TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

IWCU OBU 6.0A User Manual

Jun. 27,2016

s ulr w11 K
P #I52F (7 3o 2 qi)
v % %E 1 523A40612

TR se s ar 2k EH - #E - SN | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

"l DT
A ¢ 4 IWCU OBU 6.0A User Manual 1] I N O I
Table of Content
O o =l o 4 PR 4
L L HISTORY ittt ekttt e bt e e b e e e s bt e e a b et R e e nb e e nnr e nreas 4
2. INTRODUGCTION. . .ciiiiiiiite ettt e e e s e e s e e st e e e snb e e e ssaeeanseeeesnneeans 5
2.1 AACRONYMS ..ttt ettt ettt ettt b et b et st bt e s bt e ke e e st e e e be e e s b e e ebe e e nbe e naeeebeennneenre e 5
2.2 FCC REGULATORY INFORMATION ...iiitiiiutiesteessteestesssteesteesssessseessseesseessseesaessseessnesnsenns 5
3. CONFIGURATION USING CL ..ottt e s 7
3.1 ETHERNET CONFIGURATION SETTING ...uueiittiaiiesiieaieesireesieessneesiessnseesseesnsessaessnseessnas 7
3.2 CHANNEL STATUS tttiiuttesieeatee sttt ateesieeasteessseastesssseassesssseabesssseesaeesnbeeabeeanbessaeeanseessnas 7
3.3 GPS STATUS .ttt ettt bbbt beennes 7
34 WSIM PACKET — T Xttt sttt sttt e e neas 7
3.5 WSM PACKET — RX .ttt sttt st 8
B8 WWSA — TX ittt ettt ettt b et b et st be bt neere e 9
3.7 CHECKING MIB STATUS ..ottt sttt 9
3.8 SECURE WSIM/WSA ...ttt ettt ne e nnee e 10
3.9 DUMP CERTIFICATE .eiiuttiitit it e steeate et e site et ettt e s ste e sae e smbe et e e ntaesbeeanbeenbeeaneaenneeanes 12
310 BSIM PACKET = TX ottt ettt sttt sttt et enne e 16
311 CAN TESTING toiiueieitieiiieestie et stee sttt sttt sttt e et sbe et e et e e e ste e sbeeanbeenbeesneeenneeanes 17
3,12 UPGRADE FIRMWAREuttitieitiiiieesieesteesiee e steesnteesaeesnbeesteesnsaesneeanbeesteesnseenneeanes 17
4 IEEE 1609.3 PROGRAMMING AP ...ttt 20
4.1 INITIALIZE WIME APIS. ..ot 20
4.2 SERVICE REGISTRATION/UNREGISTRATION ...cvtiuieiireriesriesieasiesseessneseesseessesseessensees 20
4.3 WAITING EVENTS ..ttt ettt 26
4.4 DEVICE INFORMATIONuttiitiieiiteesiteeesitteasiteessiteesstseesbeeesnbeeesnbeeessbeessnbeessnneesnsneeans 27
45 MIB INFORMATIONotiiitiiiiiieeiieeesteeesiteeesitee s stte e sbe e e bt essbe e e snbe e e snbeeesnbeesnabeesnnneeans 27
4.6 CONFIGURING WSAottt sttt sttt sttt ne e 28

TR gt aRl 25 -8l - 8# - 4N | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TR ZE R

" kol O IDBTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I
4.7 WSM PACKET — TRANSMISSION & RECEPTION ..vvvuuiiiieeieeeeeitiiinieesseseesisiinssssesseeens 30
5 1EEE 1609.2 PROGRAMMING APoutiiiiiiiiiiiiiiiiiiiiiiiririiiiesissseresssesssssssesssssssaee. 34
5.1 R = I LT =10] =1 1 I T 35
5.2 ACQUIRING CERTIFICATE .ttt ttteet et seeeeeeeeeeeeeee s e st e et aee st eeseseeesrteeseseeaeeeneneennes 39
5.3 SECURE IMIESSAGES ..evvtttuuiiiieetittttttesssseetteesstsssstsessssesssssasteesseteestssarreesseseestrrnnreeees 41
54 SECUREWSA ..o 47
6 SAE J2735 BSM PROGRAMMING APooviiiiiiiiiiiiiiirviivivsiavsesevessveseeanenens 51

TR se s ar 2k EH - #E - SN | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TR ZE R

f Industrial Technology =
Research Institute CONF IDENT I AL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I
1. Preface
1.1 History
version | date contention
V1.0 Sep. 23, 2015 Fisrt Version

V1.1

Jun. 27,2016

FCC regulatory information

TRt E R S - s SR |

ITRI CONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

2. Introduction

The IWCU 6.0 contains V2X elements of DSRC/GNSS/HSM with pre-integrated IEEE 802.11p
driver and IEEE 1609.x protocol stack running on ThreadX RTOS.

2.1 Acronyms

DSRC Dedicated Short Range Communication
CCH Control Channel

SCH Service Channel

PSC Provider Service Context

PSID Provider Service ldentifier

WAVE Wireless Access in Vehicular Environments
WSA WAVE Service Advertisements

WSMP WAVE Short Message Protocol

WME WAVE Management Entity

BSM Basic Safety Message

2.2 FCC regulatory information

FEDERAL COMMUNICATIONS COMMISSION INTERFERENCE STATEMENT

This equipment has been tested and found to comply with the limits for a Class B digital device,
pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against
harmful interference in a residential installation. This equipment generates, uses and can radiate radio
frequency energy and, if not installed and used in accordance with the instructions, may cause harmful
interference to radio communications. However, there is no guarantee that interference will not occur in a
particular installation. If this equipment does cause harmful interference to radio or television reception,
which can be determined by turning the equipment off and on, the user is encouraged to try to correct the

interference by one or more of the following measures:
-Reorient or relocate the receiving antenna.
-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is

connected.

TR gt aRl 25 -8l - 8# - 4N | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

-Consult the dealer or an experienced radio/ TV technician for help.

CAUTION:

Any changes or modifications not expressly approved by the grantee of this device could void the
user's authority to operate the equipment.

RF Exposure warning

This equipment must be installed and operated in accordance with provided instructions and the
antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm
from all persons and must not be co-located or operating in conjunction with any other antenna or
transmitter. End-users and installers must be provide with antenna installation instructions and transmitter
operating conditions for satisfying RF exposure compliance.

TR se s ar 2k EH - #E - SN | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TR ATt FE B
f Industrial Technology
Research Institute

A ¢ 4 IWCU OBU 6.0A User Manual

3. Configuration using CLI

3.1 Ethernet configuration setting

CONF IDENT I AL

To get or set the Ethernet/wireless device’s IP address and netmask, we have: ip eget and ip

eset. The default IP address is 192.168.10.50.

Syntax: ip eset <addr> <netmask>

Example: ip eset 192.168.10.50 255.255.255.0
3.2 Channel status

To retrieve channel status, we have: dot3 show channel

Example:

ate> dot3 show channel
waveO channel = 178
wavel channel = 140

3.3 GPS status
To retrieve GPS status, we have: gps show

Example:
ate> gps show
GPSINFO: time: Fri Jun 5 09:03:14 2015
latitude 24.7770833, longitude 121.0437083
altitude 155.3801936 m
ground speed 0.0514444 m/s
angle 0.0000000

3.4 WSM Packet — Tx

To send WSM packet, we have the following primitive: dot3 tx user

Syntax: dot3 tx user <psid> <request type> <channel number> <is switch>
<data rate> <tx power> <priority> <dest mac> <size> <interval>

<num>

The parameters are described in the following table:

Parameter Valid Range Description

psid 1~127 psid of sending WSMV2 packets,

TR se s ar 2k EH - #E - SN | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f©

