

SAR TEST REPORT

Test Report	: N(b.: 14007301H-A-R1
Applicant	:	Honda Motor Co., Ltd.
Type of EUT	:	4.0G LET
Model Number of EUT	:	E4000-01
FCC ID	:	N43E400001
Test regulation	:	FCC47CFR 2.1093
Test Result	:	Complied (Refer to SECTION 4)
Reported SAR Value		The highest reported SAR(1 g) Body : 0.93 W/kg

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 14007301H-A. 14007301H-A is replaced with this report.

Date of test: January 5 to 18, 2022 Representative test engineer: Hisayoshi Sato Engineer

Approved by :

Satofumi Matsuyama Engineer

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation".

REVISION HISTORY

Original Test Report No.: 14007301H-A

Revision	Test report No.	Date	Page Revised Contents
- (Original)	14007301H-A	February 3, 2022	-
1	14007301H-A-R1	February 25, 2022	Cover Page, Section 2 Correction of Type of EUT and Model Number of EUT Type of EUT: Embedded wireless module \rightarrow 4.0G LET Model Number of EUT: SX-SDPAC \rightarrow E4000-01
1	14007301H-A-R1	February 25, 2022	Correction of Rating of Section 2.2. DC 5 V \rightarrow DC 3.3 V
1	14007301H-A-R1	February 25, 2022	Addition of below frequency band in the table for Section 2.2. <u>20Mband</u> 5500 MHz to 5580 MHz \rightarrow 5500 MHz to 5700 MHz 5660 MHz to 5700 MHz <u>40Mband</u> 2422 MHz - 2452 MHz 5510 MHz, 5550 MHz \rightarrow 5510 MHz to 5670 MHz <u>5670 MHz</u> <u>80Mband</u> 5530 MHz \rightarrow 5530 MHz to 5610 MHz
1	14007301H-A-R1	February 25, 2022	Addition of explanatory note *1) in Section 2.2. *1) Tests were not performed following channels, because this antenna installed in Host device is not used these channels. - WLAN 11n40 (2.4GHz band) - 20 MHz Bandwidth (5600 MHz - 5640 MHz) - 40 MHz Bandwidth (5590 MHz - 5630 MHz) - 80 MHz Bandwidth (5610 MHz MHz)
1	14007301H-A-R1	February 25, 2022	Section 3.2 Correction of below sentence. This EUT operates only with the specified 4.0G LET. Therefore the test was performed with the 4.0G LET (Host) in which the distance to the exterior surface is shortest. → RF Module and Host have the same product name: 4.0G LET and model number: E4000-01.
			The EUT of this test report is RF Module. In order to distinguish between RF Module and Host, this test report shows as follows. RF Module: 4.0G LET Host: 4.0G LET (Host) 4.0G LET only works with 4.0G LET (Host). Therefore, the test was performed with the 4.0G LET (Host) in which the distance to the exterior surface is shortest.
1	14007301H-A-R1	February 25, 2022	P. 11, 20 Correction of below explanatory note. Following channels are not used. - 20 MHz Bandwidth (5600 MHz - 5640 MHz) - 40 MHz Bandwidth (5590 MHz - 5630 MHz) - 80 MHz Bandwidth (5610 MHz) → Following channels are not used on this host device.
			 WLAN 11n40 (2.4GHz band) 20 MHz Bandwidth (5600 MHz - 5640 MHz) 40 MHz Bandwidth (5590 MHz - 5630 MHz) 80 MHz Bandwidth (5610 MHz MHz)
1	14007301H-A-R1	February 25, 2022	P 12 Deletion of 5590 MHz in the table. Deletion of below explanatory note. * Not used in Canada
1	14007301H-A-R1	February 25, 2022	 P 19, 21, 22 Correction of explanatory note 1. 1. Output Power and SAR measurement is not required for 802.11a/ac VHT20/VHT40/VHT80 channels when the specified tune-up tolerances for 802.11a/ac VHT20/VHT40/VHT80 are lower than 802.11a and the measured SAR is ≤ 1.2 W/Kg.
			\rightarrow 1. Excerpt from KDB 248227 D01 clause 5.3.4 b), when the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR is not required for that subsequent test configuration.
1	14007301H-A-R1	February 25, 2022	P 33, 35, 36 Addition to table of SAR test exclusions for Subsequent test configuration
1	14007301H-A-R1	February 25, 2022	P 23 to 25 Replacement of duty chart image
1	14007301H-A-R1	February 25, 2022	APPENDIX 4 Correction of Type of Equipment

Test report No. Page	: 14007301H-A-R1 : 3 of 112
FCC ID Issued date	: N43E400001 : February 25, 2022

Reference: Abbreviations (Including words undescribed in this report)

AAN	Asymmetric Artificial Network	IF	Intermediate Frequency
AC	Alternating Current	ILAC	International Laboratory Accreditation Conference
AM	Amplitude Modulation	ISED	Innovation, Science and Economic Development Canada
AMN	Artificial Mains Network	ISN	Impedance Stabilization Network
Amp, AMP	Amplifier	ISO	International Organization for Standardization
ANSI	American National Standards Institute	JAB	Japan Accreditation Board
Ant, ANT	Antenna	LAN	Local Area Network
AP	Access Point	LCL	Longitudinal Conversion Loss
ASK	Amplitude Shift Keying	LIMS	Laboratory Information Management System
Atten., ATT	Attenuator	LISN	Line Impedance Stabilization Network
AV	Average	MRA	Mutual Recognition Arrangement
BPSK	Binary Phase-Shift Keying	N/A	Not Applicable
BR	Bluetooth Basic Rate	NIST	National Institute of Standards and Technology
BT	Bluetooth	NS	No signal detect.
BT LE	Bluetooth Low Energy	NSA	Normalized Site Attenuation
BW	BandWidth	OBW	Occupied BandWidth
C.F	Correction Factor	OFDM	Orthogonal Frequency Division Multiplexing
Cal Int	Calibration Interval	PER	Packet Error Rate
CAV	CISPR AV	PK	Peak
CCK	Complementary Code Keying	P _{LT}	long-term flicker severity
CDN	Coupling Decoupling Network	POHC(A)	Partial Odd Harmonic Current
Ch., CH	Channel	Pol., Pola.	Polarization
CISPR	Comite International Special des Perturbations Radioelectriques	PR-ASK	Phase Reversal ASK
Corr.	Correction	Pst	short-term flicker severity
CPE	Customer premise equipment	QAM	Quadrature Amplitude Modulation
CW	Continuous Wave	QP	Quasi-Peak
DBPSK	Differential BPSK	QPSK	Quadrature Phase Shift Keying
DC	Direct Current	r.m.s., RMS	Root Mean Square
DET	Detector	RBW	Resolution BandWidth
D-factor	Distance factor	RE	Radio Equipment
Dmax	maximum absolute voltage change during an observation period	REV	Reverse
DQPSK	Differential QPSK	RF	Radio Frequency
DSSS	Direct Sequence Spread Spectrum	RFID	Radio Frequency Identifier
DUT	Device Under Test	RNSS	Radio Navigation Satellite Service
EDR	Enhanced Data Rate	RSS	Radio Standards Specifications
e.i.r.p., EIRP	Equivalent Isotropically Radiated Power	Rx	Receiving
EM clamp	Electromagnetic clamp	SINAD	Ratio of (Signal + Noise + Distortion) to (Noise + Distortion)
EMC	ElectroMagnetic Compatibility	S/N	Signal to Noise ratio
EMI	ElectroMagnetic Interference	SA, S/A	Spectrum Analyzer
EMS	ElectroMagnetic Susceptibility	SG	Signal Generator
EN	European Norm	SVSWR	Site-Voltage Standing Wave Ratio
e.r.p., ERP	Effective Radiated Power	THC(A)	Total Harmonic Current
ETSI	European Telecommunications Standards Institute	THD(%)	Total Harmonic Distortion
EU	European Union	TR, T/R	Test Receiver
EUT	Equipment Under Test	Tx	Transmitting
Fac.	Factor	VBW	Video BandWidth
FCC	Federal Communications Commission	Vert.	Vertical
FHSS	Frequency Hopping Spread Spectrum	WLAN	Wireless LAN
FM	Frequency Modulation	xDSL	Generic term for all types of DSL technology
Freq.	Frequency		(DSL: Digital Subscriber Line)
FSK	Frequency Shift Keying		
Fund	Fundamental		
FWD	Forward		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
I/O	Input/Output		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
	·••···•		

CONTENTS

SECTION1: Customer information	
SECTION2: Equipment under test (EUT)	5
2.1 Identification of EUT.	5
2.2 Product Description	6
SECTION3: Test standard information	.7
3.1 Test Specification	
3.2 Procedure	
3.3 Additions or deviations to standard	7
3.4 Exposure limit	
3.5 SAR	
3.6 Test Location	9
SECTION4: Test result	10
4.1 Result	
4.2 Stand-alone SAR result	10
4.3 Simultaneous transmission SAR result	10
SECTION5: Tune-up tolerance information and software information	
SECTION6: RF Exposure Conditions (Test Configurations)	
6.1 Summary of the distance between antenna and surface of EUT	
6.2 SAR test exclusion considerations according to KDB 447498 D01	14
SECTION7: Description of the Body setup	
7.1 Procedure for SAR test position determination	16
7.2 Test position for Body setup	
SECTION8: Description of the operating mode	
8.1 Output Power and SAR test required	
8.2 Duty rate confirmation.	
SECTION9: Test surrounding	
9.1 Measurement uncertainty.	
SECTION10: Parameter Check	
10.1 For SAR system check	
10.2 For SAR measurement.	
SECTION11: System Check confirmation	
SECTION12: Measured and Reported (Scaled) SAR Results	
12.1 WLAN 2.4 GHz Band	32
12.1 WLAN 5.3 GHz Band	
12.2 WLAN 5.5 GHz Band	
12.5 WEAR 5.5GHz Band	
12.5 Repeated measurement	
SECTION13: Test instruments	
APPENDIX 1 : System Check	
APPENDIX 2 : SAR Measurement data	
APPENDIX 3: System specifications	
APPENDIX 4 : Photographs of test setup	υð

PAGE

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 5 of 112 : N43E400001 : February 25, 2022

SECTION1: Customer information

Company Name	:	Honda Motor Co., Ltd.
Address	:	No.6-1, Hagadai, Haga-Machi, Haga-Gun, Tochigi-ken 321-3395 Japan
Telephone Number	:	+81-28-687-0707
Contact Person	:	Kazumori Sakai

The information provided from the customer is as follows;

Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
Operating/Test Mode(s) (Mode(s)) on all the relevant pages
SECTION 1: Customer information

- SECTION 2: Equipment under test (EUT) other than the Receipt Date

- SECTION 5: Tune-up tolerance information and software information

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 5.

SECTION2: Equipment under test (EUT)

2.1 Identification of EUT

:	4.0G LET
:	E4000-01
:	001
:	September 16, 2021
:	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
:	No Modification by the test lab
	: : : : : : : : : : : : : : : : : : : :

Test rep Page FCC ID Issued d:		
---	--	--

2.2 Product Description

Model: E4000-01 (referred to as the EUT in this report) is a 4.0G LET.

General Specification

Rating : DC 3.3 V

Radio Specification

Specification of Wireless LAN (IEEE802.11b/g/a/n-20/n-40/11ac-20/11ac-40/11ac-80)

	IEEE802.11b	IEEE802.11g/n (20 M band)	IEEE802.11a/n/ac (20 M band)	IEEE802.11n/ac (40 M band)	IEEE802.11ac (80 M band)
Frequency of operation	2412 MHz - 2462 MHz	2412 MHz - 2462 MHz	5180 MHz - 5240 MHz 5260 MHz - 5320 MHz 5500 MHz - 5700 MHz 5745 MHz - 5825 MHz	2422 MHz - 2452 MHz 5190 MHz - 5230 MHz 5270 MHz - 5310 MHz 5510 MHz - 5670 MHz	5210 MHz 5290 MHz 5530 MHz - 5610 MHz 5775 MHz
Type of modulation	DSSS (CCK, DQPSK, DBPSK)	OFDM-CCK (64QAM, 16QAM, QPSK, BPSK)	11a/n: OFDM (64QAM, 1 11ac: OFDM (64QAM, 10	6QAM, QPSK, BPSK) 6QAM, QPSK, BPSK, 256QA!	M)
Channel spacing	5 MHz		20 MHz	40 MHz	80 MHz
Antenna type	PCB antenna *1)				
Antenna Gain	2.4 GHz: 3.5 dBi 5 GHz: 3.5 dBi				

Bluetooth

	Bluetooth
Frequency	2402 MHz - 2480 MHz
of operation	
Type of	BT: FHSS (GFSK, $\pi/4DQPSK$, 8DPSK)
modulation	LE: GFSK
Channel spacing	BT: 1 MHz
	LE: 2 MHz
Antenna type	PCB antenna
Antenna Gain	3.5 dBi

*1) Tests were not performed following channels, because this antenna installed in Host device is not used these channels.

- WLAN 11n40 (2.4GHz band)

- 20 MHz Bandwidth (5600 MHz - 5640 MHz)

- 40 MHz Bandwidth (5590 MHz - 5630 MHz)

- 80 MHz Bandwidth (5610 MHz MHz)

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 7 of 112 : N43E400001 : February 25, 2022

SECTION3: Test standard information

3.1 Test Specification

Title : FCC47CFR 2.1093

Radiofrequency radiation exposure evaluation: portable devices.

: Published RF exp	osure KDB procedures
☑ KDB 447498 D01(v06)	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
KDB 447498 D02(v02r01)	SAR Measurement Procedures for USB Dongle Transmitters
KDB 648474 D04(v01r03)	SAR Evaluation Considerations for Wireless Handsets
□ KDB 941225 D01(v03r01)	3G SAR Measurement Procedures
□ KDB 941225 D05(v02r05)	SAR Evaluation Considerations for LTE Devices
□ KDB 941225 D06(v02r01)	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR)
KDB 941225 D07(v01r02)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
KDB 616217 D04(v01r02)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
KDB 865664 D01(v01r04)	SAR Measurement Requirements for 100 MHz to 6 GHz
KDB 248227 D01(v02r02)	SAR Guidance for 802.11(Wi-Fi) Transmitters

Reference

[1] SPEAG uncertainty document

[2] IEEE Std 1528-2013

[3] IEC 62209-2:2010 + AMD1:2019 CS

3.2 Procedure

Transmitter	WLAN	
Test Procedure	Published RF exposure KDB procedures	
Category	SAR	
Note: UL Japan, Inc. 's SAR Work Procedures 13-EM-W0429 and 13-EM-W0430		

RF Module and Host have the same product name: 4.0G LET and model number: E4000-01.

The EUT of this test report is RF Module.

In order to distinguish between RF Module and Host, this test report shows as follows.

RF Module: 4.0G LET

Host: 4.0G LET (Host)

4.0G LET only works with 4.0G LET (Host).

Therefore, the test was performed with the 4.0G LET (Host) in which the distance to the exterior surface is shortest.

3.3 Additions or deviations to standard

Other than above, no addition, exclusion nor deviation has been made from the standard.

: 14007301H-A-R1 : 8 of 112 : N43E400001 : February 25, 2022	
: 8	8 of 112
: 1	N43E400001

3.4 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1 g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average (averaged over the whole body	Spatial Peak (averaged over any 1 g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure

that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1 g of tissue) LIMIT 1.6 W/kg

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 9 of 112 : N43E400001 : February 25, 2022
	· - ···· J -·· , - ·

<u>3.5 SAR</u>

Specific Absorption Rate (SAR): The time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ), as shown in the following equation:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg) or equivalently milliwatts per gram (mW/g).

SAR is related to the E-field at a point by the following equation:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where

 $\sigma = \text{conductivity of the tissue (S/m)}$ $\rho = \text{mass density of the tissue (kg/m3)}$ E = rms E-field strength (V/m)

3.6 Test Location

UL Japan, Inc. Ise EMC Lab. Shielded room for SAR testing *A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

···· · · · · · · · · · · · · · · · · ·	: 14007301H-A-R1 : 10 of 112
	: N43E400001
Issued date	: February 25, 2022

SECTION4: Test result

4.1 Result

Complied Highest values at each band are listed next section.

4.2 Stand-alone SAR result

RF Exposure Conditions		Equipment Class - Highest Reported SAR (W/kg)		
		DTS	NII	
Standalone Tx (1-g SAR)	Body	0.456	0.927	

*Details are shown at section 12.

4.3 Simultaneous transmission SAR result

Wireless LAN and Bluetooth(incl. BT LE) do not transmit simultaneously.

	Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 11 of 112 : N43E400001 : February 25, 2022
--	--	--

SECTION5: Tune-up tolerance information and software information

Maximum tune-up tolerance limit

Mode	Data	Band	Frequency	Maximum tune-up tolerance limit	Maximum tune-up tolerance limit
	rate		[MHz]	[dBm]	[mW]
WLAN 11b	1 Mbps	2.4 GHz	2412-2462	16.50	44.67
WLAN 11g/11n20	6 Mbps /MCS0	2.4 GHz	2412-2457	15.50	35.48
WLAN 11g/11n20	6 Mbps /MCS0	2.4 GHz	2462	16.50	44.67
WLAN 11a/11n20/11ac20	6 Mbps /MCS0	5.2 GHz	5180-5200	14.50	28.18
WLAN 11a/11n20/11ac20	6 Mbps /MCS0	5.2 GHz	5220-5240	13.50	22.39
WLAN 11n40/11ac40	MCS0	5.2 GHz	5190-5230	13.50	22.39
WLAN 11ac80	MCS0	5.2 GHz	5210	12.50	17.78
WLAN 11a/11n20/11ac20	6 Mbps /MCS0	5.3 GHz	5260-5280	13.50	22.39
WLAN 11a/11n20/11ac20	6 Mbps /MCS0	5.3 GHz	5300-5320	14.50	28.18
WLAN 11n40/11ac40	MCS0	5.3 GHz	5270	13.50	22.39
WLAN 11n40/11ac40	MCS0	5.3 GHz	5310	12.50	17.78
WLAN 11ac80	MCS0	5.3 GHz	5290	11.50	14.13
WLAN 11a/11n20/11ac20	6 Mbps /MCS0	5.5 GHz	5500	14.50	28.18
WLAN 11a/11n20/11ac20	6 Mbps /MCS0	5.5 GHz	5520-5700	13.50	22.39
WLAN 11n40/11ac40	MCS0	5.5 GHz	5510	14.50	28.18
WLAN 11n40/11ac40	MCS0	5.5 GHz	5550-5630	13.50	22.39
WLAN 11n40/11ac40	MCS0	5.5 GHz	5670	14.50	28.18
WLAN 11ac80	MCS0	5.5 GHz	5530-5610	13.50	22.39
WLAN 11a	6Mbps	5.8 GHz	5745-5825	14.50	28.18
WLAN 11n20/11ac20	MCS0	5.8 GHz	5745-5765	13.50	22.39
WLAN 11n20/11ac20	MCS0	5.8 GHz	5785-5825	14.50	28.18
WLAN 11n40/11ac40	MCS0	5.8 GHz	5755	14.50	28.18
WLAN 11n40/11ac40	MCS0	5.8 GHz	5795	15.50	35.48
WLAN 11ac80	MCS0	5.8 GHz	5775	14.50	28.18
Bluetooth	DH5	2.4 GHz	2402-2480	5.99	3.97
Bluetooth	2DH5	2.4 GHz	2402-2480	5.70	3.72
Bluetooth	3DH5	2.4 GHz	2402-2480	5.70	3.72
BT LE	-	2.4 GHz	2402-2480	6.18	4.15

Following channels are not used on this host device.

