-2480 Polarziation: Vertical	-	Test channel:	Highest-2480	Polarziation:	Vertical
--	---	---------------	--------------	---------------	----------

Report No.: GTS201904000005F01

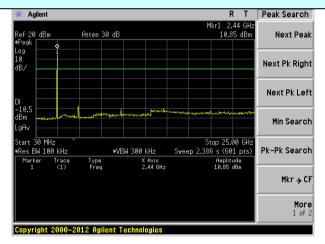
Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

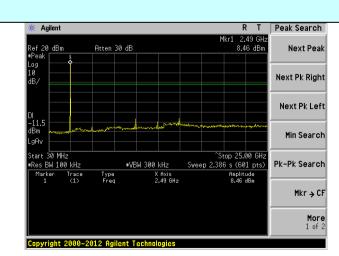

7.9 Spurious Emission

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 Meas Guidance V04
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

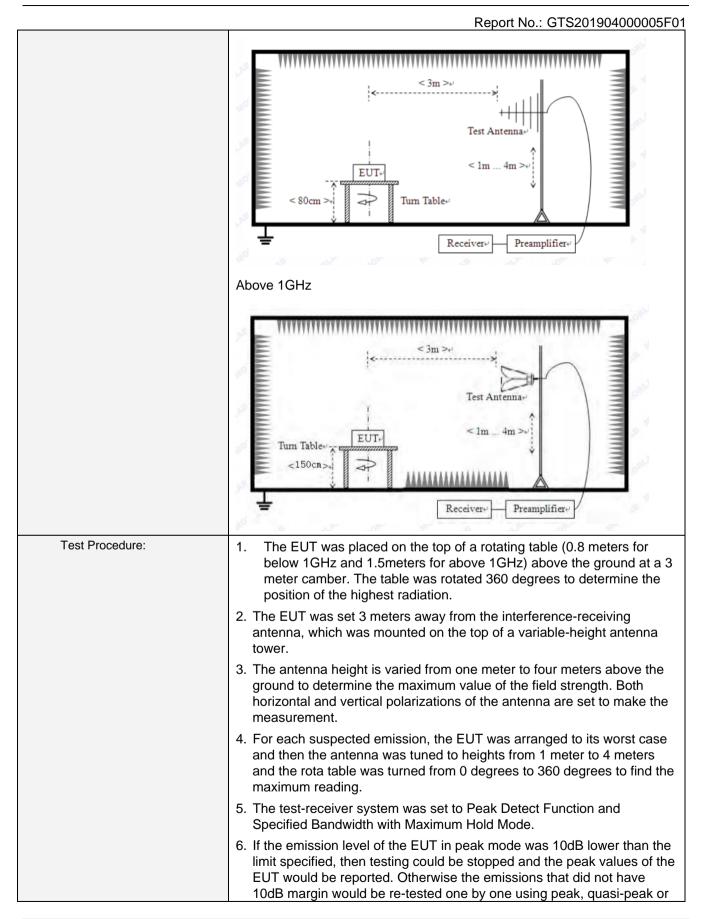


Lowest channel


30MHz~25GHz

Middle channel

30MHz~25GHz



7.9.2 Radiated Emission Method

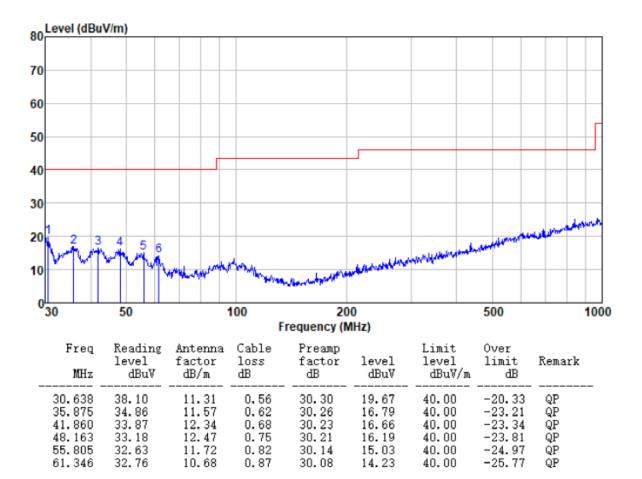
Test Requirement:	FCC Part15 C Section	on 15	5.209						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency	Ľ	Detector	RB\	N	VBW	'	Value	
	9KHz-150KHz	P۴	K,AV,QP	200	Ηz	600Hz	z	PK,AV,QP	
	150KHz-30MHz	P۴	K,AV,QP	9KH	łz	30KH:	z	PK,AV,QP	
	30MHz-1GHz	Qı	lasi-peak	120K	Hz	300KH	lz	Quasi-peak	
	Above 1GHz		Peak	1MF	Ηz	3MHz	z	Peak	
	Above 10112		Peak	1MF	Ηz	10Hz		Average	
Limit: (Spurious Emissions)	Frequency		Limit (u∖	′/m)	V	/alue	N	leasurement Distance	
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m	
	1.705MHz-30MH	lz	30			QP		30m	
	30MHz-88MHz		100			QP			
	88MHz-216MHz	2	150			QP	-		
	216MHz-960MH	Z	200			QP 3		3m	
	960MHz-1GHz		500			QP	UIII		
	Above 1GHz		500		Av	reage			
	7,6676 16112		5000 Peak						
Test setup:	Below 30MHz	0.8 m		Coaxial Cat	Jule /		Test	r	
	Below 1GHz								