Industrial Technology
Research Institute

=

CONF IDENT I AL

¥ 11%&

oz 4L 0 IWCU OBU 6.0A User Manual L
request_type 0: Match User service access type
1: Unconditional
2: No Access
channel_number 172 174 176 180 182 184 | channel number of sending
WSMV2 packets
is_switch 0: Continuous channel mode of user service
1: Channel switch
data_rate 691218243648 54 data rate of sending WSMV2
packets
tx_power 12 ~ 25, unit: dBm tx power level of sending WSMV2
packets
priority 0~63 priority of user service
dest_mac format: peer mac address of sending
XXXXXX XX XX XX WSMV?2 packets
size 0~ 1399, unit: byte size of sending packets
interval 0~ 1000, unit: ms interval of sending packets
num 1~10000 number of sending packets

Example: dot3 tx user 123 1 174 0 6 18 1 FF:FF:FF:FF:FF:FF 1000 100 10

3.5 WSM Packet — Rx

To receive WSM packet, we have the following primitive: dot3 rx user

Syntax: dot3 rx user <psid> <radio number> <channel number>

The parameters are described in the following table:

Parameter Valid Range Description

psid 1~127 psid of sending WSMV?2
packets

radio_number 0~1 the radio number

channel_number

172174 176 180 182 184

channel number of
sending WSMV?2 packets

Example: dot3 rx user 123 0 174

To keep receiving WSM packet continuously, we have the following primitives:
dot3 rx user startanddot3 rx user stop

Example: dot3 rx user start 123 0 174

TRt E R S - s SR |

ITRI CONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f©

FA LA

Industrial Technology
Research Institute

IWCU OBU 6.0A User Manual

KR L

=

CONF IDENT I AL

¥ 11%&

3.6 WSA-Tx

To send WSA, we have the following primitive: dot3 rx provider

Syntax: dot3 rx provider <psid> <radio number> <channel number>
<is switch> <priority> <is secure>

The parameters are described in the following table:

Parameter Valid Range Description

psid 1~127 psid of sending WSMV2
packets

radio_number 0~1 the radio number

channel_number

172174176 180 182 184

channel number of
sending WSMV?2 packets

1: secured WSA

is_switch 0: Continuous channel mode of provider
1: Channel switch service
priority 0~63 priority of provider
service
is_secure 0: no secure WSA enable secure WSA or not

Example: dot3 rx provider 123 0 172 1 1 0

3.7 Checking MIB status

To retrieve MIB setting, we have the following primitive: dot3 _show mib

Ilustrating dot3_show_mib command:

Example:

On OBU-unit 1, enable a user service by sending WSM packets.
ate> dot3 tx user 123 1 174 0 18 18 1 FF:FF:FF:FF:FF:FF 1000 100 10
wme 1init success, handle = 1

wme user service to add success

Change wave(O to 174

Channel 174 assigned

wme user service to delete success
ate> Change wave0O to 178

On OBU-unit 2, receive WSM packets.

ate> dot3 rx user start 123 0 174
wme 1init success, handle = 1

wme user service to add success
wme wsm service to add success

TRt E R S - s SR |

ITRI CONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

f~

FA A

TR ZE R

Industrial Technology
Research Institute

IWCU OBU 6.0A User Manual S|

=

CONF IDENT I AL

¥ 11%&

ate> Change waveO to 174

Channel 174 assigned
start to recv wsm

wsSm
wsSm
wsSm
wsSm
wsSm
wsm
wsSm
wsm
wsSm
wsSm

recv,
recv,
recv,
recv,
recv,
recv,
recv,
recv,
recv,
recv,

count =

count
count
count
count
count
count
count
count
count

View MIB status:

ate> dot3 show mib
wme init success, handle

O 00 Jo Uridbd W
~

O~

packets

1,

~

~

~

~

~

~

14

rssi

rssi =
rssi =

rssi
rssi
rssi
rssi
rssi

rssi =

rssi

*** Provider entry ***

*** User entry ***
index = 0

psid
psc

prio
wsa

= 123

rity
type

=1
=0

radio num = 0
channel

= 174

*** Wsm entry ***

index = 0

psid

= 123

*** Available entry ***

ate>

= =56
=57
-56
= =56
= =56
= -55
= =56
= =56
-58
= =59

2

As shown above, we can see a User, WSM entry into MIB.

3.8 Secure WSM/WSA

To demonstrate the 1609.2 secure WSM/WSA, we have: dot2 demo

Syntax: dot2 demo <data type> <sign> <sign data type>
<attach signer type> <enc> <verify> <sign alg> <sig type>

<ecc_point type>

The parameters are described in the following table:

TRt ER S EE - EH - SNR |

ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

10

TR ATt FE B
f Industrial Technology
Research Institute

oz 4L 0 IWCU OBU 6.0A User Manual

=

CONF IDENT I AL

e LR

=

sign_data_type : partial payload

2: external payload

Parameter Valid Range Description
0: WSMP Specify which data type to
data_type be processed
1: WSA P
. 0: not sign Specify whether to sign
sign .
1: sign the data or not
[ONLY APPLY FOR SIGNED
WSMP]
Specify the signed data
0: payload type. If set to 0, sign the

data only as normal; if set
to 1, duplicate input data
as external data; if set to
2, use input data as
external data to sign with
external data type

0: certificate digest

[ONLY APPLY FOR SIGNED
WSMP]

0: not encrypt
enc yp

attach_signer_type 1: certificate Specify the type of signer
2: certificate chian info attached in the
signed data
Specify whether sign the

data or not, if set to 1, use

1: encrypt self as recipient for
successfully decrypting
0: not verify Specify whether to verify
verify the data or not if it is
1: verify signed
sien al 0: ECDSA-224 Specify the signing
gn_dle 1: ECDSA-256 algorithm to use
Specifies whether to use
0: uncompressed) . .
. point compression or just
sig_type 1: compressed . o
. x-coordinate in signature
2: x-coordinate only

of signed message or not

0: uncompressed

ecc_point_type
—POINT_typ 1: compressed

Specifies whether to use
point compression in
elliptic curve points of the
encrypted message or not

Example: dot2 demo 0 1 0 1 0 1 1 1 1

TR gkl 2 sl - @ - 4NF | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

11

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

3.9 Dump certificate
To dump certificates of current secure data store (SDS), we have: dot2 show sds
Ilustrating dot2_show_sds command:

Example:
A self-generated, random WSM message of 0 ~ 100 bytes length can be viewed on CLI using
<dot2 demo> command as shown below:

The first certificate string is a CA certificate while the second certificate string is a WSM certificate.
Further, a testing message of 77 bytes length is shown followed by the encoded result.

ate> dot2 demo 0 1 01 01 1 11

Create subject type 1 cert error, code = 5

Cert string:

00000000 O02ff 0500 80ff 0100 0100 0403 c30b 1500
00000010 0000 9900 0000 0101 0227 e43c 6566 9c7f
00000020 0067 7528 9446 15bb b88d a7f0 bd97 ce28
00000030 ¢8d7 c3f5 4f5a 3e44 3202 0003 c013 272d
00000040 7fd4a 3754 2ba2 384d 9867 25f6 49ee d428
00000050 1b06 e6d4f 7001 ea87 £735 0666 001lc 83e8
00000060 9al0 eab8 all3 00el 8091 a713 487b 99a6
00000070 43b6 fbbf 959d 023c 2aad d92c 2204 47fb
00000080 3614 74ab5 0722 25b2 cd95 40c2 ad4ad f93a
00000090 «c9cf 0375 b72f ad4fd4 cdla 4709 al
0000009d

Cert string:

00000000 0201 05e7 8f83 538c 0895 0901 0001 0220
00000010 0001 e185 d700 0000 9900 0000 0101 02c2
00000020 fbdf 0352 37cd 6bb5a 53c8 e83b bll7 2c84
00000030 b9cd 797d 1096 ecba 4bde 3d69 b872 8902
00000040 0003 caae 44e8 cb45 ¢c838 8d5d 0Odcc 5dfd
00000050 ec2a 646a 1a99 fbbd cebd 9c89 2ed4 aaco
00000060 9948 002c e7e9 8bbf dad9f 2935 5963 8d55
00000070 2ba2 073c c7d9 96b5 3c43 1398 40ca Ocba
00000080 bead b5ade e741 7lee c441 b43b 8d59 al9c
00000090 5el10 ae26 0077 70a6 aal05 e0c3 8983 989c
000000a0 4899 cc

000000a3

scan root cert string:
02£f040083£f£f01000100041¢c374a8200000001010269df0190667e3cbdcad09d7033c
cac2ffcOffl
302496cc92£9¢c6e50b9db172b40200029353547bef08054550c0a8367f9%9adcc2b23fe
2b5b01746b3
eeada869p5f2eb3000c2271dbdb78£fe730b9£651dd759%9ec0£844b8b07333¢c80b27008

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I
43a0aclb7c4

£9540af50982a49£71966cdc210£21a2780d1367c582ded43c457¢c2d651fa8a28£3
Load public root ca certificate success.