- WLAN 11n40 (2.4GHz band)

- 20 MHz Bandwidth (5600 MHz - 5640 MHz)

- 40 MHz Bandwidth (5590 MHz - 5630 MHz)

- 80 MHz Bandwidth (5610 MHz MHz)

Maximum tune-up tolerance limit of WLAN is defined as maximum timed-average value. (Considering to maximum duty cycle of WLAN.)

For Maximum tune-up tolerance limit of Bluetooth/BT LE is defined by a customer as duty 100 %

Test report No. Page FCC ID	: 14007301H-A-R1 : 12 of 112 : N43E400001
Issued date	: February 25, 2022

Software setting							
	f the EUT was set for testing as follows (setting value might be different from product specification						
value);							
Power settings:	See Power Setting Table						
(The power setting v	value has been adjusted to max power for testing.)						
Software:	QRCT Version 4.0.00138.0						
e	ware is the worst case.						
	The test was performed with condition that obtained the maximum average power (Burst) in pre-check.						
Any conditions unde	er the normal use do not exceed the condition of setting.						
In addition, end user	rs cannot change the settings of the output power of the product.						

[Power Setting Table used for SAR tests]

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	Power Setting
			1	2412	16.0
2.4	11b	1 Mbps	6	2437	16.0
			11	2462	16.0
		6 Mbps	52	5260	13.0
5.3	11a		60	5300	14.0
			64	5320	14.0
			102	5510	14.0
5.5	11n40	MCS0	110	5550	13.5
			134	5670	14.0
5.8	11n40	MCS0	151	5755	14.0
5.8	111140	IVIC SU	159	5795	15.0

Test	report No. : 1	14007301H-A-R1
Page	e :1	13 of 112
FCC	1 : DI CI	N43E400001
Issue	ed date : 1	February 25, 2022

SECTION6: RF Exposure Conditions (Test Configurations)

6.1 Summary of the distance between antenna and surface of EUT

	WLAN antenna		
Test Position	Distance		
Front	18.47 mm		
Rear	28.83 mm		
Left	57.15 mm		
Right	42.5 mm		
Тор	9.6 mm		
Bottom	171.4 mm		

*Details are shown in Appendix 4

Test report No. Page	: 14007301H-A-R1 : 14 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

6.2 SAR test exclusion considerations according to KDB 447498 D01

The following is based on KDB 447498 D01.

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- 1. The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison
- 4. The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. When the separation of antenna to EUT's surfaces and edges are ≤ 50 mm, the separation distance used for the SAR exclusion calculations is 5 mm.</p>
- 5. "N/A" displayed on below exclusion calculation means not applicable this formula since distance between antenna and surface is > 50 mm.

When the calculated threshold value by a numerical formula above-mentioned in the following table is 3.0 or less, SAR test is excluded.

Antenna	Interface	(MHz)	Output Power		Calculated Threshold Value					
			dBm	mW	Front	Rear	Left	Right	Тор	Bottom
Main	11b	2462	16.50	45	14 -MEASURE-	14 -MEASURE-	N/A	14 -MEASURE-	14 -MEASURE-	N/A
Main	11g, 11n20	2462	16.50	45	14 -MEASURE-	14 -MEASURE-	N/A	14 -MEASURE-	14 -MEASURE-	N/A
Main	Bluetooth	2480	5.99	4	1.3 -EXEMPT-	1.3 -EXEMPT-	N/A	1.3 -EXEMPT-	1.3 -EXEMPT-	N/A
Main	BT LE	2480	6.18	4	1.3 -EXEMPT-	1.3 -EXEMPT-	N/A	1.3 -EXEMPT-	1.3 -EXEMPT-	N/A

SAR exclusion calculations for antenna < 50 mm from the user

SAR exclusion calculations for antenna <50 mm from the user

Antenna	T x Interface	Frequency (MHz)	Output	t Power	Calculated Threshold Value					
			dBm	mW	Front	Rear	Left	Right	Top	Bottom
Main	11a, 11n20, 11n40, 11ac20,	5240	14.50	28	12.9 -MEASURE-	12.9 -MEASURE-	N/A	12.9 -MEASURE-	12.9 -MEASURE-	N/A
Main	11a, 11n20, 11n40, 11ac20,	5320	14.50	28	13 -MEASURE-	13 -MEASURE-	N/A	13 -MEASURE-	13 -MEASURE-	N/A
Main	11a, 11n20, 11n40, 11ac20,	5700	14.50	28	13.5 -MEASURE-	13.5 -MEASURE-	N/A	13.5 -MEASURE-	13.5 -MEASURE-	N/A
Main	11a, 11n20, 11n40, 11ac20,	5825	15.50	35	17.1 -MEASURE-	17.1 -MEASURE-	N/A	17.1 -MEASURE-	17.1 -MEASURE-	N/A

Test report No. Page	: 14007301H-A-R1 : 15 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following.

a) $[(3.50)/(\sqrt{f(GHz)})) + (test separation distance - 50 mm) \cdot (f(MHz)/150)] mW$ at > 100 MHz and $\le 1500 MHz$ b) $[(3.50)/(\sqrt{f(GHz)})) + (test separation distance - 50 mm) \cdot 10] mW$ at > 1500 MHz and $\le 6 GHz$

- 1. The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. "N/A" displayed on below exclusion calculation means not applicable this formula since distance between antenna and surface is < 50 mm.

When output power is less than the calculated threshold value by a numerical formula above-mentioned in the following table, SAR test is excluded.

Antenna	Tx	Frequency								
Antenna	Interface	(MHz)	Output Power		Calculated Thresh	old Value				
			dBm	mW	Front	Rear	Left	Right	Тор	Bottom
Main	11b	2462	16.50	45	N/A	N/A	167.1 mW	N/A	N/A	1309.6 mW
							-EXEMPT-			-EXEMPT-
Main	11g, 11n20	2462	16.50	45	N/A	N/A	167.1 mW	N/A	N/A	1309.6 mW
	-						-EXEMPT-			-EXEMPT-
Main	Bluetooth	2480	5.99	4	N/A	N/A	166.8 mW	N/A	N/A	1309.3 mW
							-EXEMPT-			-EXEMPT-
Main	BT LE	2480	6.18	4	N/A	N/A	166.8 mW	N/A	N/A	1309.3 mW
							-EXEMPT-			-EXEMPT-

SAR exclusion calculations for antenna >50mm from the user

Antenna	T x Interface	Frequency (MHz)	Output	Power	Calculated Threshold Value					
			dBm	mW	Front	Rear	Left	Right	Тор	Bottom
Main	11a, 11n20, 11n40, 11ac20,	5240	14.50	28	N/A	N/A	137 mW -EXEMPT-	N/A	N/A	1279.5 mW -EXEMPT-
Main	11a, 11n20, 11n40, 11ac20,	5320	14.50	28	N/A	N/A	136.5 mW -EXEMPT-	N/A	N/A	1279 mW -EXEMPT-
Main	11a, 11n20, 11n40, 11ac20,	5700	14.50	28	N/A	N/A	134.3 mW -EXEMPT-	N/A	N/A	1276.8 mW -EXEMPT-
Main	11a, 11n20, 11n40, 11ac20,	5825	15.50	35	N/A	N/A	133.7 mW -EXEMPT-	N/A	N/A	1276.2 mW -EXEMPT-

SAR exclusion calculations for antenna >50mm from the user

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 16 of 112 : N43E400001 : February 25, 2022

SECTION7: Description of the Body setup

7.1 Procedure for SAR test position determination -The tested procedure was performed according to the KDB 447498 D01 (Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies).

7.2 Test position for Body setup

No.	Position	Test	WLAN	Bluetooth/ BT LE
		distance	Tested	Tested
1	Front	0 mm	$\mathbf{\nabla}$	
2	Rear	0 mm	$\mathbf{\nabla}$	
3	Left	0 mm		
4	Right	0 mm	$\mathbf{\nabla}$	
5	Тор	0 mm	$\mathbf{\nabla}$	
6	Bottom	0 mm		

*The test was conservatively performed with test distance 0 mm.

Page : 17 of 112 FCC ID : N43E400001 Issued date : February 25, 202

SECTION8: Description of the operating mode

8.1 Output Power and SAR test required

According to KDB 248227 D01, the initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- 1. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- 2. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 18 of 112 : N43E400001 : February 25, 2022

Wi-Fi 2.4GHz (DTS Band) SISO

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	T une-up upper Power (dBm)	Measured average Power (dBm)	Initial test configuration	Note(s)
2.4	802.11b	1 Mbps	1	2412	16.50	15.87		
			6	2437	16.50	15.78		2
			11	2462	16.50	16.17	Yes	
	802.11g	6 Mbps	1	2412	15.50	Not Required		
			6	2437	15.50	Not Required		
			11	2462	16.50	Not Required		1
	802.11n	MCS0	1	2412	15.50	Not Required		1
	(HT20)		6	2437	15.50	Not Required		
			11	2462	16.50	Not Required		

Note(s):

 According to KDB 248227 D01, SAR is not required for 802.11g/n HT20 channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

2. According to KDB 248227 D01, SAR test channel was chosen. (shaded blue frame)

Test report No.	: 14007301H-A-R1
Page	: 19 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

Wi-Fi 5GHz (U-NII-1 and U-NII-2A Bands) <u>SISO</u>

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	T une-up upper Power (dBm)	Measured average Power (dBm)	Initial test configuration	Note(s)
5.2	802.11a	6 Mbps	36	5180	14.5	Not Required		
(U-NII-1)			40	5200	14.5	Not Required		1
			44	5220	13.5	Not Required		1
			48	5240	13.5	Not Required		1
	802.11n	MCS0	36	5180	14.5	Not Required		1
	(HT20)		40	5200	14.5	Not Required		1
			44	5220	13.5	Not Required		1
			48	5240	13.5	Not Required		1
	802.11n	MCS0	38	5190	13.5	Not Required		3
	(HT40)		46	5230	13.5	Not Required		,
	802.11ac	MCS0	36	5180	14.5	Not Required		1
	(VHT 20)		40	5200	14.5	Not Required		1
			44	5220	13.5	Not Required		1
			48	5240	13.5	Not Required		1
	802.11ac	MCS0	38	5190	13.5	Not Required		1
	(VHT 40)		46	5230	13.5	Not Required		1
	802.11ac (VHT 80)	MCS0	42	5210	12.5	Not Required		1
5.3	802.11a	6 Mbps	52	5260	13.5	12.00		
(U-NII-2A)			56	5280	13.5	Not Required		
			60	5300	14.5	12.86		2, 4
			64	5320	14.5	12.92	Yes	1
	802.11n	MCS0	52	5260	13.5	Not Required		
	(HT20)		56	5280	13.5	Not Required		1
			60	5300	14.5	Not Required		1
			64	5320	14.5	Not Required		1
	802.11n	MCS0	54	5270	13.5	Not Required		1
	(HT40)		62	5310	12.5	Not Required		1
	802.11ac	MCS0	52	5260	13.5	Not Required		1_1
	(VHT 20)		56	5280	13.5	Not Required		<u>ן</u>
			60	5300	14.5	Not Required		1
			64	5320	14.5	Not Required		1
	802.11ac	MCS0	54	5270	13.5	Not Required		1
	(VHT 40)		62	5310	12.5	Not Required		1
	802.11ac (VHT 80)	MCS0	58	5290	11.5	Not Required		1

Note(s):

1. Excerpt from KDB 248227 D01 clause 5.3.4 b), when the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

2. When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel with the largest bandwidth and lowest data rate is selected (i.e. 802.11a).

- $\circ \leq 1.2$ W/kg, SAR is not required for UNII band I
- \circ > 1.2 W/kg, both bands should be tested independently for SAR.
- 4. According to KDB 248227 D01, SAR test channel was chosen. (shaded blue frame)

^{3.} When the specified maximum output power is the same for both UNII band I and UNII band 2A, begin SAR measurement in UNII band 2A; and if the highest *reported* SAR for UNII band 2A is

Wi-Fi 5GHz (U-NII-2C Band) **SISO**

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	Tune-up upper Power (dBm)	Measured average Power (dBm)	Initial test configuration	Note(s)
5.5	802.11a	6 Mbps	100	5500	14.5	Not Required		
(U-NII-2C)			104	5520	13.5	Not Required		
			108	5540	13.5	Not Required		
			112	5560	13.5	Not Required		
			116	5580	13.5	Not Required		
			120	5600	13.5	Not Required		
			124	5620	13.5	Not Required		
			128	5640	13.5	Not Required		
			132	5660	13.5	Not Required		
			136	5680	13.5	Not Required		
			140	5700	13.5	Not Required		
	802.11n	MCS0	100	5500	14.5	Not Required		1
	(HT 20)		104	5520	13.5	Not Required		1
			108	5540	13.5	Not Required		
			112	5560	13.5	Not Required		
			116	5580	13.5	Not Required		
			120	5600	13.5	Not Required		
			124	5620	13.5	Not Required		
			128	5640	13.5	Not Required		
			132	5660	13.5	Not Required		
			136	5680	13.5	Not Required		
			140	5700	13.5	Not Required		
	802.11n	MCS0	102	5510	14.5	13.85	Yes	
	(HT 40)		110	5550	13.5	12.61		
			118	5590	13.5	Not Required		2, 3
			126	5630	13.5	Not Required		
			134	5670	14.5	13.01		
	802.11ac	MCS0	100	5500	14.5	Not Required		
	(VHT 20)		104	5520	13.5	Not Required		
			108	5540	13.5	Not Required		
			112	5560	13.5	Not Required		
			116	5580	13.5	Not Required		
			120	5600	13.5	Not Required		
			124	5620	13.5	Not Required		
			128	5640	13.5	Not Required		
			132	5660	13.5	Not Required		1
			136	5680	13.5	Not Required		1
			140	5700	13.5	Not Required		
	802.11ac	MCS0	102	5510	14.5	Not Required		
	(VHT40)		110	5550	13.5	Not Required		
			118	5590	13.5	Not Required		
			126	5630	13.5	Not Required		
			134	5670	14.5	Not Required		
	802.11ac	MCS0	106	5530	13.5	Not Required		
	(VHT 80)		122	5610	13.5	Not Required		1

Following channels are not used on this host device. - WLAN 11n40 (2.4GHz band) - 20 MHz Bandwidth (5600 MHz - 5640 MHz)

- 40 MHz Bandwidth (5590 MHz - 5630 MHz)

- 80 MHz Bandwidth (5610 MHz MHz)

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 21 of 112 : N43E400001 : February 25, 2022

Note(s):

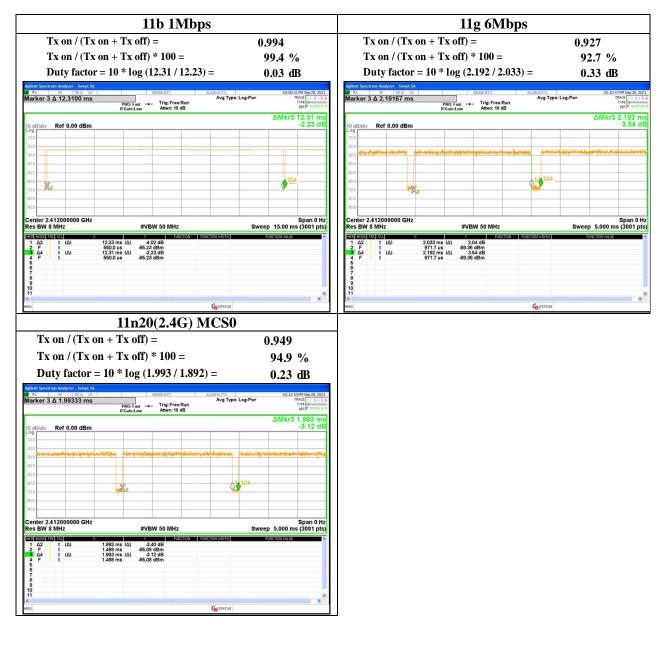
- Excerpt from KDB 248227 D01 clause 5.3.4 b), when the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 2. When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel with the largest bandwidth and lowest data rate is selected (i.e. 802.11n HT40).
- 3. According to KDB 248227 D01, SAR test channel was chosen. (shaded blue frame)

Issued date : February 25, 2022

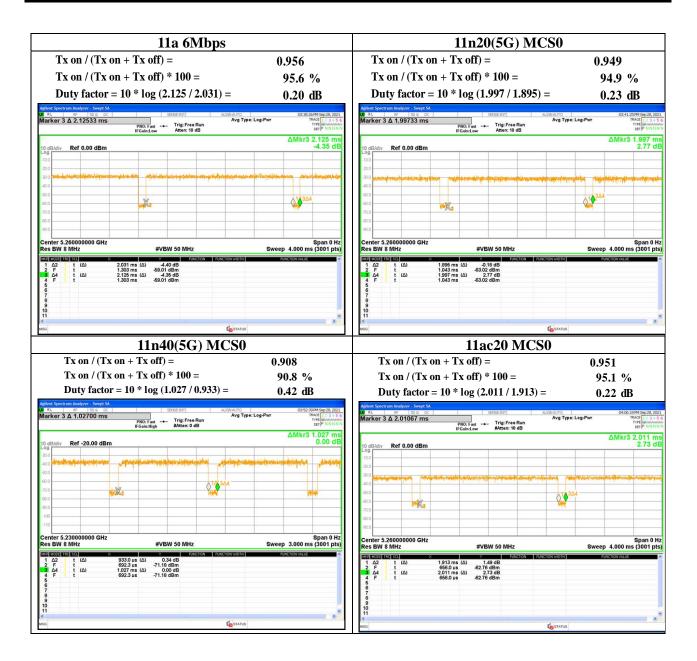
Wi-Fi 5GHz (U-NII-3 Band) SISO

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	T une-up upper	Measured average	Initial test configuration	Note(s)
5.8	802.11a	6 Mbps	149	5745	14.5	Not Required		
(U-NII-3)			153	5765	14.5	Not Required		
			157	5785	14.5	Not Required		
			161	5805	14.5	Not Required		
			165	5825	14.5	Not Required		1
	802.11n	MCS0	149	5745	13.5	Not Required		1
	(HT 20)		153	5765	13.5	Not Required		
			157	5785	14.5	Not Required		
			161	5805	14.5	Not Required		
			165	5825	14.5	Not Required		
	802.11n	MCS0	151	5755	14.5	12.94		2,3
	(HT 40)		159	5795	15.5	13.84	Yes	2, 5
	802.11ac	MCS0	149	5745	13.5	Not Required		
	(VHT 20)		153	5765	13.5	Not Required		
			157	5785	14.5	Not Required		
			161	5805	14.5	Not Required		
			165	5825	14.5	Not Required		1
	802.11ac	MCS0	151	5755	14.5	Not Required		
	(VHT 40)		159	5795	15.5	Not Required]
	802.11ac (VHT 80)	MCS0	155	5775	14.5	Not Required		1

Note(s):


 Excerpt from KDB 248227 D01 clause 5.3.4 b), when the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel with the largest bandwidth and lowest data rate is selected (i.e. 802.11n HT40).