				Ropolitin	<u></u>	13040000001 01
	average	method as s	pecified and t	hen reported	l in a data	sheet.
Test Instruments:	Refer to see	ction 5.8 for o	details			
Test mode:	Refer to see	ction 5.2 for o	details			
Temp. / Hum.	Temp.:	25 °C	Humid.:	52%	Press.:	1 012mbar
Test results:	Pass					

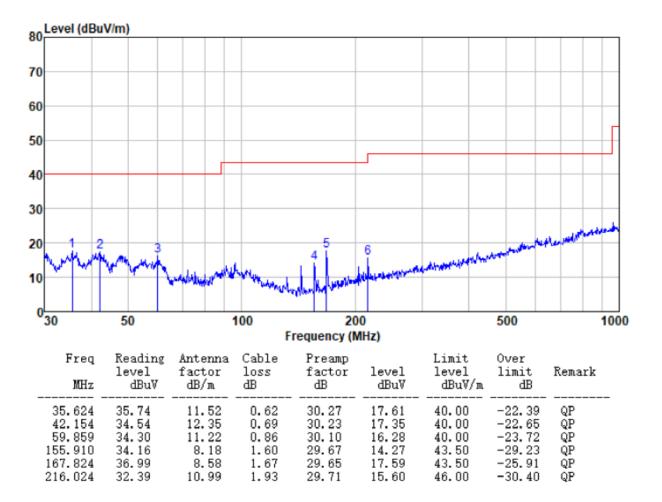
Remark:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

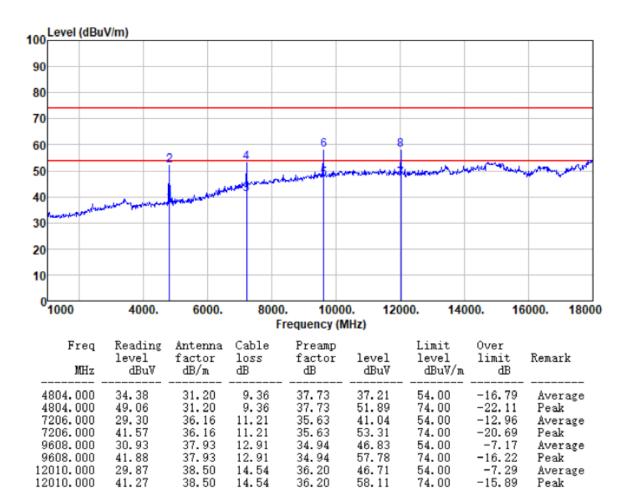
Measurement data:


Below 30MHz

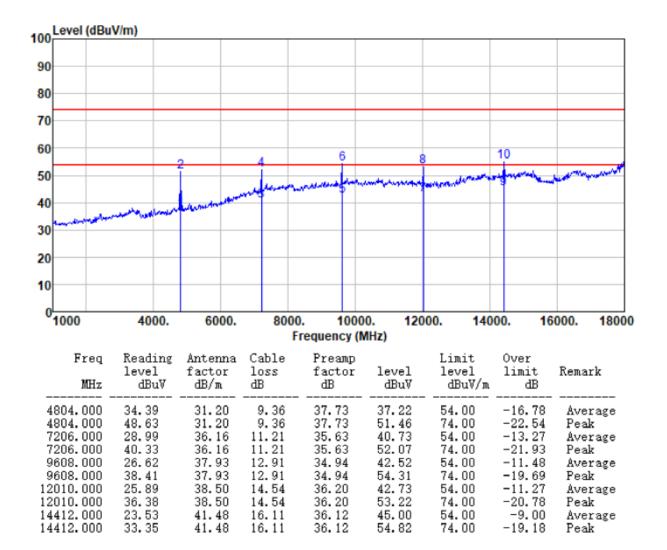
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