Testing msg [length = 77 bytes]:

00000000 ef27 b848 cdf5 1fc3 86ba c¢c597 1£f05 042d
00000010 O70f bbch edf6 febb 1lcd4c 2000 744d adéa
00000020 f£7d1 d032 adf8 1767 af94 4acb 68f4 019d
00000030 66e4d4 9977 del2e aa6d 4f2a dd03 4alb e81f
00000040 8629 04a2 c9c8 67f9 58eb c767 87
0000004d

1609.2 Message:

00000000 0201 0302 0105 e78f 8353 8c08 9509 0100
00000010 0102 2000 0lel 85d7 0000 0099 0000 0001
00000020 0102 c2fb df03 5237 cdbb 5a53 c8e8 3bbl
00000030 172c 84b9 cd79 7d10 96ec badb de3d 69b8
00000040 7289 0200 036a aed4d e8c5 45c8 388d 5d0d
00000050 ccbd fdec 2a64 6ala 99f5 bdce 6d9c 892e
00000060 dd4aa c699 4800 2ce7 e98b bfda 9£f29 3559
00000070 638d 552b a207 3cc7 d996 b53c 4313 9840
00000080 calOc babe adba dee7 4171 eecd 41b4 3b8d
00000090 59a0 9cbe 10ae 2600 7770 abaa 05e0 c389
000000a0 8398 9c48 99cc 0620 4def 27b8 48cd f51f
000000b0 ¢386 bach 971f 0504 2d07 0fb5 cbed f6fe
000000cO0 b6lc 4c20 0074 4dad ocaf7 dld0 32ad £817
000000d0 o67af 944a cb68 f401 9d66 €499 77de 2eaa
000000e0 644f 2add 034a 2be8 1f86 2904 a2c9 c867
000000f0 £958 e5c7 6787 0000 0000 0932 9e51 0000
00000100 0000 0009 cb33 ac02 520b 9bb6 33f8 3d58
00000110 1c62 aa6bb 49bl 9d55 8fba 40f9 376c 9ff4
00000120 af7f laa9 3b84 cdd5 effc 5780 ab94 1dco6
00000130 931c 8600 735c 248b 7d31 8eed 3172 5174
00000140 f£7c¢7 8ecl £8d3 3539

00000148

Extracted msg:

00000000 ef27 b848 cdf5 1fc3 86ba c¢597 1£05 042d
00000010 O070f bbch edfo feb6 1lcd4c 2000 744d adoa
00000020 f£7d1 d032 adf8 1767 af94 4acb 68f4 019d
00000030 ©66ed 9977 de2e aabd 4f2a dd03 4a2b e81f
00000040 8629 04a2 c9c8 67f9 58e5 c767 87
0000004d

Bye
Dot2 demo thread was removed.

TR et a2 RSy - G - MK | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TR ZE R

f Industrial Technology
Research Institute

A ¢ 4 IWCU OBU 6.0A User Manual

=

CONF IDENT I AL

KR L

¥ 11%&

ate>

To dump certificate content, type:
ate> dot2 show sds
Dump private cert cache info:
Index O:
Subject type: 255
PSID: All
Expiration: 3c30blb5
Start time: 99
Digest: e78£8353 8c089509

Issuer ID: 00000000 00000000

Signing algorithm: 1
CRL series: 00000001
Verification key:

02 27e43c65 669c7£00 67752894 4615bbb8
8da7f0bd 97ce28c8 d7c3f54f 5a3e4432

Encryption key:

03 c013272d 7£4a3754 2ba2384d 986725f6
49eed428 1b06e64f 7001lea87 £7350666

Certificate string: length = 157

02££f0500
00009900
00677528
c8d7c3f5
7f4a3754
1b06ebdf
9al0eabs8
43b6fbbf
361474a5
c9cf0375

80f£0100
00000101
944615bb
4f5a3e44
2ba2384d
7001ea8?’
all300el
959d023c
072225b2
b72fadfd

01000403
0227e43c
b88da7f0
32020003
986725f6
£f7350666
8091a713
2aadd92c
cd9540c2
cdlad709

Index 1:

Subject type: 1

PSID: 0x20,

Expiration: 1el85d7

Start time: 99

Digest: 20a24219 c5c¢51080

Issuer ID: e78£f8353 8c089509

Signing algorithm: 1
CRL series: 00000001
Verification key:

02 c2fbdf03 5237cdéb 5a53c8e8 3bbll72c
84b9cd79 7d1096ec badbde3d 69b87289

c30b1500
65669c7f
bd97ce?28
c013272d
49eed4?28
001c83e8
4870b99%a6
220447fb
a4adf93a
al

TR sehugsar 2k Es - #E - MR | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

14

TR ZE R

f Industrial Technology Bz
Research Institute CONF IDENTIAL

A ¢ 4 IWCU OBU 6.0A User Manual DS R

Encryption key:
03 baaedd4e8 c545c¢c838 8d5d0dcc 5dfdec?a
0646ala99 fS5bdcebd 9c892ed4d aac69948

Certificate string: length = 163

020105e7
0001el185
fbdf0352
b9cd797d
00036aae
ec2a64do6a
9948002c¢
2ba2073c
beadbade
5el0ae?26

8£83538c
d7000000
37cd6bb5a
1096ecba
44e8c545
1a99f5bd
e7e98bbf
c7d996b5
e74171ee
007770a6

08950901
99000000
53c8e83b
4bde3d69
c8388d5d
ce6d9c89
da9f2935
3c431398
c441b43b
aa05e0c3

00010220
010102c2
b1172c84
b8728902
Odccbdfd
2ed4daaco
59638d55
40calcba
8d59%a09c
8983989c

4899cc

Dump public cert cache info:
Index O:
Subject type: 255
PSID: All
Expiration: 1c374a82
Start time: O
Digest: 33f522fa 83173d89
Issuer ID: 00000000 00000000
Signing algorithm: 1
CRL series: 00000001
Verification key:
02 69df0190 667e3cbd cad09d70 33ccac2f
fcOf£f130 2496¢cc92 £9c6e50b 9dbl72b4

Encryption key:
02 9353547b ef080545 50c0a836 7f9%adcc?2
b23fe2b5 b01746b3 eecada869 b5f2eb30

Certificate string: length = 153

02££0400
00000101
7033ccac
0b9dbl72
50c0a836
eeadalb9
30b9f651
2700843a

83£ff0100
0269df01
2ffcO0ffl
b4020002
7f9%adcc?2
b5f2eb30
dd759ecO
Oaclb7c4

0100041c
90667e3c
302496cc
9353547b
b23fe2b5
00c2271d
£844b8b0
£9540af5

374a8200
bdcad09d
92f9c6eb
ef080545
b01746b3
bdb78fe7
7333c80b
0982a49f

TR TR R ZE R -

AN

ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

15

TR ATt FE B
f Industrial Technology
Research Institute

FA A

IWCU OBU 6.0A User Manual

=

CONF IDENT I AL

e LR

71966cdc 210f21a2 780d1367 cb582de43

cd457c2d6 51fa8a28 £3

Index 1:

Subject type: 1

PSID: 0x20,

Expiration: 1el85d7

Start time: 99

Digest: 20a24219 c¢5c¢51080

Issuer ID: e78£f8353 8c089509

Signing algorithm: 1
CRL series: 00000001
Verification key:

02 c2fbdf03 5237cdob 5a53c8e8 3bbll72c
84b9cd79 7d109%6ec badbde3d 69b87289

Encryption key:

03 baaedd4e8 c545¢c838 8d5d0dcc 5dfdec2a
646ala99 fS5bdce6d 9c¢c892ed4d aac69948

Certificate string:

length = 163

020105e7
0001el185
fbdf0352
b9cd797d
00036aae
ec2a646a
9948002c
2ba2073c
beadbade
5el0ae?26
4899cc

8£83538c
d7000000
37cd6bba
1096ecba
44e8cbh45
1a99f5bd
e7e98bbf
c7d996b5
e74171ee
007770a6

08950901
99000000
53c8e83b
4bde3d69
c8388d5d
ce6d9c89
da9f2935
3c431398
c441b43b
aa05e0c3

00010220
010102c2
b1172c84
8728902
Odccbdfd
2ed4aaco
59638d55
40calcba
8d59%a09c
8983989c

Dump profile cache info:
PSID:
0x 20

ate>

3.10 BSM Packet — Tx

To send BSM packet, we have the following primitive: 72735bsm

TRt ER S EE - EH - SNR |

ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

16

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

3.11 CAN Testing

To test CAN, we have the following primitive: <can driver info>
Syntax: can driver info <device id [0-1]>
Example: can driver info O

Note: Tx & Rx values can be viewed from the parameters: CAN interface tx frames count
& CAN interface rx frames count

3.12Upgrade Firmware
1. Setup a serial connection to the unit
2. Ensure that the unit is connected to an Ethernet LAN
3. Reset the unit and enter U-Boot console by pressing any key during the 3 second countdown. You
should see the U-Boot console prompt:
U-Boot>
4. We will assume the IP address of your TFTP server is 192.168.10.100. Perform ping test
ping 192.168.10.100
5. If'the ping was successful, you should see output similar to:
Link: UP
Duplex: FULL
Speed 100BASE-X
Using device
host 192.168.10.100 is alive
6. Configure the TFTP server’s IP address:
setenv serverip 192.168.10.100

7. We will assume that the image you would like to boot is served by the TFTP server under the name
ulmage. Issue the following command to load the image via TFTP:

tftp wave itri.img
8. Erasing flash memory is done differently depending on flash size. When using a 8 MB flash device:

protect off 80000 7fffff
erase 80000 7fffff

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE 17

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

9. When using a 32 MB flash device:

mw.l 0x41016850 0x001£0000
protect off 80000 1fdffff
erase 80000 1fdffff

10. Replace existing firmware image with the new one:

cp.b ${fileaddr} 80000 ${filesize}
setenv bootcmd cp.b 80000 50000000 S${filesize}\; bootm
saveenv

11. You should see output similar to:

U-Boot> tftp wave itri.img
Link: UP
Duplex: FULL
Speed 100BASE-X
Using device
TFTP from server 192.168.10.100; our IP address is 192.168.10.50
Filename ’'wave itri.img’.
Load address: 0x50000000
Loading: TftpRemotePort=69
FHAHHHH A A AR A AR A A AR AR A A AR A AR H AR AR S S
stz E LSS EEEEEEEEEEEEE
done
Bytes transferred = 552100 (86cad4 hex)
U-Boot> protect off 80000 7fffff
done
Un-Protected 120 sectors
U-Boot> erase 80000 7fffff
done
Erased 120 sectors
U-Boot> cp.b ${fileaddr} 80000 ${filesize}
Copy to Flash... done
U-Boot> setenv bootcmd cp.b 80000 50000000 S${filesize}\; bootm
U-Boot> saveenv
Saving Environment to Flash...
done
Un-Protected 2 sectors
Erasing Flash...

done
Erased 2 sectors
Writing to Flash... done

TR et a2 RSy - G - MK | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TR ZE R

f Industrial Technology =
Research Institute CONF IDENT I AL
AL ¢4 : IWCU OBU 6.0A User Manual 1] I N O I
done
Protected 2 sectors
Done

12. Reset the unit via the command:

reset

TRl 2R YEsY -« #EE; - 4N | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

19

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

4 1EEE 1609.3 PROGRAMMING API

The process for using IEEE 1609.3 networking services API is shown below:

e 1 Exchange Information
Initialize WME APIs
.. Standard Linux socket API
wme _init()
wme exit() wme wsm_send()
l' wme_wsm_recv()

Service Registration] . .
Service Unregistration

wme provider service()) .
wme_provider service()

wme_use_service() wme_user_service()

wme wsmn service()

l wme_wsmp_service()
Event Receiving Close WME APIs
wme_event_recv() wme_exit()

4.1 Initialize WME APIs

int wme init (wme handle t *handle);

This function will initialize WME service and get the handle. Further, the handle can be used to access
services and exchange data.

int wme exit (wme handle t *handle);
This function will exit WME service and release the handler.

4.2 Service Registration/Unregistration

The WME system provides three kinds of services: Provider, User and WSMP

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

A provider service is registered by calling the following function:

int wme provider service (wme handle t *handle, struct
provider info *info);

When this function is called, the system will open the specific channel if the channel is available. If
success, system will generate a corresponding WSA and send it periodically on control channel (Channel
178), by default.

The structure of the provider information is defined as:

struct provider info

{
unsigned char action;
unsigned char dest mac[MAC SIZE];
unsigned char wsa type;
unsigned int psid;
unsigned char psc[PSC SIZE];
unsigned char psc len;
unsigned char service priority;
unsigned char radio number;
unsigned char channel number;
unsigned char channel access;
unsigned char repeat rate;
unsigned char 1ip service;
unsigned char 1pv6 addr[IPV6 SIZE];
unsigned short service port;
unsigned char provider mac[MAC SIZE];

unsigned char wsa count threshold;

TR et a2 RSy - G - MK | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

21

f©

TREAaRFEmE

Industrial Technology
Research Institute

=

CONF IDENT I AL

oz 4L 0 IWCU OBU 6.0A User Manual SR

¥ 11%&

unsigned char

unsigned int

}s

wsa count threshold interval;

wsa hdr extensions;

The fields are described in the following table:

Field Description

action Valid value: WME_ADD, WME_DEL

dest_mac Valid value: OXFFFFFFFFFFFF

wsa_type Valid value: TYPE_UNSCURED

psid The receiving Provider Service Identifier (PSID)
Valid value: defined by IEEE 1609.3

psc The description is associated to the psid, and the max
length is PSC_SIZE (31 bytes)

psc_len The real length of PSC

service_priority

Service priority: 0 ~ 63. The lower value has higher
priority. DEFAULT_PRIORITY can be used

radio_number

The valid value is dependent on the installed phys in the

system.

Valid value: 0, 1

channel_number

Valid value: 172, 173, 174, 175, 176, 180, 181, 182, 183,

184. The control channel can’t be used.

channel_access

Valid value: MODE_BOTH, MODE_SCH

repeats The number of WSAs to be sent per 5 seconds. The real
sending rate is equal to repeats +1.
Valid value: 0~ 255

ip_service If the service is a IPv6 service, set to 1. If no use, set the
valueto 1

ipv6_addr Specify the IPv6 address for the service

service_port

Specify the service port for the service

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

22

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENT I AL

AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

provider_mac Specify the provider’s mac address. It is optional. If no

use, Set the value to OxFFFFFFFFFFFF.

wsa_count_threshold It indicates the recommended minimum number of

received WSAs. It is optional. If no use, set it to 0.
Valid value: 0 ~ 255.

wsa_count_threshold_interval | |t indicates the time interval over which received WSAs

are counted. The unit is 100ms. It is optional. If no use,

set it to 0. Then the remote user accepting the WSA will
use the default interval (one second).

Valid value: 0 ~ 255

wsa_hdr_extensions Indicate which of the provider service extension fields is
included in the WSA

A user service is registered by calling the following function:

int wme user service(wme handle t *handle, struct user info
*info);

When calling the function, the system will open the specific channel if the channel is available. For
now, PSID, Channel and MAC are used to compare with the received WSA. If all the parameters are
matched, the system will send an event message to the corresponding user.