3. According to KDB 248227 D01, SAR test channel was chosen. (shaded blue frame)

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 23 of 112 : N43E400001 : February 25, 2022

8.2 Duty rate confirmation

Test report No.	: 14007301H-A-R1
Page	: 24 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

Test report No.	: 14007301H-A-R1
Page	: 25 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

11ac40 MCS0			11ac80	
Tx on / (Tx on + Tx off) =	0.907	Tx on / (Tx on +	Tx off) =	0.778
Tx on / (Tx on + Tx off) * 100 =	90.7 %	Tx on / (Tx on +	Tx off) * 100 =	77.8 %
Duty factor = 10 * log (1.041 / 0.944) =	0.42 dB	Duty factor = 10	* log (0.589 / 0.4585) =	1.09 dB
Aglinnt Spectrum Analyzer - Swegt SA 20 R L № 500 DC SPECENT AUSTANTO Marker 3 Δ 1.04100 ms PHO: Fast FGuilt Hun Anten: 0 dB	04:00:30 PM Sep 28, 2021 TRACE 10 3 4 5 6 TYPE WWWWWWW DET P 1410 14 14	Aglient Spectrum Analyzer - Swept SA OF RL RF SO © C Marker 3 ∆ 589.000 µs		AVTO 04:04:16PM Sep 28, 20 Avg Type: Log-Pwr TRACE 10:2:3:4 TYPE WANNA CET P ININI
10 dB/div Ref -20.00 dBm	∆Mkr3 1.041 ms 1.25 dB	10 dB/div Ref -20.00 dBm		ΔMkr3 589.0 μ -2.82 d
000	Mar Antoine Antoine Antoine Antoine	-30.0 -40.0 Winds (and by law plot in the 1714		
	014 3∆4	500 600 -700		∆ ¹ ² ³ ⁴
		-90.0		
Center 5.230000000 GHz	Span 0 Hz sweep 3.000 ms (3001 pts)	Center 5.290000000 GHz Res BW 8 MHz	#VBW 50 MHz	Span 0 H Sweep 1.500 ms (3001 pt
024 (0.024 (0.024 (0.01 ≤ 0.02 ≤ 0.02 ≤ 0.01 ≤ 0.02 ≤ 0.02 ≤ 0.01 ≤ 0.02 ≤ 0.02 ≤ 0.01 ≤ 0.02 ≤ 0.01 ≤ 0.	FUNCTION VALUE	2 F t 513.5	μs (Δ) -2.82 dB	PUNCTION VALUE
8 0 11 12 13	*	8 9 10 11		STATUS 3

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 26 of 112 : N43E400001 : February 25, 2022

SECTION9: Test surrounding

9.1 Measurement uncertainty

This measurement uncertainty budget is suggested by IEEE Std 1528(2013) and IEC62209-2:2010+AMD1:2019 CSV, and determined by Schmid & Partner Engineering AG (DASY5/6 Uncertainty Budget). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz Section 2.8.1., when the highest measured SAR(1 g) within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

	Uncert		Prob.	Div.	(ci)	(ci)	Std. Unc.	Std.Unc.
Error Description	value		Dist.		1 g	10 g	(1 g)	(10 g)
Measurement System								
Probe Calibration	± 6.55	%	Ν	1	1	1	± 6.55 %	± 6.55 %
Axial Isotropy	± 4.7	%	R	√3	0.7	0.7	± 1.9 %	± 1.9 %
Hemispherical Isotropy	± 9.6	%	R	$\sqrt{3}$	0.7	0.7	± 3.9 %	± 3.9 %
Linearity	± 4.7	%	R	$\sqrt{3}$	1	1	± 2.7 %	± 2.7 %
Modulation Response	± 2.4	%	R	$\sqrt{3}$	1	1	± 1.4 %	± 1.4 %
System Detection Limits	± 1.0	%	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %
Boundary Effects	± 2.0	%	R	$\sqrt{3}$	1	1	± 1.2 %	± 1.2 %
Readout Electronics	± 0.3	%	Ν	1	1	1	± 0.3 %	± 0.3 %
Response Time	± 0.8	%	R	√3	1	1	± 0.5 %	± 0.5 %
Integration Time	± 2.6	%	R	√3	1	1	± 1.5 %	± 1.5 %
RF Ambient Noise	± 3.0	%	R	√3	1	1	± 1.7 %	± 1.7 %
RF Ambient Reflections	± 3.0	%	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %
Probe Positioner	± 0.04	%	R	$\sqrt{3}$	1	1	± 0.0 %	± 0.0 %
Probe Positioning	\pm 0.8	%	R	√3	1	1	± 0.5 %	± 0.5 %
Post-processing	± 4.0	%	R	$\sqrt{3}$	1	1	± 2.3 %	± 2.3 %
Test Sample Related							•	•
Device Holder	± 3.6	%	Ν	1	1	1	± 3.6 %	± 3.6 %
Test sample Positioning	± 2.9	%	N	1	1	1	± 2.9 %	± 2.9 %
Power Scaling	± 0.0	%	R	$\sqrt{3}$	1	1	± 0.0 %	± 0.0 %
Power Drift	± 5.0	%	R	$\sqrt{3}$	1	1	± 2.9 %	± 2.9 %
Phantom and Setup								
Phantom Uncertainty	± 7.6	%	R	$\sqrt{3}$	1	1	± 4.4 %	± 4.4 %
SAR correction	± 1.9	%	N	1	1	0.84	± 1.9 %	± 1.6 %
Liquid Conductivity (mea.)	+ 2.3	%	Ν	1	0.78	0.71	± 1.8 %	± 1.6 %
Liquid Permittivity (mea.)	+ 1.8	%	Ν	1	0.23	0.26	± 0.4 %	± 0.5 %
Temp. unc Conductivity	± 3.4	%	R	√3	0.78	0.71	± 1.5 %	± 1.4 %
Temp. unc Permittivity	± 0.4	%	R	√3	0.23	0.26	± 0.1 %	± 0.1 %
Combined Std. Uncertainty	-						± 12.1 %	± 12.0 %
Expanded STD Uncertainty (к =2)						± 24.1 %	± 23.9 %

Note: This uncertainty budget for validation is worst-case. Table of uncertainties are listed for ISO/IEC 17025.

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 27 of 112 : N43E400001 : February 25, 2022

SECTION10: Parameter Check

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit. The dielectric parameters measurement is reported in each correspondent section.

According to KDB 865664 D01, +/- 5 % tolerances are required for ϵ r and σ and then below table which is the target value of the simulated tissue liquid is quoted from KDB 865664 D01.

Target Frequency	H	ead	В	ody	
(MHz)	Er	σ (S/m)	\mathcal{E}_{r}	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 - 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

The dielectric parameters are linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No.	: 14007301H-A-R1
Page	: 28 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

10.1 For SAR system check

DIELECTRIC	LECTRIC PARAMETERS MEAS UREMENT RESULTS												
Date	Ambient	Relative	Liquid type	Liquid	M easured	Target	Target	Measure	M easure	Deviation σ	Deviation Er	Limit	Remark
	Temp.	Humidity		Temp.	Frequency	[σ]	[ɛr]	[σ]	[ɛr]	[%]	[%]	[%]	
	[deg.c]	[%]		[deg.c]	[MHz]								
2022/1/5	24.0	40	HBBL600-10000	23.5	2450.0	1.80	39.2	1.80	39.3	-0.2	0.3	+/- 5	
2022/1/11	22.0	40	HBBL600-10000	21.5	5250.0	4.71	35.9	4.76	36.5	1.1	1.7	+/- 5	
2022/1/13	22.0	40	HBBL600-10000	21.5	5600.0	5.07	35.5	5.06	36.0	-0.1	1.3	+/- 5	
2022/1/18	22.0	40	HBBL600-10000	21.5	5800.0	5.27	35.3	5.39	35.7	2.4	1.1	+/- 5	

10.2 For SAR measurement

DIELECTRIC	ELECTRIC PARAMETERS MEASUREMENT RESULTS												
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	M easured Frequency [MHz]	Target [σ]	Target [ɛr]	Measure [σ]	Measure [εr]	Deviation σ [%]	Deviation ɛr [%]	Limit [%]	Remark
2022/1/5	24.0	40	HBBL600-10000	23.5	2412.0	1.77	39.3	1.77	39.3	0.1	0.1	+/- 5	
2022/1/5	24.0	40	HBBL600-10000	23.5	2437.0	1.79	39.2	1.79	39.3	-0.1	0.2	+/- 5	
2022/1/5	24.0	40	HBBL600-10000	23.5	2462.0	1.81	39.2	1.81	39.3	-0.4	0.3	+/- 5	
2022/1/11	22.0	40	HBBL600-10000	21.5	5260.0	4.72	35.9	4.74	36.4	0.4	1.3	+/- 5	
2022/1/11	22.0	40	HBBL600-10000	21.5	5300.0	4.76	35.9	4.84	36.4	1.7	1.6	+/- 5	
2022/1/11	22.0	40	HBBL600-10000	21.5	5320.0	4.78	35.8	4.87	36.3	1.8	1.3	+/- 5	
2022/1/13	22.0	40	HBBL600-10000	21.5	5510.0	4.97	35.6	5.00	36.3	0.6	1.8	+/- 5	
2022/1/13	22.0	40	HBBL600-10000	21.5	5550.0	5.01	35.6	5.02	36.1	0.1	1.5	+/- 5	
2022/1/13	22.0	40	HBBL600-10000	21.5	5670.0	5.14	35.4	5.18	35.8	0.7	1.0	+/- 5	
2022/1/18	22.0	40	HBBL600-10000	21.5	5755.0	5.22	35.4	5.34	35.6	2.3	0.8	+/- 5	
2022/1/18	22.0	40	HBBL600-10000	21.5	5795.0	5.26	35.3	5.30	35.7	0.7	1.0	+/- 5	

Test report No. Page	: 14007301H-A-R1 : 29 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

SECTION11: System Check confirmation

The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.

The depth of tissue-equivalent liquid in a phantom must be $\geq 15.0 \text{ cm} \pm 0.5 \text{ cm}$ for SAR measurements $\leq 3 \text{ GHz}$ and $\geq 10.0 \text{ cm} \pm 0.5 \text{ cm}$ for measurements > 3 GHz.

The DASY system with an E-Field Probe was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom).

The standard measuring distance was 10 mm (above 1 GHz to 6 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.

The coarse grid with a grid spacing of 12 mm (1 GHz to 3 GHz) and 15 mm (below 1 GHz) was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.

Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.

Distance between probe sensors and phantom surface was set to 3 mm.

For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm

The dipole input power (forward power) was 100 mW(For 5 GHz band) or 250 mW(For other band).

The results are normalized to 1 W input power.

Target Value

Freq [MHz]		Model,S/N	Head		
			(SPEAG)	(SPEAG)	
			1 g [W/kg]	10 g [W/kg]	
	2450	D2450V2,713	54.80	25.40	
	5250	D5GHV2,1020	77.90	22.30	
	5600	D5GHV2,1020	81.80	23.30	
	5800	D5GHV2,1020	78.00	22.10	

The target(reference) SAR values can be obtained from the calibration certificate of system validation dipoles(Refer to Appendix 3). The target SAR values are SAR measured value in the calibration certificate scaled to 1 W.

				T.S.		ed Results	Target	Delta
Date Tested	Test Freq	M odel,S/N		Liquid		Normalize to 1 W	(Ref. Value)	± 10 %
2022/1/5	2450	D2450V2,713	Head	1 g	12.80	51.2	54.80	-6.6
				10 g	5.95	23.8	25.40	-6.3
2022/1/11	5250	D5GHV2,1020	Head	1 g	8.01	80.1	77.90	2.8
				10 g	2.28	22.80	22.30	2.2
2022/1/13	5600	D5GHV2,1020	Head	1 g	8.64	86.4	81.80	5.6
				10 g	2.46	24.60	23.30	5.6
2022/1/18	5800	D5GHV2,1020	Head	1 g	8.07	80.70	78.00	3.5
				10 g	2.33	23.30	22.10	5.4

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 30 of 112 : N43E400001 : February 25, 2022

SECTION12: Measured and Reported (Scaled) SAR Results

WLAN SAR Test Reduction criteria are as follows

• KDB 248227 D01 (SAR Guidance for 802.11(Wi-Fi) Transmitters):

SAR test reduction for 802.11 WLAN transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration. SAR test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- $\Rightarrow \leq 0.4$ W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- $\Rightarrow > 0.4$ W/kg, SAR is repeated using the same wireless mode test configuration tested in the *initial test position* to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the *reported* SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- ☆ For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- ♦ When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- ♦ When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR (measured)*. The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

Test report No. Page	: 14007301H-A-R1 : 31 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

SAR Test Reduction criteria(excluding WLAN) are as follows

KDB 447498 D01 (General RF Exposure Guidance):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- $\Rightarrow \leq 0.8$ W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ♦ ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- $\Rightarrow \leq 0.4$ W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- According to Notice 2016-DRS001 based on the IEEE1528 and IEC 62209 requirements, the low, mid and high frequency channels for the configuration with the highest SAR value must be tested regardless of the SAR value measured.
- When reported SAR value is exceed 1.2 W/kg(if any), device holder perturbation verification is required; however, since distance between device holder and antenna of EUT is enough, it was not conducted.
- Reported SAR= Measured SAR [W/kg] * Power Scaled factor * Duty Scaled factor Maximum tune-up tolerance limit is by the specification from a customer.
 * Power Scaled factor = Maximum tune-up tolerance limit [mW] / Measured power [mW]
 - * Duty Scaled factor = 1 / Duty (%) / 100
- Maximum tune-up tolerance limit is by the specification from a customer.

Note: Measured value is rounded round off to three decimal places

Test report No.	: 14007301H-A-R1
Page	: 32 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

12.1 WLAN 2.4 GHz Band

				Power	(dBm)	Power		Duty	1-g SAI	R (W/kg)	
Test Position	Dist. (mm)	Mode	Freq. (MHz)	Tune-up upper Power	M easured average Power	Scaled factor	Duty (%)	Scaled factor	M eas.	Reported	Plot No.
			2412	16.50	15.87	1.16	99.4	1.01	0.392	0.456	
Тор	0	11b	2437	16.50	15.78	1.18	99.4	1.01	0.384	0.456	1
			2462	16.50	16.17	1.08	99.4	1.01	0.391	0.425	
			2412	16.50	15.87	1.16	99.4	1.01			
Front	0	11b	2437	16.50	15.78	1.18	99.4	1.01			
			2462	16.50	16.17	1.08	99.4	1.01	0.143	0.155	
			2412	16.50	15.87	1.16	99.4	1.01			
Rear	0	11b	2437	16.50	15.78	1.18	99.4	1.01			
			2462	16.50	16.17	1.08	99.4	1.01	0.076	0.083	
			2412	16.50	15.87	1.16	99.4	1.01			
Right	0	11b	2437	16.50	15.78	1.18	99.4	1.01			
			2462	16.50	16.17	1.08	99.4	1.01	0.041	0.045	

OFDM was excluded from the following table according to KDB 248227 D01.

SAR is not required for the following 2.4 GHz OFDM conditions according to KDB 248227 D01.

1) When KDB 447498 D01 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Maximun toleran	n tune-up ce limit	Maximum tune-up tolerance limit		OFDM scaled factor	Position	DSSS Reported SAR value	OFDM Estimated SAR value	limit [W/kg]	Standalone SAR request
DS	SS	OFDM				[W/kg]	[W/kg]		
[dBm]	[mW]	[dBm]	[mW]						
16.50	44.67	16.50	44.67	1.000	Тор	0.456	0.456	< 1.2	No

Note(s):

- OFDM scaled factor = Maximum tune-up tolerance limit of OFDM [mW] / Maximum tune-up tolerance limit of DSSS [mW]
- Estimated SAR of OFDM= Reported SAR of DSSS[W/kg] · OFDM scaled factor

Test report No.	: 14007301H-A-R1
Page	: 33 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

12.2 WLAN 5.3 GHz Band

					Power	(dBm)	Power		Duty	1-g SAI	R (W/kg)			
Test Position	Dist. (mm)	Mode	Ch #.	Freq. (MHz)	Tune-up upper Power	M easured average Power	factor	Duty (%)	Scaled factor	M eas.	Reported	Plot No.		
			52	5260	13.50	12.00	1.41	95.6	1.05	0.305	0.450			
Тор	0 11a	0 11a	0 11a	11a	60	5300	14.50	12.86	1.46	95.6	1.05	0.397	0.606	2
			64	5320	14.50	12.92	1.44	95.6	1.05	0.370	0.557			
		11a	52	5260	13.50	12.00	1.41	95.6	1.05					
Front	0		60	5300	14.50	12.86	1.46	95.6	1.05					
			64	5320	14.50	12.92	1.44	95.6	1.05	0.093	0.140			
			52	5260	13.50	12.00	1.41	95.6	1.05					
Rear	0	11a	60	5300	14.50	12.86	1.46	95.6	1.05					
			64	5320	14.50	12.92	1.44	95.6	1.05	0.178	0.268			
		11a	52	5260	13.50	12.00	1.41	95.6	1.05					
Right	Right 0		60	5300	14.50	12.86	1.46	95.6	1.05					
			64	5320	14.50	12.92	1.44	95.6	1.05	0.064	0.096			

Subsequent test configuration was excluded from the following table according to KDB 248227 D01.

SAR is not required for the following exclusion conditions according to KDB 248227 D01. When the highest reported SAR for initial test configuration is adjusted by the ratio of Subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Maximur	n tune-up	Maximum	n tune-up	Scaled	Position	11a	11n20	1.101001011	Standalone
tolerar	nce limit	toleran	ce limit	factor		Reported	Estimated	limit [W/kg]	SAR
1	1a	11	n20	1		SAR value	SAR value		request
	1			1		[W/kg]	[W/kg]		
[dBm]	[mW]	[dBm]	[mW]			[,15]	["""5]		
14.50	28.18	14.50	28.18	1.000	Тор	0.606	0.606	< 1.2	No
Maximur	n tune-up	Maximun	n tune-up	Scaled	Position	11a	11n40	Exclusion	Standalone
	nce limit		ce limit	factor		Reported	Estimated	limit [W/kg]	SAR
	1a		n40	1		SAR value	SAR value	[8]	request
1				1		[W/kg]	[W/kg]		
[dBm]	[mW]	[dBm]	[mW]			[, 15]	[,		
14.50	28.18	13.50	22.39	0.794	Тор	0.606	0.481	< 1.2	No
Maximur	n tune-up	Maximun	n tune-up	Scaled	Position	11a	11ac20	Exclusion	Standalone
	nce limit	1 1		factor		Reported	Estimated	limit [W/kg]	SAR
	1a		c20	1		SAR value	SAR value	[8]	request
-		114		1		[W/kg]	[W/kg]		
[dBm]	[mW]	[dBm]	[mW]			["'Kg]	["" "5]		
14.50	28.18	14.50	28.18	1.000	Тор	0.606	0.606	< 1.2	No
Maximur	n tune-up	Maximun	n tune-up	Scaled	Position	11a	11ac40	Exclusion	Standalone
	nce limit	toleran	ce limit	factor		Reported	Estimated	limit [W/kg]	SAR
1	1a	11a	c40	1		SAR value	SAR value	1 31	request
				1		[W/kg]	[W/kg]		
[dBm]	[mW]	[dBm]	[mW]			[[
14.50	28.18	13.50	22.39	0.794	Тор	0.606	0.481	< 1.2	No
Maximur	n tune-up	Maximun	n tune-up	Scaled	Position	11a	11ac80	Exclusion	Standalone
tolerar	nce limit	toleran	ce limit	factor		Reported	Estimated	limit [W/kg]	SAR
1	1a	11ac80		1		SAR value	SAR value	. 81	request
				1		[W/kg]	[W/kg]		
[dBm]	[mW]	[dBm]	[mW]			81	1		
14.50	28.18	11.50	14.13	0.501	Тор	0.606	0.304	< 1.2	No
Notes:					•				

Notes:

Scaled factor = Maximum tune-up tolerance limit of subsequent test configuration [mW] / Maximum tune-up tolerance limit of initial test configuration [mW]

Test report No.	: 14007301H-A-R1
Page	: 34 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

U-NII-1 band(WLAN 5.2 GHz Band) test configuration was excluded from the following according to KDB 248227 D01. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band(WLAN 5.3 GHz Band) by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.