■ 30MHz ~ 1GHz

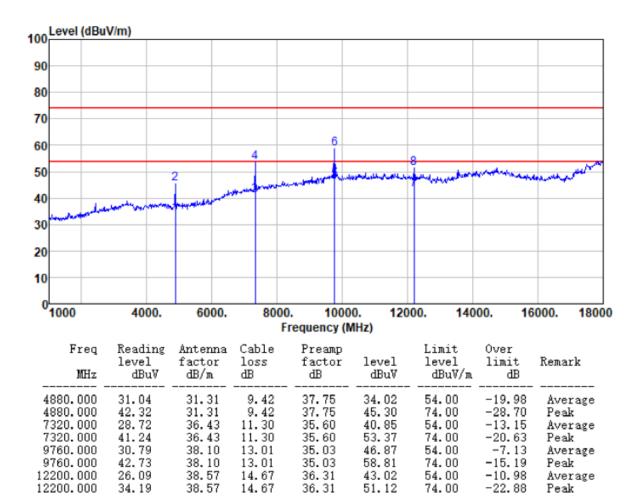
Horizontal:


Vertical:

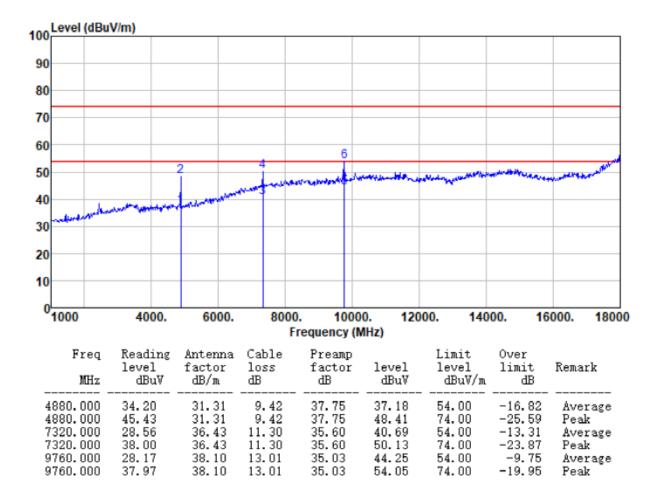
Above 1GHz


Test channel: Lowest Polarziation: Vertical

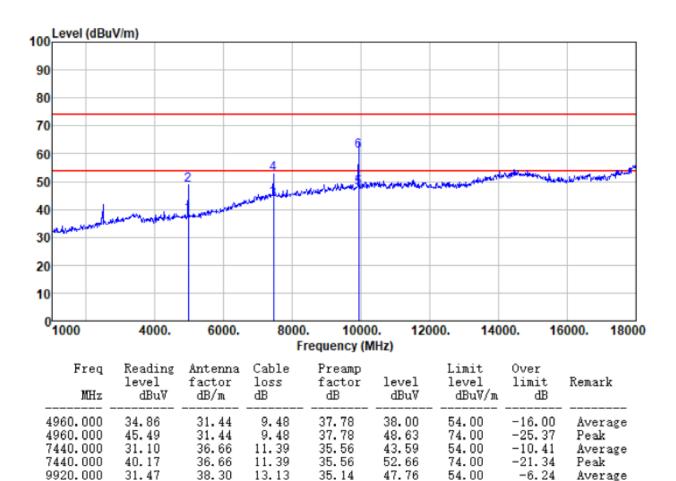
Report No.: GTS201904000005F01


	ſ	Test channel:	Lowest	Polarziation:	Horizontal
--	---	---------------	--------	---------------	------------

Report No.: GTS201904000005F01


Test channel: Middle Polarziation: Vertical

Report No.: GTS201904000005F01


		Test channel:	Middle	Polarziation:	Horizontal
--	--	---------------	--------	---------------	------------

Report No.: GTS201904000005F01

	Test channel	: Hiç	ighest	Polarziation:	Vertical
--	--------------	-------	--------	---------------	----------

35.14

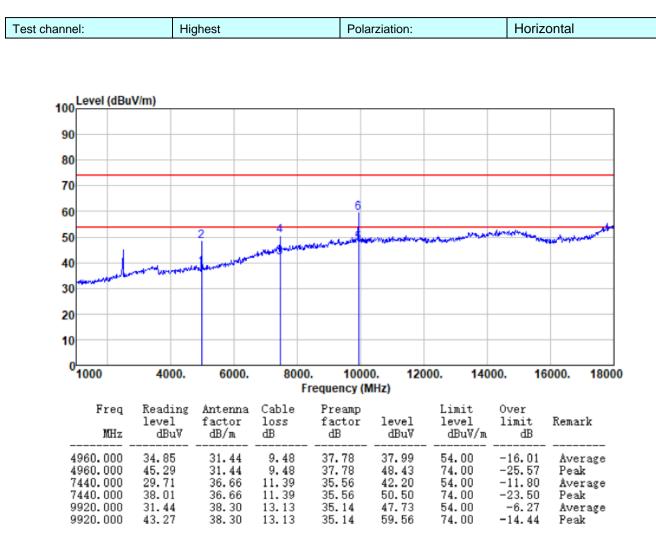
60.82

74.00

-13.18

Peak

44.53


38.30

13.13

9920.000

Report No.: GTS201904000005F01

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

---End---