The structure of the user information is defined as:
struct user info

{

unsigned char action;
unsigned char wsa_ type;
unsigned char request type;
unsigned int psid;

unsigned char psc[PSC _SIZE];

unsigned char psc_len;

unsigned char service priority;
unsigned char radio number;
unsigned char channel number;
unsigned char src_mac[MAC SIZE];

unsigned char advertiser 1d[ADVERTISER ID SIZE];

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TR ATt FE B
f Industrial Technology
Research Institute

A ¢ 4 IWCU OBU 6.0A User Manual

=

CONF IDENT I AL

KR L

¥ 11%&

unsigned char advertiser id len;
unsigned short extended access;

bi

The fields are described in the following table:

ACCESS_ON_MATCH,
ACCESS_UNCONDITIONAL,
ACCESS_NO_SCH

Field Description Match
action Valid value: WME_ADD,

WME_DEL
wsa_type Valid value: TYPE_UNSCURED
request_type Valid value:

psid The receiving Provider Service
Identifier (PSID)

psc The description is associated to
the psid, and the max length is
PSC_SIZE (31 bytes).

psc_len The real length of PSC

service_priority Service priority: 0 ~ 63. The
lower value has higher priority.
DEFAULT_PRIORITY can be

used.

radio_number The valid value is dependent
on the installed phys in the

system.

Valid value: 0, 1

channel_number The user service will match up
the provider service with the

channel.

Valid value: 0, 172, 173, 174,
175, 176, 180, 181, 182, 183,

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

24

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

184. The control channel can’t
be used.

src_mac The user will match up the []
provider service with the MAC.
The value OxFFFFFFFFFFFF
indicates that any MAC is
accepted.

advertiser_id The description is associated to
the device sending WSAs, and
the max length is
ADVERTISER_ID_SIZE (32
bytes).

advertiser_id _len The real length of the

advertiser_id

extended_access The value 0 indicates
alternating access (channel
switch), and the value 1

indicates continuous access.

A WSMP service is registered by calling the following function:
int wme wsm service (wme handle t *handle, struct wsm info *info);

When the function is called, the system can send the received packet with the corresponding PSID
to users.

The structure of the WSMP information is defined as:

struct wsm info

{
unsigned char action;
unsigned int psid;

}s

The fields are described in the following table:

Field Description
action Valid value: WME_ADD, WME_DEL

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

25

TREAaRFEmE

f Industrial Technology =
Research Institute CONF IDENT I AL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I
psid The receiving Provider Service Identifier
(PSID)

4.3 Waiting Events

If a provider service is registered, the system may notify user about the channel availability while if a
user service is registered, the system may notify users of upcoming matching services in the form of
Channel or Service availability.

If the user needs to receive events asynchronously, the wme event recv notify function can be
used. This function registers a receive event callback function. Whenever an event is received, the
callback function is executed. Below functions illustrate the details.

int wme event recv notify(wme handle t *handle, void (*cb_ func)
(wme handle t *handle));

This function is used to register callback function for handler. The system will send a notification
about an upcoming event using the callback function.

Following function can be used to receive the event.
int wme event recv(wme handle t *handle, struct event message
*event, unsigned int timeout);

int wme event waiting terminate (wme handle t *handle);
This function is used to unregister the callback function for handler

When the function is called, the system will notify the user of some events.
The structure of the event is defined as:
struct event message
{
unsigned charevent;
unsigned char reason;
union {
struct event channel channel;
struct mib available service info service;
} info;
i
The fields are described in the following table:

Field Description
event Valid value: EVENT_SERVICE, EVENT_CHANNEL

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

26

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

reason Valid value: REASON_SERVICE_AVAILABLE,
REASON_SERVICE_UNAVAILABLE, REASON_CHANNEL_AVAILABLE,
REASON_CHANNEL_UNAVAILABLE

info Dependent on the event and the reason. The information includes if a

service is available or not and if a specific channel is assigned or not.

4.4 Device Information

To get the status of individual network devices, the following function can be used:
int wme device get (unsigned char dev_id, struct dev_info *info);

The structure of the device information is defined as:
struct dev info

{

unsigned char channel number;
unsigned char mode;

unsigned char disable;
unsigned char data rate;
unsigned char tx power;

}s

The fields are described in the following table:

Field Description

channel_number Valid value: 172 ~ 184

mode OP_EXTEND: continuous mode

OP_SWITCH: alternating mode

data_rate The default data rate of the device: 6, 9, 12, 18, 24, 36, 48, 54

tx_power The default transmit power of the device

4.5 MIB Information

To get MIB information for WME, the following function can be used:
int wme mib get (struct mib info *info);

The structure of the MIB information is defined as:

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

27

TREAaRFEmE

f Industrial Technology
Research Institute

oz 4L 0 IWCU OBU 6.0A User Manual SR

=

CONF IDENT I AL

¥ 11%&

struct mib info

{

unsigned char entry type;
unsigned char next;
short entry index;
union
{
struct mib provider service info provider entry;
struct mib user service info wuser entry;
struct mib wsm service info wsm_entry;
struct mib available service info available entry;

} entry value;

}s

The fields are described in the following table:

Field Description

entry_type Valid value: PROVIDER_ENTRY, USER_ENTRY, WSM_ENTRY,
AVAILABLE_ENTRY

next If set to O, the function will try to return MIB value by the
entry_index. If set tol, the function will search the next index
after the entry_index.

entry_index The index of MIB

entry_value The value is dependent on the entry_type.

Valid info: struct mib_provider_service_info,

struct mib_user_service_info, struct mib_wsm_service_info,
struct mib_available_service_info
Note: all structures are defined in the header file

dot3_common.h.

4.6 Configuring WSA

The WSA information can be configured by calling the following functions
int wme wsa cfg get(struct wsa cfg info *info);

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

28

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

int wme wsa cfg set(struct wsa cfg info *info);
The structure of the WSA configuration information is defined as:

struct wsa cfg info

{

unsigned char repeat rate;

signed char transmit power;

unsigned char advertiser i1id[ADVERTISER ID SIZE];
unsigned char advertiser id len;

unsigned char country str[COUNTRY STR SIZE];
unsigned short router lifetime;

unsigned char ip prefix[IPV6 SIZE];

unsigned char prefix len;

unsigned char default gateway[IPV6 SIZE];

unsigned char primary dns[IPV6 SIZE];
unsigned char secondary dns[IPV6 SIZE];
unsigned char gateway mac[MAC SIZE];
unsigned int visible mask;

}s

The fields are described in the following table:
Field Description

repeat_rate The number of WSAs are sent per 5 seconds. The real sending
rate is equal to repeats +1.
Valid value: 0~ 255

Note: the parameter can’t be set by the function, it will be set

by the provider service.

transmit_power The transmit power of WSA

advertiser_id The description is associated to the device sending WSAs, and
the max length is ADVERTISER _ID_SIZE (32 bytes).

advertiser_id_len | The real length of the advertiser_id

country_str The value indicates the regulatory domain in which the system
is operating.

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f Industrial Technology ﬂ
Research Institute CONF IDENT | AL

AL 4 : IWCU OBU 6.0A User Manual L] B S D I

router_lifetime It indicates the life time of a router.

ip_prefix It indicates the IPv6 prefix of a router

prefix_len It indicates the IPv6 prefix length of a router

default_gateway It indicates the IPv6 address of a router that provides the

network connectivity.

primary_dns It indicates the IPv6 address of a device that provides DNS
lookup
secondary_dns It indicates the IPv6 address of an alternate device that

provides DNS lookup

gateway_mac It indicates the MAC address associated with the default
gateway
visible_mask The bitmask indicates which optional field will be visible in

sending WSAs. The bitmask value in defined in the header file

dot3_common.h.