Maximun	ntune-up	Maximum tune-up		une-up Maximu		Scaled	Position	5.3 GHz	5.2 GHz	2.2.2.10.0.10.11	Standalone
toleran	ce limit	tolerance limit		factor		Reported	Estimated	limit [W/kg]	SAR		
5.3	GHz	5.2 GHz		I		SAR value	SAR value		request		
				I		[W/kg]	[W/kg]				
[dBm]	[mW]	[dBm]	[mW]								
14.50	28.18	14.50	28.18	1.000	Тор	0.540	0.540	< 1.2	No		

Notes:

• Scaled factor = Maximum tune-up tolerance limit of 5.2 GHz [mW] / Maximum tune-up tolerance limit of 5.3 GHz [mW]

Test report No.	: 14007301H-A-R1
Page	: 35 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

12.3 WLAN 5.5GHz Band

					Power	(dBm)	Power		Duty	1-g SAI	R (W/kg)	
Test Position Dist. (mm)	Dist. (mm)	Mode	Ch #.	Freq. (MHz)	Tune-up upper Power	Measured average Power	factor	Duty (%)	Scaled factor	M eas.	Reported	Plot No.
			102	5510	14.50	13.85	1.16	90.8	1.10	0.569	0.728	
Тор	0 11n40	11n40	110	5550	13.50	12.61	1.23	90.8	1.10	0.478	0.646	
			134	5670	14.50	13.01	1.41	90.8	1.10	0.515	0.799	3
		11n40	102	5510	14.50	13.85	1.16	90.8	1.10	0.157	0.201	
Front	0		110	5550	13.50	12.61	1.23	90.8	1.10			
			134	5670	14.50	13.01	1.41	90.8	1.10			
			102	5510	14.50	13.85	1.16	90.8	1.10	0.273	0.349	
Rear	0	11n40	110	5550	13.50	12.61	1.23	90.8	1.10			
			134	5670	14.50	13.01	1.41	90.8	1.10			
		11n40	102	5510	14.50	13.85	1.16	90.8	1.10	0.096	0.123	
Right	0		110	5550	13.50	12.61	1.23	90.8	1.10			
			134	5670	14.50	13.01	1.41	90.8	1.10			

Subsequent test configuration was excluded from the following table according to KDB 248227 D01.

SAR is not required for the following exclusion conditions according to KDB 248227 D01. When the highest reported SAR for initial test configuration is adjusted by the ratio of Subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

	-		n tune-up	Scaled factor	Position			Exclusion	Standalone
	ce limit	tolerar							
	tolerance limit		tolerance limit			11n40	11a	limit [W/kg]	SAR
11n40		11a				Reported	Estimated		request
						SAR value	SAR value		
[dBm]	[mW]	[dBm]	[mW]			[W/kg]	[W/kg]		
14.50	28.18	14.50	28.18	1.000	Тор	0.799	0.799	< 1.2	No
Maximum	n tune-up	Maximum tune-up		Scaled	Position			Exclusion	Standalone
tolerance limit		tolerance limit		factor		11n40	11n20	limit [W/kg]	SAR
11n40		11n20		1		Reported	Estimated		request
				1		SAR value	SAR value		
[dBm]	[mW]	[dBm]	[mW]			[W/kg]	[W/kg]		
14.50	28.18	14.50	28.18	1.000	Тор	0.799	0.799	< 1.2	No
Maximum	n tune-up	Maximur	n tune-up	Scaled	Position			Exclusion	Standalone
	tolerance limit		tolerance limit			11n40	11ac20	limit [W/kg]	SAR
11r	n40	11ac20		1		Reported	Estimated		request
				1		SAR value	SAR value		
[dBm]	[mW]	[dBm]	[mW]			[W/kg]	[W/kg]		
14.50	28.18	14.50	28.18	1.000	Тор	0.799	0.799	< 1.2	No
Maximum	n tune-up	Maximum tune-up		Scaled	Position			Exclusion	Standalone
toleran	tolerance limit		tolerance limit			11n40	11ac40	limit [W/kg]	SAR
11n40		11ac40		1		Reported	Estimated		request
				1		SAR value	SAR value		
[dBm]	[mW]	[dBm]	[mW]			[W/kg]	[W/kg]		
14.50	28.18	14.50	28.18	1.000	Тор	0.799	0.799	< 1.2	No
Maximum	n tune-up	Maximur	n tune-up	Scaled	Position			Exclusion	Standalone
tolerance limit		tolerance limit		factor		11n40	11ac80	limit [W/kg]	SAR
11n40		11ac80				Reported	Estimated		request
						SAR value	SAR value		
			[mW]			[W/kg]	[W/kg]		
[dBm]	[mW]	[dBm]				L w / Kg	L	· · · · · · · · · · · · · · · · · · ·	

Notes:

• Scaled factor = Maximum tune-up tolerance limit of subsequent test configuration [mW] / Maximum tune-up tolerance limit of initial test configuration [mW]

Test report No.	: 14007301H-A-R1
Page	: 36 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

12.4 WLAN 5.8GHz Band

Test Position	Dist. (mm)	Mode	Ch #.	Freq. (MHz)	Power (dBm)		Power		Duty	1-g SAR (W/kg)		
					Tune-up upper Power	M easured average Power		Duty (%)		M eas.	Reported	Plot No.
Тор	0	11n40	151	5755	14.50	12.94	1.43	90.8	1.10	0.465	0.733	
			159	5795	15.50	13.84	1.47	90.8	1.10	0.575	0.927	4
Front	0	0 11n40	151	5755	14.50	12.94	1.43	90.8	1.10			
			159	5795	15.50	13.84	1.47	90.8	1.10	0.139	0.224	
Rear	0	11n40	151	5755	14.50	12.94	1.43	90.8	1.10			
			159	5795	15.50	13.84	1.47	90.8	1.10	0.221	0.356	
Right	0	11n40	151	5755	14.50	12.94	1.43	90.8	1.10			
			159	5795	15.50	13.84	1.47	90.8	1.10	0.102	0.165	

Subsequent test configuration was excluded from the following table according to KDB 248227 D01.

SAR is not required for the following exclusion conditions according to KDB 248227 D01. When the highest reported SAR for initial test configuration is adjusted by the ratio of Subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Maximum tune-up tolerance limit 11n40		Maximum tune-up tolerance limit 11a		Scaled factor	Position	11n40 Reported	11a Estimated	Exclusion limit [W/kg]	Standalone SAR request
[dBm]	[mW]	[dBm]	[mW]			SAR value [W/kg]	SAR value [W/kg]		
15.50	35.48	14.50	28.18	0.794	Тор	0.927	0.736	< 1.2	No
Maximum tune-up tolerance limit 11n40		Maximum tune-up tolerance limit 11n20		Scaled factor	Position	11n40 Reported	11n20 Estimated	Exclusion limit [W/kg]	Standalone SAR request
[dBm]	[mW]	[dBm]	[mW]			SAR value [W/kg]	SAR value [W/kg]		
15.50	35.48	14.50	28.18	0.794	Тор	0.927	0.736	< 1.2	No
Maximum tune-up tolerance limit 11n40 [dBm] [mW]		Maximum tune-up tolerance limit 11ac20 [dBm] [mW]		Scaled factor	Position	11n40 Reported SAR value [W/kg]	11ac20 Estimated SAR value [W/kg]	Exclusion limit [W/kg]	Standalone SAR request
15.50	35.48	14.50	28.18	0.794	Тор	0.927	0.736	< 1.2	No
[dBm]	ce limit 140 [mW]	[dBm]	ce limit c40 [mW]	Scaled factor	Position	11n40 Reported SAR value [W/kg]	11ac40 Estimated SAR value [W/kg]		Standalone SAR request
15.50	35.48	15.50	35.48	1.000	Тор	0.927	0.927	< 1.2	No
Maximum tune-up tolerance limit 11n40 [dBm] [mW]		toleran	n tune-up ce limit c80 [mW]	Scaled factor	Position	11n40 Reported SAR value [W/kg]	11ac80 Estimated SAR value [W/kg]	Exclusion limit [W/kg]	Standalone SAR request
15.50	35.48	14.50	28.18	0.794	Тор	0.927	0.736	< 1.2	No

Notes:

Scaled factor = Maximum tune-up tolerance limit of subsequent test configuration [mW] / Maximum tune-up tolerance limit of initial test configuration [mW]

Test report No.	: 14007301H-A-R1
Page	: 37 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

12.5 Repeated measurement

According to KDB 865664 D1.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10 % from the 1-g SAR limit). 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

		Test Confi	guration				Meas. SAR (W/kg)		Largest to
Wireless Technologies	Transmit Antenna	Exposure	Position	Dist. (mm)	Mode	Mode Freq. (MHz)	Original	Repeated	Smallest SAR Ratio
WLAN 2.4 GHz	Main	Body	Тор	0	11b	2412	0.392	N/A	N/A
WLAN 5.3 GHz	Main	Body	Тор	0	11a	5300	0.397	N/A	N/A
WLAN 5.5 GHz	Main	Body	Тор	0	11n40	5510	0.569	N/A	N/A
WLAN 5.8 GHz	Main	Body	Тор	0	11n40	5795	0.575	N/A	N/A

Note(s):

N/A: Repeated Measurement is not required since the original highest measured SAR for all band is < 0.80 W/kg.

Test report No.	: 14007301H-A-R1
Page	: 38 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

SECTION13: Test instruments

Local Id	LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interva
			Schmid&Partner Engineering				
MDAE-03	141484	Data Acquisition Electronics	AG	DAE4	1372	2021/08/10	12
			Schmid&Partner Engineering				
MPB-09	141589	Dosimetric E-Field Probe	AG	EX3DV4	3922	2021/08/16	12
			Schmid&Partner Engineering				
MDA-07	141457	Dipole Antenna	AG Schmid&Partner Engineering	D2450V2	713	2019/09/09	36
MDA-08	141467	Dipole Antenna	AG	D5GHzV2	1020	2021/11/18	12
MDA-08	141407	Dipole Antenna	Schmid&Partner Engineering	D30112 V2	1020	2021/11/18	12
MPF-03	142057	2mm Oval Flat Phantom	AG	ODOVA001BB	1203	2021/05/28	12
			Schmid&Partner Engineering				
MDH-04	142489	Device holder	AG	Mounting device for transmitte	-	2021/11/01	12
MOS-35	141573	Digital thermometer	HANNA	Checktemp 4	-	2021/07/08	12
			Schmid&Partner Engineering	· ·			
MRBT-03	142248	SAR robot	AG	TX60 Lspeag	F13/5PP1D1/A	2021/04/20	12
			Schmid&Partner Engineering				
COT S-MSAR-04	141182	Dielectric assessment software	AG	DAK	-	-	-
COT S-MP SE-02	173900	Software for MA24106A	Anritsu Corporation	Anritsu PowerXpert	-	-	-
			Schmid&Partner Engineering				
MDPK-03	141471	Dielectric assessment kit	AG	DAKS-3.5	0008	2021/04/14	12
MAT-78	142313	Attenuator	Telegrartner	J01156A0011	42294119	-	-
MPM-15	141811	Power Meter	Keysight Technologies Inc	N1914A	MY53060017	2021/06/08	12
			COPPER MOUNTAIN				
MNA-03	141551	Vector Reflectometer	TECHNOLOGIES	PLANAR R140	0030913	2021/04/19	12
MOS-37	141574	Digital thermometer	LKM electronic	DT M3000	-	2021/07/08	12
MPSE-20	141833	Power sensor	Keysight Technologies Inc	N8482H	MY53050001	2021/06/08	12
MPSE-24	141843	Power sensor	Anritsu Corporation	MA24106A	1026164	2021/08/17	12
MPSE-25	141844	Power sensor	Anritsu Corporation	MA24106A	1031504	2021/08/17	12
MRFA-24	141875	Pre Amplifier	R&K	R&K CGA020M602-2633R	B30550	2021/06/16	12
			Schmid & Partner Engineering				
MHBBL600-10000	176484	Head Simulating Liquid	AG	HBBL600-10000V6	SL AAH U16 B	-	-
			Schmid&Partner Engineering				
COT S-MSAR-03	141181	Dasy5	AG	DASY5	-	-	-
MSG-10	141890	Signal Generator	Keysight Technologies Inc	N5181A	MY47421098	2021/11/18	12
MHDC-12	142559	Dual Directional Coupler	Hewlett Packard	772D	2839A0016	-	-

*Hyphens for Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

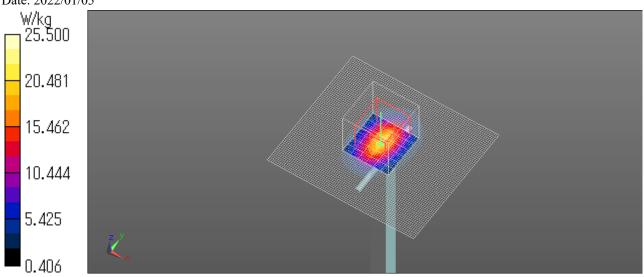
The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

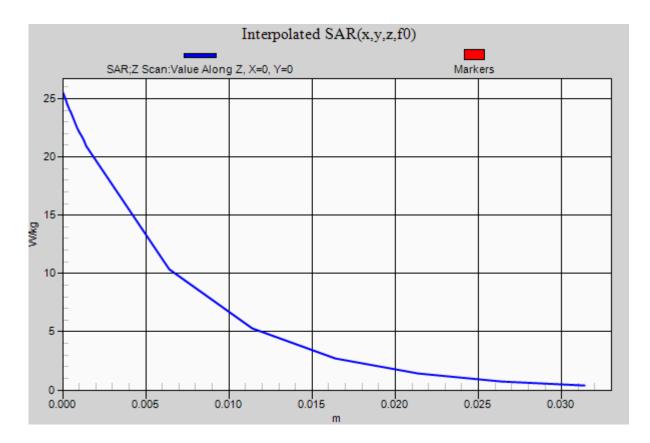
SAR room is checked before every testing and ambient noise is <0.012 W/kg

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 39 of 112 : N43E400001 : February 25, 2022

APPENDIX 1 : System Check


2450MHz System Check

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); ; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.796$ S/m; $\varepsilon_r = 39.306$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(7.83, 7.83, 7.83) @ 2450 MHz; Sensor-Surface: 1.4 mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1203 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)


Body System Performance Check at Frequencies 2450 MHz/d = 12 mm, Pin = 250 mW/Area Scan (81x71x1): Interpolated grid: dx = 1.200 mm, dy = 1.200 mm Maximum value of SAR (interpolated) = 21.7 W/kg

Body System Performance Check at Frequencies 2450 MHz/d = 12 mm, Pin = 250 mW/Zoom Scan (7x7x7)/Cube
0: Measurement grid: dx = 5 mm, dy = 5 mm, dz = 5 mm
Reference Value = 112.9 V/m; Power Drift = 0.02 dB
Peak SAR (extrapolated) = 26.1 W/kg
SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.95 W/kg
Smallest distance from peaks to all points 3 dB below = 9 mm
Ratio of SAR at M2 to SAR at M1 = 49.3 %
Maximum value of SAR (measured) = 21.1 W/kg
Body System Performance Check at Frequencies 2450 MHz/d = 12 mm, Pin = 250 mW/Z Scan (1x1x18):

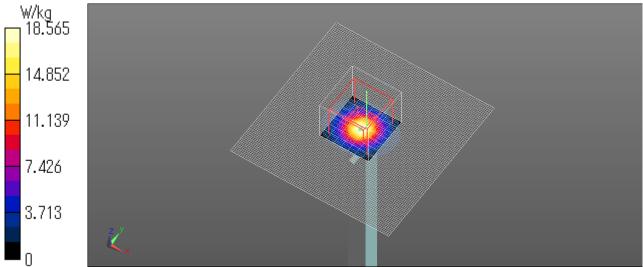
Body System Performance Check at Frequencies 2450 MHz/d = 12 mm, Pin = 250 mW/Z Scan (1x1x18): Measurement grid: dx = 20 mm, dy = 20 mm, dz = 5 mmPenetration depth = 7.396 (7.085, 7.620) [mm] Maximum value of SAR (interpolated) = 25.5 W/kg

Page FCC ID	: 14007301H-A-R1 : 40 of 112 : N43E400001 : February 25, 2022
Issued date	: February 25, 2022

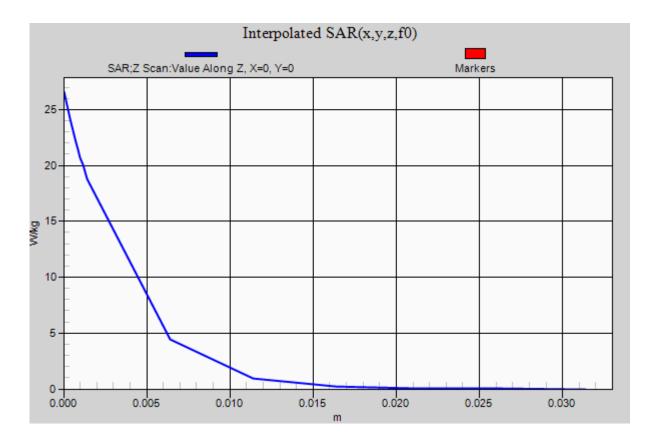
Test report No. Page	: 14007301H-A-R1 : 41 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

5250MHz System Check

Communication System: UID 0, #CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); ; Duty Cycle: 1:1


Medium parameters used: f = 5250 MHz; $\sigma = 4.757 \text{ S/m}$; $\epsilon_r = 36.523$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(5.54, 5.54, 5.54) @ 5250 MHz; Sensor-Surface: 1.4 mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1203 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)

Pin/5250 MHz in 100 mW/Area Scan (91x91x1): Interpolated grid: dx = 1.000 mm, dy = 1.000 mm Maximum value of SAR (interpolated) = 18.8 W/kg


Pin/5250 MHz in 100 mW/Zoom Scan (4x4x1.4 mm, graded), dist = 1.4 mm (8x8x7)/Cube 0: Measurement grid: dx = 4 mm, dy = 4 mm, dz = 1.4 mm
Reference Value = 72.22 V/m; Power Drift = -0.09 dB
Peak SAR (extrapolated) = 31.5 W/kg
SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.28 W/kg
Smallest distance from peaks to all points 3 dB below = 7.2 mm

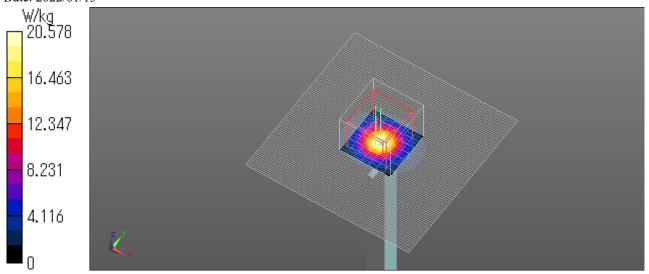
Ratio of SAR at M2 to SAR at M1 = 66.3 %Maximum value of SAR (measured) = 18.6 W/kg

Pin/5250 MHz in 100 mW/Z Scan (1x1x18): Measurement grid: dx = 20 mm, dy = 20 mm, dz = 5 mm Penetration depth = 3.206 (3.455, 3.170) [mm] Maximum value of SAR (interpolated) = 26.6 W/kg

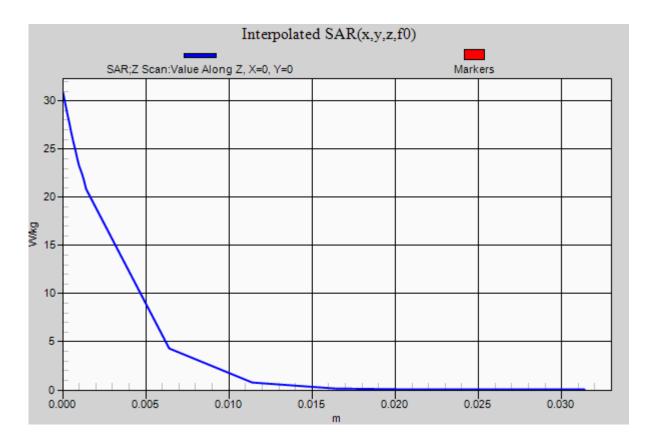
Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 42 of 112 : N43E400001 : February 25, 2022