Valid value: BITMASK_XXXXX

4.7 WSM Packet — Transmission & Reception

To send WSM packets on the specific channel, users must register provider/user services for getting
the access of the specific channel. Following function can be used:

int wme wsm send(wme handle t *handle, struct out wsm *wsm);
The structure of WSM Tx information is defined as:

struct out wsm

{ unsigned char channel number;
unsigned char data rate;
unsigned char txpwr level;
signed char user priority;
unsigned int psid;
unsigned char dest mac[MAC SIZE];

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I
struct
{
unsigned char channel:1,
rate:1,
power:1,

} extensions;
unsigned char
unsigned char
unsigned short

}s

reserved:5;

wsm_ type;
data[WSM MAX SIZE];

length;

The fields are described in the following table:

Field

Description

channel_number

The channel number in the packet
Valid value: 172 ~ 184

data_rate

The data rate in the packet
Valid value: 6, 9, 12, 18, 24, 36, 48, 54

txpwr_level

The tx power in the sending packet

user_priority

The priority in the sending packet. The value maps to
corresponding EDCA.

Valid value: 0~ 7

psid

The psid of sending packet
Valid value: defined by IEEE 1609.3

dest_mac[MAC_SIZE]

The peer’s MAC address

Indicate which of the WSM header extension fields should

extensions
be included in the packet
wsm_type Thg type of receiving WSM packet
Valid value: EID_WSMP
data The payload of sending packet
data_len The payload length of sending packet

If the user needs to receive WSMs asynchronously, the wme wsm recv notify function can be
used. This function registers a receive WSM callback function. Whenever a WSM is received, the
callback function is executed. Below is the function prototype:

int wme wsm recv notify(wme handle t *handle, void

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

31

TREAaRFEmE

f Industrial Technology
Research Institute

A ¢ 4 IWCU OBU 6.0A User Manual

CONF IDENT I AL

KR L

(*cb_func) (wme handle t *handle));

Before receiving WSM packets, users must register the wsm service for the desired PSID. Following

function can be used:

int wme wsm recv(wme handle t *handle,

The structure of WSM Rx information is defined as:

struct in wsm

{

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
struct

{

char
char
char
char
int

char

version;
channel number;
data rate;
txpwr level;
psid;

src_mac[MAC SIZE];

unsigned char channel:1,

} extensi
unsigned
unsigned
signed ch

unsigned

unsigned short

}s

ons;
char
int
ar

char

rate:1,
power:1,

reserved:5;

wsm_type;

ex header;

rssij;

data[WSM MAX SIZE];
length;

The fields are described in the following table:

struct in wsm *wsm);

Field

Description

version

The WSM version in the packet

channel_number

The channel number in the packet
Valid value: 172 ~ 184

data_rate

The data rate in the packet

TR e Em B ZE AR

###E - 4N | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

32

TR ATt FE B
f Industrial Technology
Research Institute

A ¢ 4 IWCU OBU 6.0A User Manual

=

CONF IDENT I AL

KR L

¥ 11%&

Valid value: 6, 9, 12, 18, 24, 36, 48, 54

txpwr_level

The sending tx power in the packet

psid

The psid in the packet
Valid value: defined by IEEE 1609.3

src_mac[MAC_SIZE];

The peer’s MAC address

Indicate which of the WSM header extension fields is

extensions

included in the packet
wsm_type The WSM type in the packet

Valid value: EID_WSMP
rssi The receiving power in the packet
data The payload in the packet
data_len The payload length in the packet

TRt ER S EE - EH - SNR |

ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

33

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

5 |IEEE 1609.2 PROGRAMMING API

The process for using IEEE 1609.2 security service API is shown below:

Start Program

l v
Setup 1609.2 Profile Process 1609.2 Secure
wss new_profile(psid) Messages
wss_set_profile(...) wss_encode sec_msg(...)
wss_get_profile(...) wss_decode_sec_msg(...)
i) wss_encode sec_wsal(...)
Get 1609.2 Certificates/Key wss_decode_sec_wsal..)
pair l,
wss_create cert(...) Close Program

or
wss_append pri_cert str(...)

wss_append pri_cert_key str(...)
wss_append pub cert str(...)

There are 3 stages for using the security services in 1609.2. Firstly, a profile must be set, which

specifies how to process secure data. Next, a certificate/key pair must be acquired and finally secure data

processing. The APIs for each of these parts are described below:

1) Profile related APIs

The profile is a set of settings which would specify the actions for application to be taken when
dealing with the secure messages. Each application that wants to use security service should set the
profile for the using PSID before using other APIs. The details of these APIs are described in Section
5.1.

2) Certificate related APIs

For signing/verifying/encrypting/decrypting secure messages, the application would need
corresponding certificates. There are two ways to get the certificate: load existing certificates and
generate/request new certificates. For loading existing certificates, the user needs to transform the
content of 1609.2 certificates into binary form and then use API to add the certificates into Security Data

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

34

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

Store (SDS). For acquiring new certificates, the user can self-generate or send certificate request to an
existing Certificate Authority (CA). The details of these APIs are described in Section 5.2.
3) Secure Message related APIs

These APIs are used to send/receive secure messages and the details are described in Section 5.3.

5.1 Setting Profile

The functionality of 1609.2 secure message processing is determined by the settings of the profile
described in IEEE 1609.2.

» To set a profile with default values for specified PSID, we have:
int wss new profile(unsigned int psid);

» To delete the profile with the specified PSID, we have:
int wss del profile(unsigned int psid);

» To get the PSIDs of the current in-use profiles, we have:
int wss query profile(unsigned int *avail psids num, unsigned int
*avail psids);

» To get value of specified field of the profile with PSID
int wss get profile(unsigned int psid, profile id pf id,
profile value type *value);

» To set value of specified field of the profile with PSID, we have:

int wss set profile(unsigned int psid, profile id pf id,
profile value type *value);

Note: The input parameter “psid” is the PSID of the application to use security service. And the other
input parameter “profile value type” is defined as:

typedef struct{

union/{
/* Sending */
char usedot?2;
char dot2 version;
char signflag;
char incgentime;
char incexptime;

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

35

TREAaRFEmE

f©

FA LA

Industrial Technology
Research Institute

IWCU OBU 6.0A User Manual

=
CONF IDENT I AL

e LR

char

incgenloc;

unsigned int transcertchainint;

int certchainlen;
char encflag;

char fastverflag;
char ecpointformat;

/* Receiving */

char verflag;
char checkgentime;
Field Valid Range Default | Description
PF_ID_USEDQOT2 0: disable 1 Use 1609.2 secure service or not
- = 1: enable
PF_ID_DOT2_VERSION 2:1609.2 v2 2 1609.2 version
0: not sign
PF_ID_SIGNFLAG 1: always sign 0 Sign data or not
2: adaptive
PE ID INCGENTIME 0: fexclude 0 If sign data, include generation time field in
- 1:include header or not
PE ID INCEXPTIME 0: fexclude 0 If sign data, include expiration time field in
- 1:include header or not
PE ID INCGENLOC 0: fexclude 0 If sign data, include generation location field in
- - 1:include header or not
Positive i
PF_ID_TRANSCERTCHAININ | ' oSitive integer ey ” . .
T time interval in 1000 | Time interval for transmitting certificate chain
ms
0: not encrypt
1
PF_ID_ENCFLAG always 0 | Encrypt data or not
encrypt
2: adaptive
0: . . .
Uncompressed Specify whether to use point compression or
PF_ID_FASTVERFLAG b 1 just x-coordinate in the signature of signed
1: compressed
data
2: only x-coor.
This value is used only when not sending full
956~ 256 certificate chain and the “signer_type” is set to
PF_ID_CERTCHAINLEN . -1 | 2 (certificate chain). It decides the length of
Excluding O .) o
certificate chain to be attached. If positive,
includes that number of certificates from the
TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE 36

TR ATt FE B
f Industrial Technology
Research Institute

A ¢ 4 IWCU OBU 6.0A User Manual

=
CONF IDENT I AL

e LR

chain. If negative with value —n, omits the top
n certificates, starting with the root CA
certificate, and includes the rest of the chain