Test report No. Page	: 14007301H-A-R1 : 43 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

5600MHz System Check


Communication System: UID 0, #CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); ; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.059 \text{ S/m}$; $\varepsilon_r = 36.005$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(4.61, 4.61, 4.61) @ 5600 MHz; Sensor-Surface: 1.4 mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4 mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1203 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)


Pin/5600 MHz in 100 mW/Area Scan (91x91x1): Interpolated grid: dx = 1.000 mm, dy = 1.000 mm Maximum value of SAR (interpolated) = 20.6 W/kg

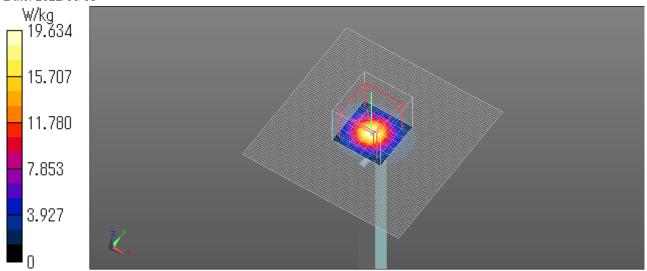
Pin/5600 MHz in 100 mW/Zoom Scan (4x4x1.4 mm, graded), dist=1.4 mm (8x8x7)/Cube 0: Measurement grid: dx = 4 mm, dy = 4 mm, dz = 1.4 mmReference Value = 73.73 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 37.1 W/kg SAR(1 g) = 8.64 W/kg; SAR(10 g) = 2.46 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.1% Maximum value of SAR (measured) = 20.7 W/kg

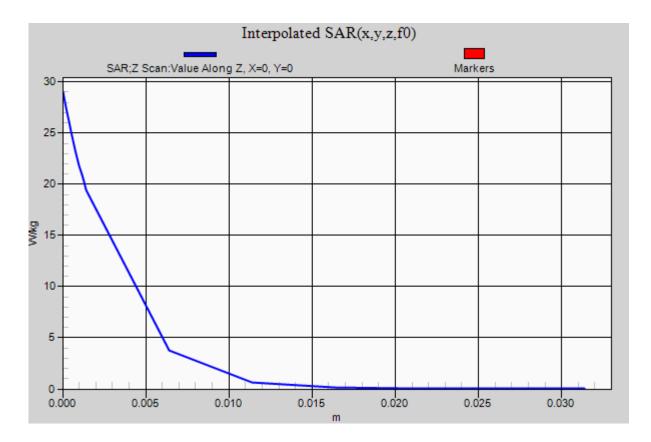
Pin/5600 MHz in 100 mW/Z Scan (1x1x18): Measurement grid: dx = 20 mm, dy = 20 mm, dz = 5 mm Penetration depth = 2.947 (3.164, 2.860) [mm] Maximum value of SAR (interpolated) = 30.8 W/kg

FCC ID	: 14007301H-A-R1 : 44 of 112 : N43E400001 : February 25, 2022

Test report No. Page	: 14007301H-A-R1 : 45 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

5800MHz System Check


Communication System: UID 0, #CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); ; Duty Cycle: 1:1


Medium parameters used: f = 5800 MHz; $\sigma = 5.394 \text{ S/m}$; $\varepsilon_r = 35.677$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(4.82, 4.82, 4.82) @ 5800 MHz; Sensor-Surface: 1.4 mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4 mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1203 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)

Pin/5800 MHz in 100 mW/Area Scan (91x91x1): Interpolated grid: dx = 1.000 mm, dy = 1.000 mm Maximum value of SAR (interpolated) = 19.3 W/kg

Pin/5800 MHz in 100 mW/Zoom Scan (4x4x1.4mm, graded), dist = 1.4 mm (8x8x7)/Cube 0: Measurement grid: dx = 4 mm, dy = 4 mm, dz = 1.4 mm Reference Value = 69.14 V/m; Power Drift = 0.02 dBPeak SAR (extrapolated) = 36.5 W/kgSAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.33 W/kgSmallest distance from peaks to all points 3 dB below = 7.4 mmRatio of SAR at M2 to SAR at M1 = 61.2 %Maximum value of SAR (measured) = 19.6 W/kg

Pin/5800 MHz in 100 mW/Z Scan (1x1x18): Measurement grid: dx = 20 mm, dy = 20 mm, dz = 5 mm Penetration depth = 2.806 (3.034, 2.727) [mm] Maximum value of SAR (interpolated) = 29.0 W/kg

	Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 47 of 112 : N43E400001 : February 25, 2022
--	--	--

APPENDIX 2: SAR Measurement data

Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm or 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30 mm x 30 mm x 30 mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3 GHz and a volume of 28 mm x 28 mm x 22.5 mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for 5 GHz band.

And for any secondary peaks found in the Step2 which are within 2 dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

(1). The data at the surface were extrapolated, since the center of the dipoles is 1 mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

(2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points ($10 \times 10 \times 10$) were interpolated to calculate the average.

(3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

*1. Ratio step method parameters used;

The first measurement point: 2 mm from the phantom surface, the initial grid separation: 2 mm, subsequent graded grid ratio: 1.5

These parameters comply with the requirement of the KDB 865664 D01.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

Confirmation after SAR testing

It was checked that the power drift [W] is within +/-5 %. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb)Before SAR testing: Eb [V/m]After SAR testing: Ea [V/m]

Limit of power drift[W] = +/-5%X[dB] = $10\log[P] = 10\log(1.05/1) = 10\log(1.05)$ - $10\log(1) = 0.212$ dB

from E-filed relations with power. $p=E^2/\eta$ Therefore, The correlation of power and the E-filed X dB = 10log(P) = 10log(E)^2 = 20log(E)

Therefore,

The calculated power drift of DASY5 System must be the less than +/- 0.212 dB.

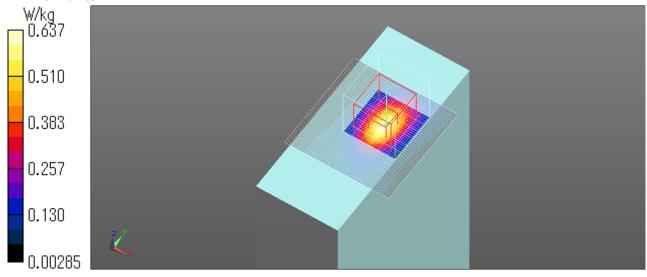
Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 48 of 112 : N43E400001 : February 25, 2022

Measurement data

Plot No. 1

WLAN 2.4 GHz 2/Top 11b 2437MHz

Communication System: UID 0, #WLAN 11a/b/g/n (0); Communication System Band: 11b/g/n (2.4G); ; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.786$ S/m; $\epsilon_r = 39.306$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(7.83, 7.83, 7.83) @ 2437 MHz; Sensor-Surface: 1.4 mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4 mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1203 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)


WLAN 2.4 GHz 2/Top 11b 2437 MHz/Area Scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.637 W/kg

WLAN 2.4 GHz 2/Top 11b 2437 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx = 5 mm, dy = 5 mm, dz = 5 mm

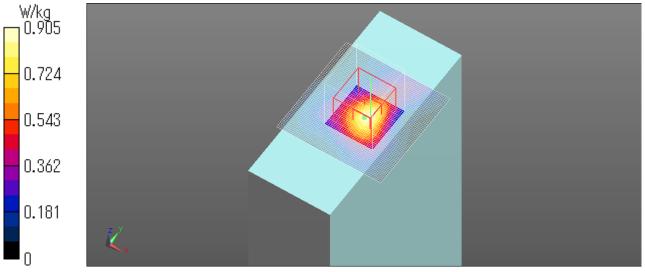
Reference Value = 19.65 V/m; Power Drift = -0.03 dBPeak SAR (extrapolated) = 0.808 W/kg**SAR(1 g) = 0.384 \text{ W/kg}; SAR(10 g) = 0.175 \text{ W/kg}** Smallest distance from peaks to all points 3 dB below = 8.1 mmRatio of SAR at M2 to SAR at M1 = 49.7 %

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.637 W/kg

FCC ID	: 14007301H-A-R1 : 49 of 112 : N43E400001 : February 25, 2022
--------	--

Plot No. 2

WLAN 5.3 GHz/Top 11a 5300MHz


Communication System: UID 0, #WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); ; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 4.84 \text{ S/m}$; $\varepsilon_r = 36.43$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(5.54, 5.54, 5.54) @ 5300 MHz; Sensor-Surface: 1.4 mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1203 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)

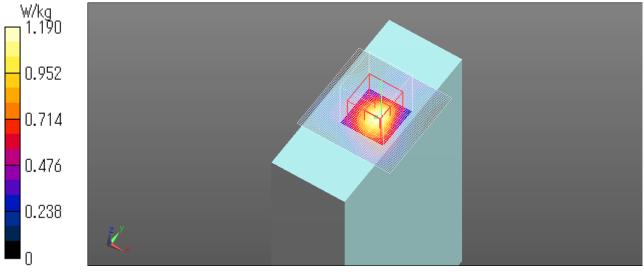
WLAN 5.3 GHz 2/Top 11a 5300 MHz/Area Scan (61x61x1): Interpolated grid: dx = 1.000 mm, dy = 1.000 mm Maximum value of SAR (interpolated) = 0.861 W/kg

WLAN 5.3 GHz 2/Top 11a 5300 MHz/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx = 4 mm, dy = 4 mm, dz = 1.4 mm

Reference Value = 14.90 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.44 W/kg SAR(1 g) = 0.397 W/kg; SAR(10 g) = 0.149 W/kg Smallest distance from peaks to all points 3 dB below = 9.4 mm Ratio of SAR at M2 to SAR at M1 = 64.4 % Maximum value of SAR (measured) = 0.905 W/kg

Page : FCC ID :	14007301H-A-R1 50 of 112 N43E400001 February 25, 2022
--------------------	--

Plot No. 3


WLAN 5.5 GHz/Top 11n40 5670MHz

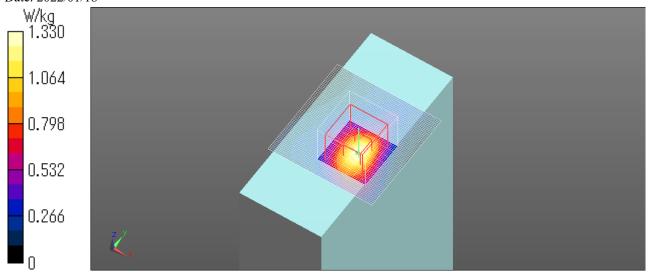
Communication System: UID 0, #WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); ; Duty Cycle: 1:1 Medium parameters used: f = 5670 MHz; $\sigma = 5.175$ S/m; $\varepsilon_r = 35.796$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(4.61, 4.61, 4.61) @ 5670 MHz; Sensor-Surface: 1. 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1203 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)

WLAN 5.5 GHz 2/Top 11n40 5670 MHz/Area Scan (61x61x1): Interpolated grid: dx = 1.000 mm, dy = 1.000 mmMaximum value of SAR (interpolated) = 1.16 W/kg

WLAN 5.5 GHz 2/Top 11n40 5670 MHz/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx = 4 mm, dy = 4 mm, dz = 1.4 mm

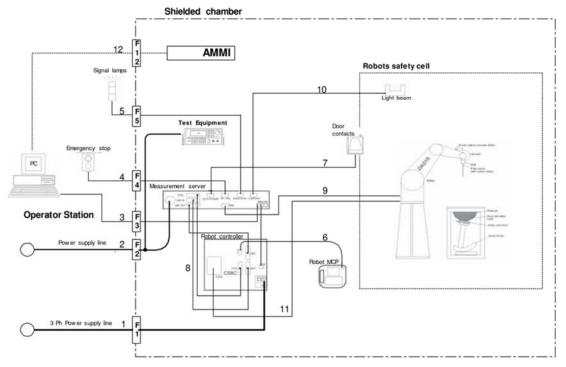
Reference Value = 16.86 V/m; Power Drift = -0.03 dBPeak SAR (extrapolated) = 2.02 W/kg**SAR(1 g) = 0.515 \text{ W/kg}; SAR(10 g) = 0.192 \text{ W/kg}** Smallest distance from peaks to all points 3 dB below = 9.4 mmRatio of SAR at M2 to SAR at M1 = 61.5 %Maximum value of SAR (measured) = 1.19 W/kg

Test report No.	: 14007301H-A-R1
Page	: 51 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022


Plot No. 4

WLAN/Top 11n40 5795MHz

Communication System: UID 0, #WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); ; Duty Cycle: 1:1 Medium parameters used: f = 5795 MHz; $\sigma = 5.303$ S/m; $\varepsilon_r = 35.651$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(4.82, 4.82, 4.82) @ 5795 MHz; Sensor-Surface: 1.4 mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1203 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)


WLAN/Top 11n40 5795 MHz/Area Scan (61x61x1): Interpolated grid: dx = 1.000 mm, dy = 1.000 mm Maximum value of SAR (interpolated) = 1.32 W/kg

WLAN/Top 11n40 5795 MHz/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx = 4 mm, dy = 4 mm, dz = 1.4 mmReference Value = 17.66 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 2.29 W/kg SAR(1 g) = 0.575 W/kg; SAR(10 g) = 0.210 W/kg Smallest distance from peaks to all points 3 dB below = 8.8 mm Ratio of SAR at M2 to SAR at M1 = 61.2 % Maximum value of SAR (measured) = 1.33 W/kg

APPENDIX 3 : System specifications

Configuration and peripherals

The DASY5 system for performing compliance tests consist of the following items: Our system is DASY6; however, it behaves as DASY5.

- a) A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- b) An isotropic field probe optimized and calibrated for the targeted measurement.

c) A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

- d) The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- e) The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

f) The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.

- g) A computer running Windows 10 or 7 and the DASY5/6 software.
- h) Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- i) The phantom, the device holder and other accessories according to the targeted measurement.

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 53 of 112 : N43E400001 : February 25, 2022
FCC ID	: N43E400001

Specifications

a)Robot TX60L		
Number of Axes	:	6
Nominal Load	:	2 kg
Maximum Load	:	5 kg
Reach	:	920 mm
Repeatability	:	+/-0.03 mm
Control Unit	:	CS8c
Programming Language	:	VAL3
Weight	:	52.2 kg
Manufacture	:	Stäubli Robotics

b)E-Field Probe		
Model	:	EX3DV4
Construction	:	Symmetrical design with triangular core
		Built-in shielding against static charges
		PEEK enclosure material
		(resistant to organic solvents, e.g., glycol ether)
Frequency	:	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	:	+/-0.3 dB in HSL (rotation around probe axis)
		+/-0.5 dB in tissue material (rotation normal probe axis)
Dynamic Range	:	10 uW/g to > 100 mW/g;Linearity
		+/-0.2 dB(noise: typically $< 1 \mu W/g$)
Dimensions	:	Overall length: 337 mm (Tip: 20 mm)
		Tip diameter: 2.5 mm (Body: 12 mm)
		Typical distance from probe tip to dipole centers: 1 mm
Application	:	Highprecision dosimetric measurement in any exposure scenario
		(e.g., very strong gradient fields). Only probe which enables compliance
		testing for frequencies up to 6 GHz with precision of better 30 %.
Manufacture	:	Schmid & Partner Engineering AG

EX3DV4 E-field Probe

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 54 of 112 : N43E400001 : February 25, 2022
	•

c)Data Acquisition Ele	ectronic (DAE4)
Features	:	Signal amplifier, multiplexer, A/D converter and control logic
		Serial optical link for communication with DASY5 embedded system (fully remote controlled)
		Two step probe touch detector for mechanical surface detection and emergency robot stop
Measurement Range	:	-100 to +300 mV (16 bit resolution and two range settings: 4 mV, 400 mV)
Input Offset voltage	:	$< 5 \mu V$ (with auto zero)
Input Resistance	:	200 ΜΩ
Input Bias Current	:	< 50 fA
Battery Power	:	> 10 h of operation (with two 9.6 V NiMH accus)
Dimension	:	60 x 60 x 68 mm
Manufacture	:	Schmid & Partner Engineering AG

d)Electro-Optic Converter (EOC)			
Version	:	EOC 61	
Description	:	for TX60 robot arm, including proximity sensor	
Manufacture	:	Schmid & Partner Engineering AG	

Features	:	Intel ULV Celeron 400 MHz
		128 MB chip disk and 128 MB RAM
		16 Bit A/D converter for surface detection system
		Vacuum Fluorescent Display
		Robot Interface
		Serial link to DAE (with watchdog supervision)
		Door contact port (Possibility to connect a light curtain
		Emergency stop port (to connect the remote control)
		Signal lamps port
		Light beam port
		Three Ethernet connection ports
		Two USB 2.0 Ports

		Two serial links
		Expansion port for future applications
Dimensions (L x W x H)	:	440 x 241 x 89 mm
Manufacture	:	Schmid & Partner Engineering AG

f) Light Beam Switches	;	
Version	:	LB5
Dimensions (L x H)	:	110 x 80 mm
Thickness	:	12 mm
Beam-length	:	80 mm
Manufacture	:	Schmid & Partner Engineering AG
g)Software		
Item	:	Dosimetric Assessment System DASY5
Туре No.	:	SD 000 401A, SD 000 402A
Software version No.	:	DASY52, Version 52.6 (1)
Manufacture / Origin	:	Schmid & Partner Engineering AG

:	70 Kg
:	selectable
:	Stäubli Robotics
	:

			Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 55 of 112 : N43E400001 : February 25, 2022
i)Phantom and Devi	ce Holder			
Phantom				
Туре	:	SAM Twin Phantom V4.0		
Description	:	The shell corresponds to the spec (SAM) phantom defined in IEEE of left and right hand phone usage A cover prevents evaporation of t complete setup of all predefined p points with the robot.	1528 and IEC 62209-1. It ena e as well as body mounted usa the liquid. Reference markings	ables the dosimetric evaluation age at the flat phantom region. s on the phantom allow the
Material	:	Vinylester, glass fiber reinforced	(VE-GF)	
Shell Material	:	Fiberglass		
Thickness	:	2.0 +/- 0.2 mm		
Dimensions	:	Length: 1000 mm Width: 500	mm Height: adjustable fee	et
Volume	:	Approx. 25 liters		
Manufacture	:	Schmid & Partner Engineering A	G	
Туре	:	2 mm Flat phantom ELI4.0 or 5		
Description	:	Phantom for compliance testin devices in the frequency rang the latest draft of the standar liquids. ELI4 has been optim into our standard phantom Reference markings on the including all predefined phant points. The phantom is suppor compatible with all SPEAG d	e of 30 MHz to 6 GHz. EI d IEC 62209 Part II and a ized regarding its perform tables. A cover prevents phantom allow installation om positions and measurem orted by software version I	LI4 is fully compatible with all known tissue simulating hance and can be integrated evaporation of the liquid. on of the complete setup, nent grids, by teaching three DASY4.5 and higher and is
Material	:	Vinylester, glass fiber reinforced		
Shell Thickness	:	2.0 ± 0.2 mm (sagging: < 1 %)	. ,	
Filling Volume	:	approx. 30 liters		
Dimensions	:	Major ellipse axis: 600 mm Min		
Manufacture	:	Schmid & Partner Engineering A	G	

Device Holder

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). Material : POM

Laptio Extensions kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM, ELI4 Phantoms.

Material : POM, Acrylic glass, Foam

<u>Urethane</u>

For this measurement, the urethane foam was used as device holder.

Test report No.	: 14007301H-A-R1
Page	: 56 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

j)Simulated Tissues (Liquid)

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for required for routine SAR evaluation.