Specify whether to use point compression in
elliptic curve points of the encrypted data or
not

0:
PF_ID_ECPOINTFORMAT uncompressed

1: Compressed
char gentimesrc;
char checkexptime;
char exptimesrc;
char checkgenloc;
char genlocsrc;
char checkreplay;

TRt ER S EE - EH - SNR |

ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE 37

TREAaRFEmE

Industrial Technology
Research Institute

f©

=
CONF IDENT I AL

A ¢ 4 IWCU OBU 6.0A User Manual DS R
Field Valid Range Default | Description
0: not verify
PF_ID_VERFLAG 1: always verify 0 Verify incoming data (if it is signed data) or not
2: adaptive
0: not check
PF_ID_CHECKGENTIME 1: check 0 If verify, check generation time field or not
0: from header
S £ the si . .
PF_ID_GENTIMESRC 1: payload [not 0 Generation time of the signed data is obtained
by header or payload
supported]
0: not check . e .
PF_ID_CHECKEXPTIME 1: check 0 If verify, check expiration time field or not
0: from header —
PF_ID_EXPTIMESRC 1: payload [not 0 Expiration time of the signed data is obtained
by header or payload
supported]
0: not check . . L L
PF_ID_CHECKGENLOC 1: check 0 If verify, check generation location field or not
0: from header
ion | . £ the si .
PF_ID_GENLOCSRC 1: payload [not 0 Gengratlon ocation of the signed data is
obtained by header or payload
supported]
PE ID CHECKREPLAY 0: not check 0 Used to decide whether to perform the replay
- 1: check check or not
Anv time value The period in seconds after a message’s
PF_ID_MSGVALPERIOD) y 5.0 generation time for which it is of interest to
in seconds .
the recipient
Anv distance The distance in meters that a recipient may be
PF_ID_MSGVALDIS Y . 10.0 from a generation location and still accept the
value in meters
data
PE ID GENTIMECONEMUL Real-valued 0.0 Allow the re'ce|v<.2r to glvg a pOlICY for use of
- - number the GenerationTimeConfidence field
. A data will only be accepted if the CRLs
Any time value . . , . .
in seconds associated with the message’s certificate chain
PF_ID_CRLTIMETOLERANCE 600 are either up-to-date, or overdue (based on
[currently not i
used] the next_crl field in the
ToBeSignedCrl) by no more than this amount
double msgvalperiod;
double msgvaldis;
double gentimeconfmul;
int crltimetolerance;
/* Management */
char signalg;
TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE 38

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I
char encalg;
char pktranstype;
bu;

}profile value type;
The sending-related fields are described in the following table:

The receiving-related fields are described in the following table:

The management-related fields are described in the following table:

Field Valid Range Default | Description
0: ECDSA-224

PF_ID_SIGNALG 1 Specify the signing algorithm to use
1: ECDSA-256

PF_ID_ENCALG 2: ECIES-256 2 Specify the encryption algorithm to use
0: explicit

PF_ID_PKTRANSTYPE 1: implicit 0 Specify the type of certificates to use
2: both

5.2 Acquiring Certificate

For using IEEE 1609.2 security services, user would need the certificates and the corresponding
public or private key pairs. The library supports the primitives to generate user-specified certificates and
the simple security data store (SDS) for management certificates.

5.2.1 Certificate Generation — Self Generation
The user may get the default certificate settings by using the following primitive:

int wss create cert(struct cert fields *cert, unsigned char
*cert str, unsigned int *cert len, unsigned int *ecdsa pri index,
unsigned int *ecies pri index);

The structure of certificate field is defined as:
struct cert fields

{

char version;

unsigned char subject type;

unsigned int psid num;

unsigned int psid[MAX NUM OF PERMISSIONS];

unsigned int expiration;

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

unsigned int start time;

}s

The fields are described in the following table:

Field Valid Range Description
version 2 1609.2 v2 Specify which version of ce'rtificate to generate,
currently only support version 2
255: root ca Specify which type of certificate to generate, currently
subject_type 1:id not localized only support 1 type of ca (root ca) and 2 types for end
4: wsa entity
osid_num 0~8 Specify the pe.rmitted number of PSIDs the certificate
can process with
psid Any valid PSID Specify the permitted PSIDs
Specify the expiration time of the generated certificate.
expiration Any valid time value If set to 0, use default values: 2 years from now for ca, 1
year from now for end entity
start_time Any valid time value Specify the start ti'me of the generated certificate. If set
to 0, use current time.

For self-generated certificates, user needs to use the following primitives to add these certificates into
SDS (Secure Data Store) before using these certificates to sign > verify > encrypt > decrypt secure
messages:

int wss append pri cert key str(unsigned char *cert str, unsigned
int cert len, unsigned char *ecdsa pri key, unsigned char
*ecles pri key);

int wss append pub cert str(char *cert str, unsigned int

cert len);

5.2.2 Security Data Store (Certificate Pool)
We support simple SDS (Security Data Store) for secure message processing. The SDS has a cache

(pool) for holding the used private/public certificates. The primitives for managing the SDS information

are listed below.

» To get/set the current index of the pool
int wss_set cur pri pool ind(unsigned int value);
int wss get cur pri pool ind(unsigned int *value);
int wss get cur pub pool ind(unsigned int *value)

4

» To get current used number of the pool
int wss _get pri pool used num(unsigned int *value);
int wss get pub pool used num(unsigned int *value);

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

40

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

» To get the certificate information of the pool
int wss get pri cert info(unsigned int ind, struct cert info

*cert) ;

int wss get pub cert info(unsigned int ind, struct cert info

*cert) ;

The structure of certificate field is defined as:
struct cert info

{

struct cert fields sub info;

char digest [CERT DIGEST BYTES];

char issuer id[CERT DIGEST BYTES];

unsigned char signing alg;

unsigned int crl series;

char verificaton key[MAX COMPRESSED PUBLIC KEY BYTES];

char encryption key[MAX COMPRESSED PUBLIC KEY BYTES];

char cert str[MAX CERT LENGTH];

unsigned int cert str len;

}i

Field Description
. Related information (e.g. subject type, expiration, ...etc) of the cert. which is filled
sub_info . .
in the structure cert_fields
digest The lowest 8 bytes of the SHA256 hash of the cert. string
. . The lowest 8 bytes of the SHA256 hash of the cert. string which issues this cert.
issuer_id . .
- (i.e., signer cert., CA)
signing_alg The signing algorithm used of the cert.
crl_series The CRL number of the cert.
verification_key The binary key string indicating the verification key of the cert.
encryption_key The binary key string indicating the encryption key of the cert.
cert_str The binary string of the cer.
cert_str_len The length in bytes of the binary string of the cert.

The fields are described in the following table:

5.3 Secure Messages

The following primitives provide the user to encode/decode IEEE 1609.2 secure messages. It

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

41

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

would refer the settings of the profile to take related functionalities such as signing, encrypting, or
verifying. Also, it would use the related certificates in SDS if needed.

int wss_encode sec msg(struct encode in *in pack, struct
encode out *out pack);
int wss decode sec msg(struct decode in *in pack, struct
decode out *out pack);

The structure of the parameters encode in and encode out inwss encode sec msg are defined
as:
struct encode in

{

unsigned int msg len;
char msg[MAX IN MSG LENGTH];
unsigned int ext msg len;
char ext msg[MAX IN MSG LENGTH];
char adaptive sign;
char adaptive enc;
unsigned int ssp len;
char ssp[MAX CERT STR LENGTH];
unsigned int psid;
unsigned long long expiry;
char attach cert type;
unsigned int recp num;
char recp cert[MAX NUM OF ENC RECP][CERT DIGEST BYTE];
bi
struct encode out{
unsigned char ret code;
unsigned int msg_len;
char msg[MAX MSG LENGTH];
unsigned int failed cert num;
char failed recp[MAX NUM OF ENC RECP] [CERT DIGEST BYTES];
struct encode log items encode log;