Product identifier

Trade name	Broad Band Tissue Simulation Liquid HBBL600-10000V6, MBBL600-6000V6, HU16B, MU16B
Manufacturer/Supplier	Schmid & Partner Engineering AG

Declarable components:

CAS: 107-21-1	Ethanediol	< 5.2%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 57 of 112 : N43E400001 : February 25, 2022

Dosimetric E-Field Probe Calibration Certificate (EX3DV4, S/N: 3922)

Client UL Japan (R	CC)		
CALIBRATION			EX3-3922_Aug21
	CERTIFICATE		
Object	EX3DV4 - SN:392	22	
Calibration procedure(s)	QA CAL-25.v7	A CAL-12.v9, QA CAL-14.v6, QA dure for dosimetric E-field probes	CAL-23.v5,
Calibration date:	August 16, 2021		
	ducted in the closed laboratory	obability are given on the following pages and facility: environment temperature (22 \pm 3)°C z	
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
	SN: 103244	00 4== 04 (bl= 047 00004)	
Power sensor NRP-Z91		09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103245 SN: CC2552 (20x)	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343)	Apr-22 Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2	SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20)	Apr-22 Apr-22 Dec-21 Dec-21
Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards	SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check
Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2	SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22
Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B	SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check
Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Oct-21 Signature
Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by:	SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Oct-21
Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by: Approved by:	SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name Michael Weber Katja Pokovic	09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Jun-20) Function Laboratory Technician	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Oct-21 Signature

: 14007301H-A-R1 : 58 of 112 : N43E400001 : February 25, 2022

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accr	editation Service is one of the signatories to the EA
Multilateral Agre	eement for the recognition of calibration certificates
Glossary:	
TSL	tissue simulating liquid

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
	itel, v = v is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no
 uncertainty required).

Certificate No: EX3-3922_Aug21

Page 2 of 23

EX3DV4 - SN:3922

August 16, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.65	0.56	0.59	± 10.1 %
DCP (mV) ^B	99.5	102.8	99.6	

Calibration Results for Modulation Response

UID	Communication System Name		A	В	C	D	VR	Max	Max
			dB	dBõV		dB	mV	dev.	UncE
*									(k=2)
0	CW	X	0.00	0.00	1.00	0.00	149.5	± 2.7 %	± 4.7 %
		Y	0.00	0.00	1.00		137.1]	
		Z	0.00	0.00	1.00		151.1		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	94.30	22.97	10.00	60.0	± 3.8 %	± 9.6 %
AAA		Y	20.00	95.26	23.01		60.0		
~		Z	20.00	94.14	22.87		60.0	1	
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	94.25	22.08	6.99	80.0	± 2.0 %	± 9.6 %
AAA		Y	20.00	101.80	25.25	1	80.0		
		Z	20.00	95.26	22.60		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	98.97	23.27	3.98	95.0	± 1.2 %	± 9.6 %
AAA		Y	20.00	114.94	30.08		95.0		
117.00		Z	20.00	100.85	24.21	1	95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	107.86	26.33	2.22	120.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	118.09	30.05	1	120.0		/ -
		Z	20.00	110.74	27.69	1	120.0		
10387-	QPSK Waveform, 1 MHz	X	1.95	68.15	16.55	1.00	150.0	±2.0 %	± 9.6 %
AAA		Y	1.74	67.47	15.58	1	150.0		
		Z	1.93	67.69	16.38	1	150.0		
10388-	QPSK Waveform, 10 MHz	X	2.65	70.67	17.32	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.30	68.78	16.22		150.0		
		Z	2.62	70.36	17.16		150.0	ĺ	
10396-	64-QAM Waveform, 100 kHz	X	3.35	72.81	20.26	3.01	150.0	±0.7 %	± 9.6 %
AAA		Y	2.56	68.98	18.37	1	150.0		
		Z	3.53	73.46	20.56	1	150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.64	67.70	16.28	0.00	150.0	± 0.9 %	± 9.6 %
AAA		Y	3.44	66.95	15.75		150.0		
		Z	3.75	68.13	16.47	1	150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.93	65.73	15.71	0.00	150.0	±2.0 %	± 9.6 %
AAA		Y	4.74	65.52	15.48		150.0		2 0.0 %
		Z	4.91	65.56	15.61		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3922_Aug21

Page 3 of 23

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3922

August 16, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
Х	50.1	370.37	35.07	25.31	0.11	5.10	1.02	0.29	1.01
Y	39.3	288.58	34.56	12.83	0.07	5.10	0.50	0.23	1.01
Z	52.4	387.14	35.06	24.70	0.10	5.10	1.21	0.30	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-74.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX3-3922_Aug21

Page 4 of 23

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 61 of 112 : N43E400001 : February 25, 2022

EX3DV4-SN:3922

August 16, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.12	11.12	11.12	0.16	1.30	± 13.3 %
600	42.7	0.88	10.31	10.31	10.31	0.10	1.30	± 13.3 %
900	41.5	0.97	9.86	9.86	9.86	0.52	0.80	± 12.0 %
2450	39.2	1.80	7.83	7.83	7.83	0.35	0.95	± 12.0 %
5250	35.9	4.71	5.54	5.54	5.54	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.61	4.61	4.61	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.82	4.82	4.82	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies below a-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3922_Aug21

Page 5 of 23

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 62 of 112 : N43E400001 : February 25, 2022

EX3DV4- SN:3922

August 16, 2021

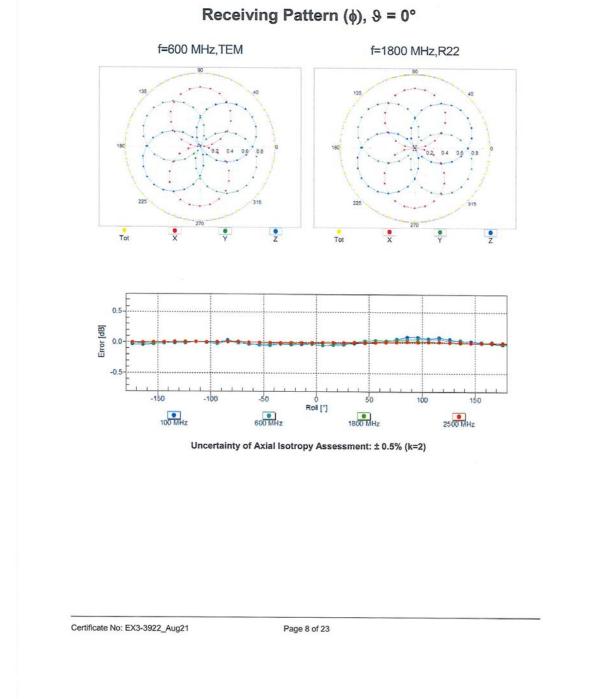
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	11.25	11.25	11.25	0.11	1.25	± 13.3 %
600	56.1	0.95	10.72	10.72	10.72	0.10	1.20	± 13.3 %
2450	52.7	1.95	7.73	7.73	7.73	0.33	0.95	± 12.0 %
5250	48.9	5.36	4.75	4.75	4.75	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.08	4.08	4.08	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.15	4.15	4.15	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. A frequencies below 3 GHz, the validity of tissue parameters (ε and ο) can be relaxed to ± 10% fil quid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and ο) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

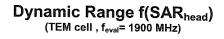
Certificate No: EX3-3922_Aug21

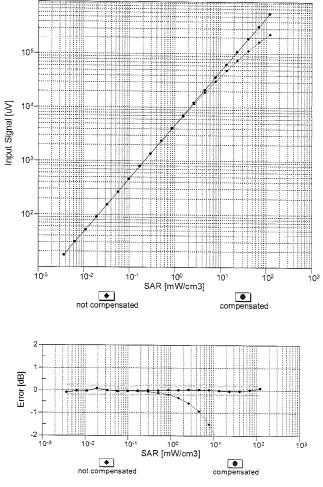

Page 6 of 23

<page-header><section-header></section-header></page-header>				Test report No. Page FCC ID Issued date	: 14007301H-A-F : 63 of 112 : N43E400001 : February 25, 20
1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0		Frequency Res	sponse of E-F	ield	, 2021
14 13 14 13 12 12 12 12 12 12 12 12 12 12		(TEM-Cell:m110 E	XX, Waveguide: R2	2)	
1.3 1.2 1.1 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	E				
0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz]	13				
0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz]	unitaria de la companya de la compan				
0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz]	u 1.1	•			
0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz]	1.0-				
0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz]	9.0 Le				
0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz]					
0.5 0 500 1000 1500 2000 2500 3000 f [MHz]	E				
f [MHz]	0.5				
TEM R22	0		f [MHz]		
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)					
Certificate No: EX3-3922_Aug21 Page 7 of 23	Certificate No: EX3-3922_Aug21	Pag	9 7 of 23		
Certificate No: EX3-3922_Aug21 Page 7 of 23	Certificate No: EX3-3922_Aug21	Pagi	e 7 of 23		

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 64 of 112 : N43E400001 : February 25, 2022

EX3DV4- SN:3922

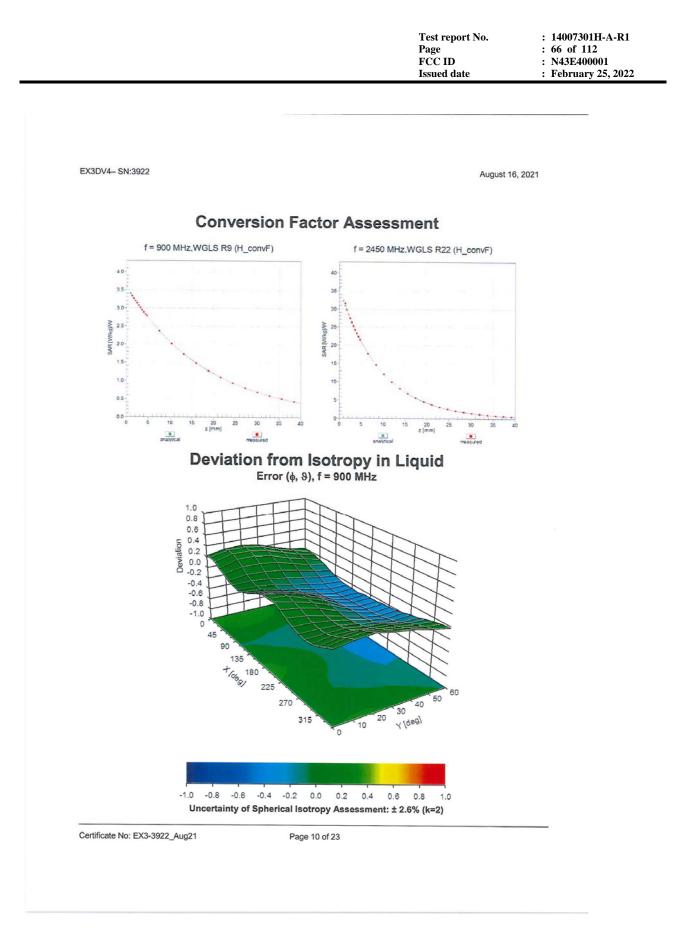

August 16, 2021



Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 65 of 112 : N43E400001 : February 25, 2022

EX3DV4-- SN:3922

August 16, 2021



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3922_Aug21

Page 9 of 23

August 16, 2021

EX3DV4-- SN:3922

Appendix: Modulation Calibration Parameters

UID	Rev Communication System Name		Group	PAR (dB)	Unc [±] (k=2)
0		CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.12	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.09	± 9.6 %
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 16 Mbps)	WLAN	9.00	
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	9.38	± 9.6 % ± 9.6 %
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN		
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.24	± 9.6 %
10000		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)		9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 36 Mbps)		10.77	± 9.6 %
10076	CAB		WLAN	10.94	± 9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fulirate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 11 of 23

EX3DV4- SN:3922

August 16, 2021 10099 CAC EDGE-FDD (TDMA, 8PSK, TN 0-4) GSM 9.55 ± 9.6 % 10100 LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) LTE-FDD CAC 5.67 ± 9.6 % 10101 LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) CAB LTE-FDD 6.42 ±9.6 % 10102 CAB LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) LTE-FDD 6.60 ± 9.6 % 10103 LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) DAC LTE-TDD 9 2 9 ±9.6 % 10104 LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) CAE LTE-TDD 9.97 ± 9.6 % 10105 LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) LTE-TDD CAE 10.01 ± 9.6 % 10108 CAE LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) LTE-FDD 5.80 ± 9.6 % 10109 LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) CAG LTE-FDD 6.43 ±9.6 % 10110 LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) CAG LTE-FDD 5.75 ±9.6 % 10111 LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) CAG LTE-FDD 6.44 +96% 10112 LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) CAG LTE-FDD 6.59 ± 9.6 % 10113 LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) CAG LTE-FDD 6.62 ± 9.6 % 10114 IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) WLAN CAG 8.10 ± 9.6 % 10115 IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) WLAN CAG 8.46 ±9.6 % 10116 IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) CAG WLAN 8.15 ± 9.6 % IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) 10117 CAG WI AN 8.07 ±9.6 % CAD IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) 10118 WLAN 8.59 ± 9.6 % 10119 CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) W/LAN 8.13 ± 9.6 % 10140 CAD LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) LTE-FDD 6.49 ± 9.6 % 10141 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) CAD LTE-FDD 6.53 ±9.6 % 10142 LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) CAD LTE-FDD 5.73 ± 9.6 % 10143 LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) CAD LTE-FDD 6.35 ± 9.6 % 10144 LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) CAC LTE-FDD 6.65 ± 9.6 % 10145 LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) CAC LTE-FDD 5.76 ± 9.6 % 10146 LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) CAC LTE-FDD 6.41 ± 9.6 % 10147 LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) CAC LTE-FDD 6.72 ±9.6 % 10149 LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) CAE LTE-FDD 6.42 ± 9.6 % 10150 LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) CAE I TE-EDD 6.60 ± 9.6 % LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) 10151 CAE LTE-TDD 9.28 ± 9.6 % 10152 LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) CAE LTE-TDD 9.92 ± 9.6 % 10153 LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) CAE LTE-TOD 10.05 ± 9.6 % 10154 LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) ± 9.6 % CAF LTE-FDD 5 75 10155 LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) CAF LTE-FDD 643 ±9.6% 10156 LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) LTE-FDD CAF ±9.6 % 5.79 10157 LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) CAE LTE-FDD 649 ± 9.6 % 10158 LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) LTE-FDD CAE 6.62 ± 9.6 % 10159 LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) LTE-FDD CAG 6 56 ±9.6 % 10160 LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) LTE-FDD CAG 5.82 ± 9.6 % 10161 LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) LTE-FDD CAG 643 ± 9.6 % 10162 CAG LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) LTE-FDD 6.58 ± 9.6 % 10166 CAG LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) LTE-FDD 5.46 ± 9.6 % 10167 CAG LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM LTE-FDD 6.21 ± 9.6 % 10168 CAG LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) LTE-FDD 6.79 ± 9.6 % 10169 LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) CAG LTE-FDD 5.73 +96% 10170 CAG LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) LTE-FDD 6.52 ± 9.6 % 10171 LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) LTE-FDD CAE 6.49 ± 9.6 % 10172 LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) CAE LTE-TDD 9.21 ± 9.6 % 10173 LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) LTE-TDD CAE 9.48 ±9.6% 10174 LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) CAF LTE-TDD 10.25 ± 9.6 % 10175 CAF LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) LTE-FDD 5.72 ± 9.6 % LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) 10176 CAF LTE-FDD 6.52 ± 9.6 % 10177 LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) CAE LTE-FDD 5.73 ± 9.6 % 10178 LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) LTE-FDD CAE 6.52 ± 9.6 % LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) 10179 LTE-FDD AAE 6.50 ± 9.6 % 10180 LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) LTE-FDD CAG 6.50 ± 9.6 %

Certificate No: EX3-3922_Aug21

Page 12 of 23

EX3DV4-- SN:3922

August 16, 2021

		F			st 16, 20
10181	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10182	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0184	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0185	CAI	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
0186	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
0189	CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
0194	AAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
0195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
0196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
0197	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
0198	CAF	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
0219	CAF	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %
0220	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
0221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
0222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6 %
0223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 9
0224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	± 9.6 %
10225	CAD	UMTS-FDD (HSPA+)	WEAN		
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	5.97	± 9.6 %
10227		LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 10-QAM)		9.49	± 9.6 %
0227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10228	CAD		LTE-TDD	9.22	± 9.6 %
0229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.1 9	± 9.6 %
10232	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10233	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10236	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10237	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10238	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10240	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 9
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 9
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 9
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 9
0250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.29	± 9.6 %
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	9.81	± 9.6 %
0252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	a second de constantes a	
0252		LTE-TDD (SC-FDMA, 30% RB, 10 MHz, QPSK)		9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAB		LTE-TDD	10.14	± 9.6 %
	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 9
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 13 of 23

0260		LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	
0260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.97	± 9.6 % ± 9.6 %
0262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.24	± 9.6 %
0263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	9.83	± 9.6 %
0264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 04-0AM)	LTE-TDD	9,23	± 9.6 %
0265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.23	± 9.6 %
0266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 10 QAM)	LTE-TDD	10.07	1
10200	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 04-QAW)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	9.30	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10209	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 04-QAM)	LTE-TDD	9.58	
10270	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	9.56	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Sublest 5, 3GPP Rel8.4)	WCDMA		
10273	CAD	PHS (QPSK)	PHS	3.96	± 9.6 %
10277	CAD	PHS (QPSK) PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS		± 9.6 %
10279	CAD	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	11.81	± 9.6 %
10279	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	12.18	± 9.6 %
10290	CAG	CDMA2000, RC1, SO55, Full Rate		3.91	± 9.6 %
10291	CAG	CDMA2000, RC3, SO55, Full Rate	CDMA2000 CDMA2000	3.46	± 9.6 %
10292	CAG			3.39	± 9.6 %
	CAG	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	CAG	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %
10300	CAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10301	CAC	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	± 9.6 %
10302	CAB	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WiMAX	12.57	± 9.6 %
10303	CAB	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	Wimax	12.52	± 9.6 %
10304	CAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	± 9.6 %
10305	CAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	15.24	± 9.6 %
10306	CAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	WiMAX	14.67	± 9.6 %
10307	AAB	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WiMAX	14.49	± 9.6 %
10308	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	± 9.6 %
10309	AAB	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WiMAX	14.58	± 9.6 %
10310	AAB	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	WiMAX	14.57	± 9.6 %
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 %
10313	AAD	iDEN 1:3	IDEN	10.51	± 9.6 %
10314	AAD	IDEN 1:6	IDEN	13.48	± 9.6 %
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	± 9.6 %
10316	AAD	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10317	AAA	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.6 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN	8.37	± 9.6 %
10401	AAA	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)	WLAN	8.60	± 9.6 %
10402	AAA	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 %
10406	AAD	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 14 of 23

EX3DV4-- SN:3922

August 16, 2021 10410 LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) LTE-TDD AAA 7.82 ±9.6 % 10414 WLAN CCDF, 64-QAM, 40MHz ±9.6 % AAA Generic 8 54 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) 10415 WLAN AAA 1.54 ± 9.6 % 10416 IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) WLAN AAA 8.23 ± 9.6 % IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) 10417 AAA WLAN 8 23 ±9.6 % 10418 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) WLAN ±9.6 % AAA 8 14 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) 10419 WLAN AAA 8 19 ± 9.6 % 10422 IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN AAA 8.32 ±9.6 % 10423 IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) WLAN AAA 8 47 ± 9.6 % IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) 10424 WLAN AAE 8 40 ±9.6 % IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) 10425 WLAN AAE 8 4 1 +9.6% 10426 IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN AAE 8.45 ±9.6 % 10427 IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN AAB 8.41 ± 9.6 % 10430 LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD AAB 8.28 ±9.6 % 10431 LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) AAC LTE-FDD 8.38 +96% 10432 LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD AAB 8.34 ± 9.6 % 10433 LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 AAC ± 9.6 % 10434 W-CDMA (BS Test Model 1, 64 DPCH) WCDMA AAG 8.60 ± 9.6 % 10435 LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) AAA LTE-TDD 7.82 ±9.6% 10447 AAA LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56 +96% 10448 LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.53 AAA ± 9.6 % 10449 LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) AAC LTE-FDD 7.51 ±9.6 % 10450 LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD AAA 7.48 ± 9.6 % 10451 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 ± 9.6 % 10453 Validation (Square, 10ms, 1ms) AAC Test 10.00 ±9.6% 10456 AAC IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) WLAN 8.63 ±9.6 % 10457 UMTS-EDD (DC-HSDPA) WCDMA AAC 6.62 ± 9.6 % 10458 AAC CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 % 10459 CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 AAC 8.25 ± 9.6 % 10460 UMTS-FDD (WCDMA, AMR) WCDMA 2.39 AAC ± 9.6 % LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) 10461 ± 9.6 % LTE-TDD 7.82 AAC 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) LTE-TDD 8.30 ± 9.6 % 10463 LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) LTE-TDD 8 56 ± 9.6 % AAD 10464 LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) I TE-TDD 7.82 ± 9.6 % AAD 10465 LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) ± 9.6 % LTE-TDD 8.32 AAC 10466 LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) AAC LTE-TDD 8.57 ±9.6 % 10467 LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) LTE-TDD 7.82 ± 9.6 % AAA 10468 LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) LTE-TDD 8.32 ± 9.6 % AAF 10469 LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) AAD ± 9.6 % LTE-TDD 8.56 10470 LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) AAD LTE-TDD 7 82 ± 9.6 % 10471 LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) LTE-TDD 8.32 ± 9.6 % AAC 10472 LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) LTE-TDD AAC 8.57 ± 9.6 % 10473 LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) AAA LTE-TDD 7.82 ± 9.6 % 10474 LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) ± 9.6 % AAC LTE-TDD 8.32 10475 LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) AAD LTE-TDD 8 57 ±9.6 % 10477 LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) LTE-TDD AAC 8.32 ± 9.6 % 10478 LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) LTE-TDD AAC 8.57 ± 9.6 % 10479 LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) AAC LTE-TDD 774 ± 9.6 % 10480 LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) LTE-TDD AAA 8 18 +96% 10481 LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) LTE-TDD AAA 8.45 ± 9.6 % 10482 LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) LTE-TDD 7.71 ± 9.6 % AAA 10483 LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) LTE-TDD AAA 8.39 ± 9.6 % 10484 LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) LTE-TDD AAB 8.47 +9.6% LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) 10485 LTE-TDD 7.59 ± 9.6 % AAB 10486 LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) LTE-TDD 8.38 ± 9.6 % AAB 10487 LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) LTE-TDD AAC 8.60 ± 9.6 %

Certificate No: EX3-3922_Aug21

Page 15 of 23

August 16, 2021

EX3DV4-	SN:3922
---------	---------

				Augu	IST 10, 2021
10488	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	± 9.6 %
10489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	± 9.6 %
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7,74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 %
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1,4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	± 9.6 %
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	± 9.6 %
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10501	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	± 9.6 %
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6 %
10503	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	± 9.6 %
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	± 9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	$\pm 9.6\%$ $\pm 9.6\%$
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	± 9.6 %
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.49	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD		± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	7.74	± 9.6 %
10514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD		± 9.6 %
10515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.57	± 9.6 %
10518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	± 9.6 % ± 9.6 %
10519	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN		
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.08	± 9.6 %
10525	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)	WLAN		± 9.6 %
10526	AAF	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)	WLAN	8.36	± 9.6 %
10527	AAF	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	8.42	± 9.6 %
10528	AAF	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.21	± 9.6 %
10529	AAF	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	± 9.6 %
10523	AAF	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8.36	± 9.6 %
10532	AAF	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)	WLAN		± 9.6 %
10532	AAF	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10533	AAE	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)	WLAN WLAN	8.38	± 9.6 %
10535	AAE	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6 %
10536	AAE	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.45	± 9.6 %
10537	AAF	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN	8.32	± 9.6 %
10538	AAF	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN	8.44	± 9.6 %
10540	AAF	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN	8.54	± 9.6 %
10540	AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.39	± 9.6 %
10542		IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)		8.46	± 9.6 %
10542	AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.65	± 9.6 %
10543	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	± 9.6 %
10544	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6 %
10040	AAC	TELE 002. I Tau WIFI (OUWIFIZ, WICST, Bape de)	WLAN	8.55	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 16 of 23

10546	AAC	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc)	WLAN	8.35	± 9.6 %
0547	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc)	WLAN	8.49	± 9.6 %
0548	AAC	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc)	WLAN	8.37	± 9.6 %
0550	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)	WLAN	8.38	± 9.6 %
0551	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)	WLAN	8.50	± 9.6 %
0552	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc)	WLAN	8.42	± 9.6 %
0553	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)	WLAN	8.45	± 9.6 %
0554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc)	WLAN	8.48	± 9.6 %
0555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc)	WLAN	8.47	± 9.6 %
0556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc)	WLAN	8.50	± 9.6 %
0557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc)	WLAN	8.52	± 9.6 %
0558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc)	WLAN	8.61	± 9.6 %
0560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc)	WLAN	8.73	± 9.6 %
0561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc)	WLAN	8.56	± 9.6 %
0562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc)	WLAN	8.69	± 9.6 %
0563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc)	WLAN	8.77	± 9.6 %
0564	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	± 9.6 %
0565	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
0566	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.43	± 9.6 %
0567	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	± 9.6 %
0568	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.00	
0569	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN		± 9.6 %
0570	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.10	± 9.6 %
0571	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS-01 DM, 34 Mbps, 99pc dc)	WLAN	8.30	± 9.6 %
0572	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
0573		IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)		1.99	± 9.6 %
0574	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
0575	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10576	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 8 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10577	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10578	AAC	IEEE 802.11g WIF1 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
0579	AAD	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10580	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10581	AAD		WLAN	8.76	± 9.6 %
10582	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10582	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
0584	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
0585	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
0586	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
0587	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
0588	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
0589	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
0590	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
10591	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN	8.63	± 9.6 %
0592	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
0593	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc)	WLAN	8.64	± 9.6 %
0594	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6 %
0595	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc)	WLAN	8.74	± 9.6 %
0596	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc)	WLAN	8.71	± 9.6 %
0597	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)	WLAN	8.72	± 9.6 %
0598	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)	WLAN	8.50	± 9.6 %
0599	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)	WLAN	8.79	± 9.6 %
0600	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
0601	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)	WLAN	8.82	± 9.6 %
0602	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc)	WLAN	8.94	± 9.6 %
0603	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)	WLAN	9.03	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 17 of 23

Test report No.	: 14007301H-A-R1
Page	: 74 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

(3DV4 9	SN:3922	2		Augu	st 16, 2021
0604	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	± 9.6 %
0605	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	± 9.6 %
0606	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
0607	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	± 9.6 %
0608	AAC	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc)	WLAN	8.77	± 9.6 %
0609	AAC	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
0610	AAC	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
0611	AAC	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
0612	AAC	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
0613	AAC	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc)	WLAN	8.94	± 9.6 %
0614	AAC	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc)	WLAN	8.59	± 9.6 %
0615	AAC	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
0616	AAC	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
0617	AAC	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc)	WLAN	8.81	± 9.6 %
0618	AAC	IEEE 802.11ac WIFI (40MHz, MCS2, 90pc dc)	WLAN	8.58	± 9.6 %
0619	AAC	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
0620	AAC	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)	WLAN	8.87	± 9.6 %
0621	AAC	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
0622	AAC	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.68	± 9.6 %
0623	AAC	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
0624	AAC	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc)	WLAN	8.96	± 9.6 %
0625	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WLAN	8.96	± 9.6 %
0626	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
0627	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
0628	AAC	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)	WLAN	8.71	± 9.6 %
0629	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
0630	AAC	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	WLAN	8.72	± 9.6 %
0631	AAC	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc)	WLAN	8.81	± 9.6 %
0632	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
0633	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	8.83	± 9.6 %
0634	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)	WLAN	8.80	± 9.6 %
0635	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
0636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
0637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
0638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)	WLAN	8.86	± 9.6 %
0639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
0640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc)	WLAN	8.98	± 9.6 %
0641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)	WLAN	9.06	± 9.6 %
0642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc)	WLAN	9.06	± 9.6 %
0643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc)	WLAN	8.89	± 9.6 %
0644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc)	WLAN	9.05	± 9.6 %
0645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)	WLAN	9.11	± 9.6 %
0646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
0647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
0648	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
0652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
0653	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6 %
0654	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
0655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
0658	AAC	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
0659	AAC	Pulse Waveform (200Hz, 20%)	Test	6.99	± 9.6 % ± 9.6 %
0660	AAC	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
0661	AAC	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
0662	AAC	Pulse Waveform (200Hz, 80%)	Test	0.97	
	1 000	1	licar	1 0.97	± 9.6 %
0670	AAC	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 18 of 23

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 75 of 112 : N43E400001 : February 25, 2022

EX3DV4- SN:3922

August 16, 2021

LX30V4-	011.002.2	-		Augu	ist 16, 2021
10672	AAD	IEEE 802.11ax (20MHz, MCS1, 90pc dc)	WLAN	8.57	± 9.6 %
10673	AAD	IEEE 802.11ax (20MHz, MCS2, 90pc dc)	WLAN	8.78	± 9.6 %
10674	AAD	IEEE 802.11ax (20MHz, MCS3, 90pc dc)	WLAN	8,74	± 9.6 %
10675	AAD	IEEE 802.11ax (20MHz, MCS4, 90pc dc)	WLAN	8.90	± 9.6 %
10676	AAD	IEEE 802.11ax (20MHz, MCS5, 90pc dc)	WLAN		
10677	AAD	IEEE 802.11ax (20MHz, MCS6, 90pc dc)	WLAN	8.77	± 9.6 %
10678		IEEE 802.11ax (20MHz, MCS7, 90pc dc)		8.73	± 9.6 %
10679	AAD		WLAN	8.78	± 9.6 %
	AAD	IEEE 802.11ax (20MHz, MCS8, 90pc dc)	WLAN	8.89	± 9.6 %
10680	AAD	IEEE 802.11ax (20MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10681	AAG	IEEE 802.11ax (20MHz, MCS10, 90pc dc)	WLAN	8.62	± 9.6 %
10682	AAF	IEEE 802.11ax (20MHz, MCS11, 90pc dc)	WLAN	8.83	± 9.6 %
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10684	AAC	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	± 9.6 %
10685	AAC	IEEE 802.11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6 %
10686	AAC	IEEE 802.11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	± 9.6 %
10687	AAE	IEEE 802.11ax (20MHz, MCS4, 99pc dc)	WLAN	8.45	± 9.6 %
10688	AAE	IEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8.29	± 9.6 %
10689	AAD	IEEE 802.11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	± 9.6 %
10690	AAE	IEEE 802.11ax (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10691	AAB	IEEE 802.11ax (20MHz, MCS8, 99pc dc)	WLAN	8.25	± 9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc dc)	WLAN	8.29	
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc dc)	WLAN		± 9.6 %
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc dc)	WLAN	8.25	± 9.6 %
10695		IEEE 802.11ax (40MHz, MCS), 90pc dc)		8.57	± 9.6 %
10696	AAA		WLAN	8.78	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc dc)	WLAN	8.91	± 9.6 %
	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.61	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc dc)	WLAN	8.89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc dc)	WLAN	8.73	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN	8.86	± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	± 9.6 %
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAC	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	± 9.6 %
10707	AAC	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	± 9.6 %
10708	AAC	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10709	AAC	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10710	AAC	IEEE 802.11ax (40MHz, MCS3, 99pc dc)	WLAN	8.29	± 9.6 %
10711	AAC	IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.39	± 9.6 %
10712	AAC	IEEE 802.11ax (40MHz, MCS5, 99pc dc)	WLAN	8.67	± 9.6 %
10713	AAC	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
10714	AAC	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	
10715	AAC	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN		± 9.6 %
10716	AAC	IEEE 802.11ax (40MHz, MCS8, 99pc dc)		8.45	± 9.6 %
10710		IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	± 9.6 %
10718	AAC	IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
10718	AAC		WLAN	8.24	± 9.6 %
10719	AAC	IEEE 802.11ax (80MHz, MCS0, 90pc dc)	WLAN	8.81	± 9.6 %
	AAC	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	± 9.6 %
10721	AAC	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.76	± 9.6 %
10722	AAC	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.55	± 9.6 %
10723	AAC	IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6 %
10724	AAC	IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN	8.90	± 9.6 %
10705	AAC	IEEE 802.11ax (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10725			d management		
10725 10726 10727	AAC	IEEE 802.11ax (80MHz, MCS7, 90pc dc) IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.72	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 19 of 23

.

EX3DV4-- SN:3922

August 16, 2021

10728	AAC	IEEE 802.11ax (80MHz, MCS9, 90pc dc)	WLAN	8.65	± 9.6 %
10729	AAC	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	± 9.6 %
10730	AAC	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
10731		IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN		
10732	AAC	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10732	AAC	IEEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	± 9.6 %
10733	AAC	IEEE 802.11ax (80MHz, MCS2, 99pc dc)		8.40	± 9.6 %
10735	AAC		WLAN	8.25	± 9.6 %
	AAC	IEEE 802.11ax (80MHz, MCS4, 99pc dc)	WLAN	8.33	± 9.6 %
10736 10737	AAC	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN	8.27	± 9.6 %
	AAC	IEEE 802.11ax (80MHz, MCS6, 99pc dc)	WLAN	8.36	± 9.6 %
10738	AAC	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	± 9.6 %
10739	AAC	IEEE 802.11ax (80MHz, MCS8, 99pc dc)	WLAN	8.29	± 9.6 %
10740	AAC	IEEE 802.11ax (80MHz, MCS9, 99pc dc)	WLAN	8.48	± 9.6 %
10741	AAC	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10742	AAC	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10743	AAC	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	± 9.6 %
10744	AAC	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	9.16	± 9.6 %
10745	AAC	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WLAN	8.93	± 9.6 %
10746	AAC	IEEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	± 9.6 %
10747	AAC	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	± 9.6 %
10748	AAC	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN	8.93	± 9.6 %
10749	AAC	IEEE 802.11ax (160MHz, MCS6, 90pc dc)	WLAN	8.90	± 9.6 %
10750	AAC	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	WLAN	8.79	± 9.6 %
10751	AAC	IEEE 802.11ax (160MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10752	AAC	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10753	AAC	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	± 9.6 %
10754	AAC	IEEE 802.11ax (160MHz, MCS11, 90pc dc)	WLAN	8.94	± 9.6 %
10755	AAC	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.64	± 9.6 %
10756	AAC	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	± 9.6 %
10757	AAC	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	± 9.6 %
10758	AAC	IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	8.69	± 9.6 %
10759	AAC	IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN	8.58	± 9.6 %
10760	AAC	IEEE 802.11ax (160MHz, MCS5, 99pc dc)	WLAN	8.49	± 9.6 %
10761	AAC	IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	± 9.6 %
10762	AAC	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	± 9.6 %
10763	AAC	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	± 9.6 %
10764	AAC	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
10765	AAC	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	± 9.6 %
10766	AAC	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 %
10767	-(5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	± 9.6 %
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.01	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.01	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.02	
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD		± 9.6 %
	AAC			8.23	± 9.6 %
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	± 9.6 %
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10775	AAC	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 20 of 23

.....

EX3DV4-- SN:3922

August 16, 2021

5.0014	SN:3922			Augu	ist 16, 2021
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
0788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		-
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83 7.92	± 9.6 %
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		± 9.6 %
10794		5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10795	AAC AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)		7.82	± 9.6 %
10796		5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	7.84	± 9.6 %
10797	AAC		5G NR FR1 TDD	7.82	± 9.6 %
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
10803	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10817	AAD	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	± 9.6 %
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10828	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	8.40	± 9.6 %
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	± 9.6 %
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	± 9.6 %
10832		5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	1	± 9.6 %
10834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)		7.70	± 9.6 %
10835	AAD		5G NR FR1 TDD	7.75	± 9.6 %
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	± 9.6 %
10839	AAD		5G NR FR1 TDD	7.68	± 9.6 %
	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	± 9.6 %
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	± 9.6 %
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	± 9.6 %
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
40050	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10858	MAD				

Certificate No: EX3-3922_Aug21

Page 21 of 23

EX3DV4- SN:3922

August 16, 2021

10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8,40	± 9.6 %
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	± 9.6 %
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	± 9.6 %
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	± 9.6 %
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	± 9.6 %
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10897	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	± 9.6 %
10898	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10902	AAD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10907	AAD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	
10908	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	5.78	± 9.6 %
10909	AAD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	5.93	± 9.6 %
10910	AAD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	5.96	
10911	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		± 9.6 %
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	5.93	± 9.6 %
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10915	AAD	5G NR (DFT-s-0FDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	± 9.6 %
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10917		5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)		5.87	± 9.6 %
10918	AAD	5G NR (DFT-s-OFDM, 30% RB, 100 MHZ, QFSK, 30 KHZ)	5G NR FR1 TDD	5.94	± 9.6 %
10918	AAD	5G NR (DFT-S-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10919	AAD		5G NR FR1 TDD	5.86	± 9.6 %
10920	AAD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10921	AAD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 22 of 23

± 9.6 %	5.82	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	0922 AAE
± 9.6 %	5.84	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	0923 AAE
± 9.6 %	5.84	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	10924 AAE
± 9.6 %	5.95	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	10925 AAC
± 9.6 %	5.84	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	10926 AAD
± 9.6 %	5.94	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	0927 AAE
± 9.6 %	5.52	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	10928 AAE
± 9.6 %	5.52	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	10929 AAE
± 9.6 %	5.52	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	0930 AAE
± 9.6 %	5.51	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	10931 AAE
± 9.6 %	5.51	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	0932 AAE
± 9.6 %	5.51	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	0933 AAA
± 9.6 %	5.51	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	0934 AAA
± 9.6 %	5.51	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	10935 AAA
± 9.6 %	5.90	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	0936 AAC
± 9.6 %	5.77	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	10937 AAE
± 9.6 %	5.90	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	10938 AAE
± 9.6 %	5.82	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	10939 AAE
± 9.6 %	5.89	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	10940 AAE
± 9.6 %	5.83	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	10941 AAE
± 9.6 %	5.85	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	10942 AAE
± 9.6 %	5.95	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	10943 AAE
± 9.6 %	5.81	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	10944 AAE
		5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	10945 AAE
± 9.6 %	5.85	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	701
± 9.6 %	5.83	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	7010
± 9.6 %	5.87		5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	,
± 9.6 %	5.94	5G NR FR1 FDD 5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	7012
± 9.6 %	5.87		5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	7012
± 9.6 %	5.94	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	///L
± 9.6 %	5.92	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	, o (2
± 9.6 %	8.25	5G NR FR1 FDD		7776
± 9.6 %	8.15	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	
± 9.6 %	8.23	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	701
± 9.6 %	8.42	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	10955 AAE
± 9.6 %	8.14	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	10956 AAE
± 9.6 %	8.31	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	10957 AAC
± 9.6 %	8.61	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	10958 AAE
± 9.6 %	8.33	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	10959 AAE
± 9.6 %	9.32	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	10960 AAE
± 9.6 %	9.36	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	10961 AAE
± 9.6 %	9.40	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	10962 AAE
± 9.6 %	9.55	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	10963 AAE
± 9.6 %	9.29	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	10964 AAE
± 9.6 %	9.37	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	10965 AAE
± 9.6 %	9.55	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	10966 AAE
± 9.6 %	9.42	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	10967 AAE
± 9.6 %	9.49	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	10968 AAE
± 9.6 %	11.59	5G NR FR1 TDD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	10972 AAE
± 9.6 %	9.06	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	10973 AAE
± 9.6 %	10.28	5G NR FR1 TDD	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	10974 AAE

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3922_Aug21

Page 23 of 23

		Page FCC II Issued		: 80 of 112 : N43E4000 : February
eck Dipole SAR Calibra	ation Certificat	te -Dipole 2450 MHz (D245	0V2 S/N: 713))
Calibration Laboratory Schmid & Partner Engineering AG	of		Schweizerischer H Service suisse d'é Servizio svizzero (talonnage
Zeughausstrasse 43, 8004 Zurich,	Switzerland	Fillen and a set of the set of th	Swiss Calibration	Service
Accredited by the Swiss Accreditation The Swiss Accreditation Service in Multilateral Agreement for the rec	s one of the signatorie	es to the EA	Accreditation No.: SC	CS 0108
Client UL Japan (KYCO			vo: D2450V2-713	Sep19
CALIBRATION CI	ERTIFICATI			
Object	D2450V2 - SN:7			
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Source	s between 0.7-3	GHz
This calibration certificate documen		019 ional standards, which realize the physical (robability are given on the following pages a		
This calibration certificate documen The measurements and the uncerte	ts the traceability to nat ainties with confidence p d in the closed laborato	ional standards, which realize the physical (and are part of the certif	icate.
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte	ts the traceability to nat ainties with confidence p d in the closed laborato	ional standards, which realize the physical (robability are given on the following pages a	and are part of the certif	
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778	ional standards, which realize the physical or probability are given on the following pages of ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893)	and are part of the certif °C and humidity < 70% Scheduled Ca Apr-20	
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration)	ional standards, which realize the physical or probability are given on the following pages or ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	and are part of the certif °C and humidity < 70% Scheduled Ca	
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	ional standards, which realize the physical of robability are given on the following pages a ry facility: environment temperature (22 ± 3) <u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892)	and are part of the certif °C and humidity < 70% Scheduled Ca Apr-20 Apr-20	
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	ional standards, which realize the physical (robability are given on the following pages a ry facility: environment temperature (22 ± 3) <u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	and are part of the certif °C and humidity < 70% <u>Scheduled Ca</u> Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20	
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	ional standards, which realize the physical (robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19)	and are part of the certif °C and humidity < 70% <u>Scheduled Ca</u> Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20	
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	ional standards, which realize the physical (robability are given on the following pages a ry facility: environment temperature (22 ± 3) <u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	and are part of the certif °C and humidity < 70% <u>Scheduled Ca</u> Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20	
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID #	ional standards, which realize the physical (robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19)	and are part of the certif °C and humidity < 70% <u>Scheduled Ca</u> Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20	icate. libration
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	ional standards, which realize the physical orobability are given on the following pages a ry facility: environment temperature (22 ± 3) <u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) <u>Check Date (in house)</u> 30-Oct-14 (in house check Feb-19)	and are part of the certif "C and humidity < 70% Scheduled Ca Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Scheduled Ch In house checl	licate. libration eck k: Oct-20
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	ional standards, which realize the physical orobability are given on the following pages a ry facility: environment temperature (22 ± 3) <u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) <u>Check Date (in house)</u> 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Cot-18)	and are part of the certif °C and humidity < 70% Scheduled Ca Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Ch In house checl In house checl	libration eck k: Oct-20 k: Oct-20
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317	ional standards, which realize the physical orobability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	and are part of the certif °C and humidity < 70% Scheduled Ca Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Ch In house checl In house checl In house checl	icate. libration eck k: Oct-20 k: Oct-20 k: Oct-20 k: Oct-20
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	ional standards, which realize the physical orobability are given on the following pages a ry facility: environment temperature (22 ± 3) <u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) <u>Check Date (in house)</u> 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Cot-18)	and are part of the certif °C and humidity < 70% Scheduled Ca Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Ch In house checl In house checl	eck k: Oct-20 k: Oct-20 k: Oct-20 k: Oct-20
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317 SN: 100972	ional standards, which realize the physical orobability are given on the following pages a ry facility: environment temperature (22 ± 3) O3-Apr-19 (No. 217-02892/02893) O3-Apr-19 (No. 217-02892) O3-Apr-19 (No. 217-02892) O3-Apr-19 (No. 217-02893) O4-Apr-19 (No. 217-02894) O4-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Cot-18) 07-Oct-15 (in house check Cot-18)	and are part of the certif °C and humidity < 70% <u>Scheduled Ca</u> Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Ch In house checl In house checl	eck k: Oct-20 k: Oct-20 k: Oct-20 k: Oct-19
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ts the traceability to nat inties with confidence p d in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: US37292783 SN: MY41092317 SN: US3100477 Name	ional standards, which realize the physical or robability are given on the following pages a ry facility: environment temperature (22 ± 3) O3-Apr-19 (No. 217-02892/02893) O3-Apr-19 (No. 217-02892) O3-Apr-19 (No. 217-02893) O4-Apr-19 (No. 217-02893) O4-Apr-19 (No. 217-02895) 29-May-19 (No. 217-02895) 29-May-19 (No. DAE4-601_Apr19) O6-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) O7-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Tunction	and are part of the certif °C and humidity < 70% <u>Scheduled Ca</u> Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Ch In house chect In house chect In house chect In house chect In house chect	eck k: Oct-20 k: Oct-20 k: Oct-20 k: Oct-19

Test report No. Page FCC ID Issued date : 14007301H-A-R1 : 81 of 112 : N43E400001 : February 25, 2022

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage
- Servizio svizzero di taratura
 Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-713_Sep19

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.18 W/kg

Certificate No: D2450V2-713_Sep19

Page 3 of 8

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 83 of 112 : N43E400001 : February 25, 2022

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 1.6 jΩ
Return Loss	- 28.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω + 4.0 jΩ
Return Loss	- 27.9 dB

General Antenna Parameters and Design

PROVIDENT 111 111 111 111 111 111 111 111 111 1	
Electrical Delay (one direction)	1.159 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-	

Certificate No: D2450V2-713_Sep19

Page 4 of 8

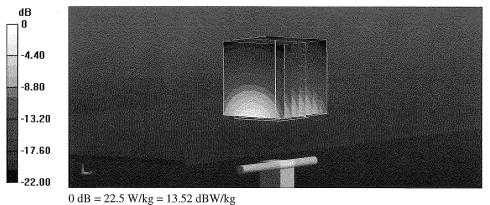
	4 of 112
FCC ID : N4	43E400001
Issued date : Fe	ebruary 25, 2022

DASY5 Validation Report for Head TSL

Date: 09.09.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:713


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 37.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 118.4 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 22.5 W/kg

dD = 22.5 m/kg = 15.52 d B m/kg

Certificate No: D2450V2-713_Sep19

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-713_Sep19

Page 6 of 8

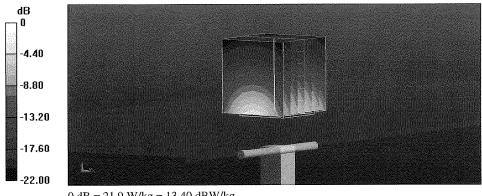
Test report No.	: 14007301H-A-R1
Page	: 86 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

DASY5 Validation Report for Body TSL

Date: 09.09.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:713


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 50.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.7 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 21.9 W/kg

0 dB = 21.9 W/kg = 13.40 dBW/kg

Certificate No: D2450V2-713_Sep19

Page 7 of 8

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 87 of 112 : N43E400001 : February 25, 2022

Impedance Measurement Plot for Body TSL

	Channel Ch 1 Avg = tart 2,25000		ajbration <u>I</u>		Marker	System V	: 2	Help 2.450000 259.8: 2.450000	2 pH	3,9 40,3 9;	606 Ω 996 Ω 16 mU 3.321 °
10.00 5.00 0.00 5.00 -10.00 -15.00 -15.00						> 1	: 2	2.450000	GHz	-27.8	390 dB
-25,00 -30.00 -35.00	<u>Ch 1 Avg</u> = tart 2.25000 (20 3Hz		*1-Port		Avg=20 D	elay				

Certificate No: D2450V2-713_Sep19

Page 8 of 8

Test report No.	: 14007301H-A-R1
Page	: 88 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

D2450V2 Calibration for Impedance and Return-loss

Equipment	Dipole Antenna	Model	D2450V2
Manufacture	Schmid & Partner Engineering AG	Serial	713
Tested by	Hisayoshi Sato		

1. Test environment

Date	September 10, 2020		
Ambient Temperature	24.5 deg.C	Relative humidity	50 %RH
Date	September 2, 2021		
Ambient Temperature	23.0 deg.C	Relative humidity	40 %RH

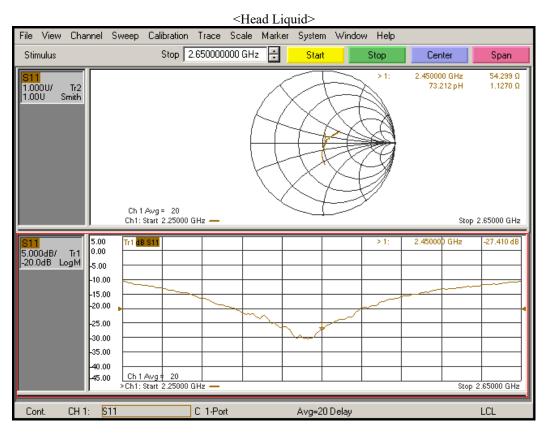
2. Equipment used

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
EST-30	Network Analyzer	Keysight Technologies Inc	N5230A	MY46400314	SAR	2020/08/17 * 12
EST-62	Calibration Kit	Keysight Technologies Inc	85032F	MY41495257	SAR	2019/09/26 * 12
MPF-03	2 mm Oval Flat Phantom	Schmid & Partner Engineering AG	QDOVA001BB	1203	SAR	2020/05/25 * 12
MPSAM-03	SAM Phantom	Schmid & Partner Engineering AG	QD000P40CD	1764	SAR	2020/05/25 * 12
MOS-30	Thermo-Hygrometer	CUSTOM	CTH-201	3001	SAR	2020/07/10 * 12
MHBBL600- 10000	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC		-
MMBBL600- 6000	Body Simulating Liquid	Schmid & Partner Engineering AG	MBBL600-6000	SL AAM U16 BC		-

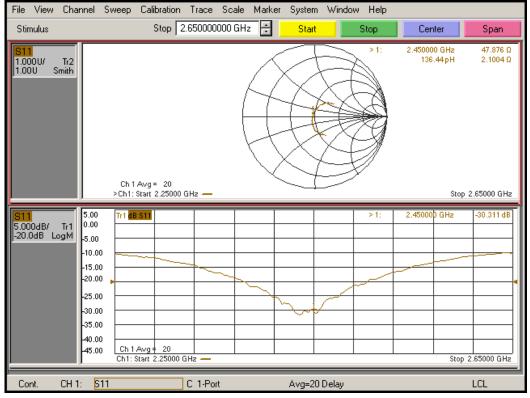
September 2, 2021

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
EST-63	Network Analyzer	Keysight Technologies Inc	E5071C	MY46523746	SAR	2021/07/02 * 12
EST-57	2.4 mm Calibration Kit	Keysight Technologies Inc	85056A	MY44300225	SAR	2020/09/01 * 12
MPSAM-02	SAM Phantom	Schmid & Partner Engineering AG	QD000P40CB	1333	SAR	2021/05/27 * 12
MPF-02	2 mm Oval Flat Phantom	Schmid & Partner Engineering AG	QDOVA001BB	1045	SAR	2021/05/28 * 12
MOS-33	Thermo-Hygrometer	CUSTOM	CTH-201	-	SAR	2021/07/08 * 12
MHBBL600- 10000	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC		-
MMBBL600- 6000	Body Simulating Liquid	Schmid & Partner Engineering AG	MBBL600-6000	SL AAM U16 BC		-

Test report No.	: 14007301H-A-R1
Page	: 89 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

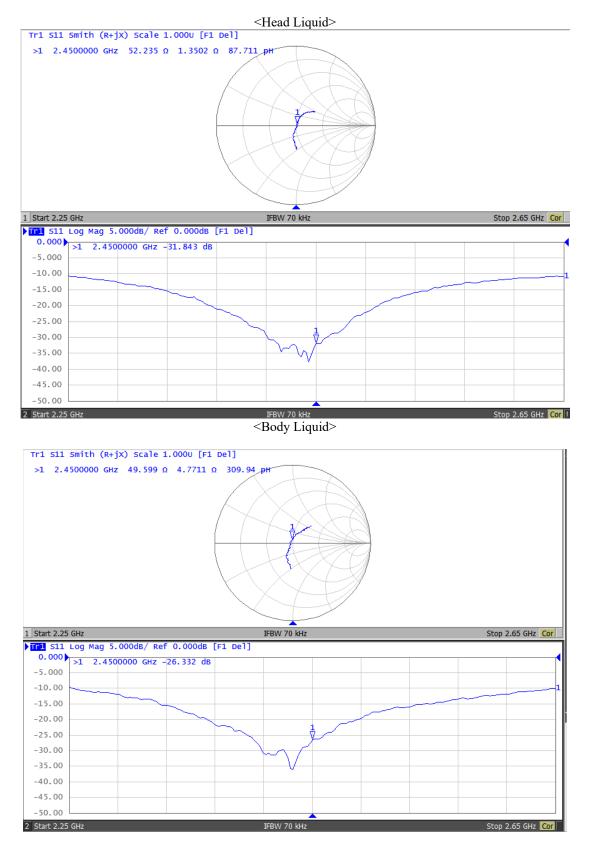

3. Test Result

		Head	Head	Deviation	Deviation		
Impeadance, Transformed to feed point	cal day	(real part) [Ω]	(img part) [jΩ]	(real p art) [Ω]	(img part) [jΩ]	Tolerance	Result
Calibration (SPEAG)	2019/9/9	53.50	1.60	-	-	-	-
Calibration(ULJ)	2020/9/10	54.30	1.13	0.80	-0.47	+/- 5 Ω +/- 5 jΩ	Complied
Calibration(ULJ)	2021/9/2	52.24	1.35	-1.27	-0.25	+/- 5 Ω +/- 5 jΩ	Complied
	_						
		Head	Deviation	Tolerance			
Return loss	cal day	[dB]	[dB]	[+/- dB]	Result		
Calibration (SPEAG)	2019/9/9	-28.60	-	-	-]	
Calibration(ULJ)	2020/9/10	-27.41	1.19	5.72	Complied]	
Calibration(ULJ)	2021/9/2	-31.84	-3.24	5.72	Complied		
	•	•		•		•	
		Body	Body	Deviation	Deviation		
Impeadance, Transformed to feed point	cal day	(real p art) [Ω]	$(img part) [j\Omega]$	(real p art) [Ω]	(img part) [jΩ]	Tolerance	Result
Calibration (SPEAG)	2019/9/9	49.60	4.00	-	-	-	-
Calibration(ULJ)	2020/9/10	47.88	2.10	-1.72	-1.90	+/- 5 Ω +/- 5 jΩ	Complied
Calibration(ULJ)	2021/9/2	49.60	4.77	0.00	0.77	+/- 5 Ω +/- 5 jΩ	Complied
					-		
		Body	Deviation	Tolerance		1	
		6.1723	[dB]	[+/- dB]	Result		
Return loss	cal day	[dB]	[ub]	[,, ub]			
	cal day 2019/9/9		L J	-	-		
Return loss Calibration (SPEAG) Calibration(ULJ)		-27.90	L J	-	- Complied		


Tolerance: According to the KDB865664 D1

Test report No.	: 14007301H-A-R1
Page	: 90 of 112
FCC ID	: N43E400001
Issued date	: February 25, 2022

Measurement Plots (September 10, 2020)



<Body Liquid>

Test report No. Page FCC ID Issued date	: 14007301H-A-R1 : 91 of 112 : N43E400001 : February 25, 2022

Measurement Plots (September 2, 2021)

Test report No. Page FCC ID	: 14007301H-A-R1 : 92 of 112 : N43E400001
 Issued date	: February 25, 2022

System Check Dipole SAR Calibration Certificate -DipoleD5GHz (D5GHzV2 S/N: 1020)

ccredited by the Swiss Accreditat		"Iddatala"	
he Swiss Accreditation Service Iultilateral Agreement for the re	is one of the signatorie	s to the EA	coreditation No.: SCS 0108
Client UL Japan (RCC)	Certificate N	o: D5GHzV2-1020_Nov21
CALIBRATION C	ERTIFICATE		
Object	D5GHzV2 - SN:1	020	
Calibration procedure(s)	QA CAL-22.v6 Calibration Proce	dure for SAR Validation Sources	s between 3-10 GHz
Calibration date:	November 18, 20	021	
		coal standards, which realize the physical un robability are given on the following pages a	
All calibrations have been conduct	ed in the closed laborato	ry facility: environment temperature (22 ± 3)°	C and humidity < 70%
Calibration Equipment used (M&T	E critical for calibration)		a and running (1970)
	E critical for calibration)		
Primary Standards		Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292)	Scheduled Calibration
Primary Standards Power meter NRP	ID ₩	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ID # SN: 104778	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292)	Scheduled Calibration
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343)	Scheduled Calibration Apr-22 Apr-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292)	Scheduled Calibration Apr-22 Apr-22 Apr-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 310982 / 06327 SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 De-21 Nov-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dac-20 (No. EX3-3503_Dac20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 07-Oct-15 (In house check Oct-20)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dac-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dac-20 (No. EX3-3503_Dac20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 07-Oct-15 (In house check Oct-20)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dac-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: 6B39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dac-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 15-Jun-15 (In house check Oct-20) 31-Mar-14 (In house check Oct-20)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 601 ID # SN: 6B39512475 SN: US37292783 SN: MY41092317 SN: US4109072 SN: US41080477 Name	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03243) 09-Apr-21 (No. 217-03343) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) 30-Dect-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 15-Jun-15 (In house check Oct-20) 31-Mar-14 (In house check Oct-20)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22
Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: Approved by:	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 601 ID # SN: 6B39512475 SN: US37292783 SN: MY41092317 SN: US4109072 SN: US41080477 Name	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03243) 09-Apr-21 (No. 217-03343) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) 30-Dect-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 15-Jun-15 (In house check Oct-20) 31-Mar-14 (In house check Oct-20)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US3710972 SN: US41080477 Name Jeffrey Katzman	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 15-Jun-15 (In house check Oct-20) 31-Mar-14 (In house check Oct-20) 31-Mar-14 (In house check Oct-20) SI-Mar-14 (In house check Oct-20) Function Laboratory Technician	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22

Test report No. Page FCC ID Issued date : 14007301H-A-R1 : 93 of 112 : N43E400001 : February 25, 2022

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

 S
 Schweizerischer Kalibrierdienst

 C
 Service suisse d'étalonnage

 Servizio svizzero di taratura
 Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1020_Nov21

Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz 5850 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	$35.9 \pm 6 \%$	4.58 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	A sector and a sector of the s
SAR measured	100 mW input power	7.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.8 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.23 W/kg

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied. Permittivity Conductivity Temperature 5.07 mho/m Nominal Head TSL parameters 22.0 °C 35.5 4.94 mho/m ± 6 % 35.4 ± 6 % Measured Head TSL parameters (22.0 ± 0.2) °C < 0.5 °C ----.... Head TSL temperature change during test

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	1 4 Di 009 M 009 M
SAR measured	100 mW input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.33 W/kg

Certificate No: D5GHzV2-1020_Nov21

Page 3 of 14