}s

struct encode log items{

TR et a2 RSy - G - MK | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

42

TREAaRFEmE

f Industrial Technology
Research Institute

FA LA

IWCU OBU 6.0A User Manual

=
CONF IDENT I AL

e LR

unsigned char attach cert type;

char sign cert digest[CERT DIGEST BYTES];

unsigned int sign cert str len;

char sign cert str[MAX CERT LENGTH];

unsigned long long sign cert digest val;

unsigned long long msg _gen time us;

Field Valid Range Description
msg_len 0~2048 Specify the length in bytes of the input data
msg Data string The data to be encoded in
Specify the length in bytes of the external data. Only
used if need to form a signed data. If the length is not
ext_msg._ len 0~ 2048 zero, it will result in a signed data with type equals to

“sign_with_partial_payload (9)” or “sign_with
external_payload (10)”.
[used for signed data]

ext_msg

Data string of external
data

The external data to be signed with. See the
description of ext_msg_len.
[used for signed data]

adaptive_sign

0: not sign
1: sign

If the “PF_ID_SIGNFLAG” field is set to adaptive (2),
then the security module will use this parameter to
determine whether to sign this packet or not

adaptive_enc

0: not encrypt

If the “PF_ID_ENCFLAG” field is set to adaptive (2),
then the security module will use this parameter to

1: encrypt determine whether to encrypt this packet or not.

Specify the length of the service specific permissions

ssp_len 0~256 (SSP)
[used for signed data]
Specify the service specific permissions, which is used

. to find a permission-consistent certificate to process

ssp Data string
this packet if need to sign with.
[used for signed data]
Specify the PSID to be encoded in and find a
permission-consistent certificate to process if need to
encode into a secure data.

psid Any valid PSID value
[used for signed and encrypted data]

. . Specify the expiration time of this data
expiry Any time value

[used for signed data]

TRt ER S EE - EH - SNR |

ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

43

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I
0: digest

attach_cert_type | 1: certificate
2: certificate chain

Specify the type of signer information in signed data
[used for signed data]

recp_num 0~4

Specify the number of recipients for encrypting
[used for encrypted data]

recp_cert

Array of certificate digests
of the recipients

Specify the certificate digest of each recipient to
encrypt data for them
[used for encrypted data]

unsigned char msg gen time conf;

unsigned int

signer cert exp;

unsigned char sign ret code;

unsigned char enc ret code;

}s

The fields for encode in structure are defined as the following table:

The fields for encode out structure are defined as the following table:

Field Description

ret_code Specify the result of the secure processing of this packet
msg_len Specify the length in bytes of the encoded data if success
msg Specify the encoded data if success

failed_cert_num

Specify the number of failed recipients while trying to
encrypt with
[assigned if encrypted data]

Specify the certificate digests of the recipients which failed

failed_recp to encrypt for them

[assigned if encrypted data]

Related log information about the secure processing of this
encode_log

packet

The fields for encode

log 1items structure are defined as the following table:

Field

Description

attach_cert_type

Specify the attached certificate type of this secure data
[assigned if signed data]

sign_cert_digest

Specify the digest of the certificate which signed this
data
[assigned if signed data]

sign_cert_str_len

Specify the length in bytes of the certificate string which
signed this data

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

44

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

[assigned if signed data]

Specify the certificate string which signed this data
[assigned if signed data]

Specify the digest (in integer type) of the certificate
sign_cert_digest_val which signed this data

[assigned if signed data]

Specify the generation time encoded in this signed data
[assigned if signed data]

Specify the generation time confidence encoded in this
signed data [assigned if signed data

Specify the expiration time of the certificate which
signer_cert_exp signed this data

[assigned if signed data]

Specify the result codes of the signing process of this
sign_ret_code data

[assigned if signed data]

Specify the result codes of the encrypting process of
enc_ret_code this data

[assigned if encrypted data]

sign_cert_str

msg_gen_time_us

msg_gen_time_conf

The structure of the parameters decode inand decode out inwss_decode sec _msg are
defined as:

struct decode in

{

unsigned int psid;
unsigned int msg len;
char msg[MAX MSG LENGTH];
unsigned int external msg len;
char external msg[MAX MSG LENGTH];
char adaptive ver;

bi

struct decode out{
unsigned char ret code;
unsigned int msg_len;
char msg[MAX MSG LENGTH];

struct decode log items decode log;

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

struct decode log items{
unsigned char attach cert type;

char sign cert digest[CERT DIGEST BYTES];
unsigned int sign cert str len;

char sign cert str[MAX CERT LENGTH];
unsigned long long sign cert digest val;
unsigned long long msg gen time us;
unsigned char msg gen time conf;

unsigned char de ret code;

unsigned char ver ret code;

}s

The fields for decode in structure are defined as the following table:

Field Valid Range Description
Specify the PSID to find the profile to
psid Any valid PSID value determine how to process the data after

extract the data from header and trailer

Specify the length in bytes of the input

[0~2048
msg_len encoded data

msg Data string The content of the encoded data

Specify the length in bytes of the external data.
Only used if need to verify a signed data with
external_msg_len 0~2048 type equals to “sign_with_partial_payload (9)
or “sign_with external_payload (10)".

[used for signed data]

n”

The external data to be verified with. See the

Data string of external -
description of ext_msg_len.

external_msg

data [used for signed data]
adaptive_ver 0: not verify If the “PF_ID_VERFLAG” field is set to adaptive
1: verify (2), then the security module will use this

parameter to determine whether to verify this
packet or not if it is signed

The fields for decode out structure are defined as the following table:

Field Description
ret_code Specify the result of the secure processing of this packet
msg_len Specify the length in bytes of the decoded data if success

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

46

TREAaRFEmE

f Industrial Technology =
Research Institute CONF IDENT | AL

AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

msg Specify the decoded data if success

decode_log Related log information about the secure processing of this packet

The fields for decode log 1items structure are defined as the following table:

Field Description

Specify the attached certificate type of this secure data
[assigned if signed data]

Specify the digest of the certificate which signed this data
[assigned if signed data]

Specify the length in bytes of the certificate string which
sign_cert_str_len signed this data

[assigned if signed data]

Specify the certificate string which signed this data
[assigned if signed data]

Specify the digest (in integer type) of the certificate
sign_cert_digest_val which signed this data

[assigned if signed data]

Specify the generation time extracted from this signed
msg_gen_time_us data

[assigned if signed data]

Specify the generation time confidence extracted from
this signed data [assigned if signed data

Specify the result codes of the data extracting process of
this data

Specify the result codes of the verification process of this
ver_ret_code data

[assigned if signed data and perform verification]

attach_cert_type

sign_cert_digest

sign_cert_str

msg_gen_time_conf

de_ret_code

5.4 Secure WSA

The following primitives provide the user to encode/decode IEEE 1609.2 secure messages. It
would refer the settings of the profile to take related functionalities such as signing, encrypting, or
verifying. Also, it would use the related certificates in SDS if needed.

int wss_encode sec wsa(struct encode sec wsa pack *in pack, struct
encode sec wsa_ result *out pack);
int wss decode sec wsa(struct decode sec wsa pack *in pack, struct
decode sec wsa result *out pack);

The structure of the parameter encode sec wsa pack in the above primitive is defined as:

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

47

TREAaRFEmE

f Industrial Technology
Research Institute

A ¢ 4 IWCU OBU 6.0A User Manual

=
CONF IDENT I AL

e LR

struct encode sec wsa pack

{

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

}s

int wsa data len;

char wsa data[MAX IN MSG LENGTH];

int permission num;
int psid[MAX NUM OF PERMISSIONS];
char priority[MAX NUM OF PERMISSIONS];

long long lifetime;

The fields for encode sec wsa pack structure are defined as the following table:

Field Valid Range Description
Specify the length in bytes of the input WSA content
wsa_data_len 0~2048
wsa_data Data string The WSA content to be encoded in
permission_num | 0~8 The number of PSIDs contained in the input WSA

Specify the PSIDs in the WSA to be encoded in, find a
permission-consistent certificate to process if need

psid Any valid PSID value to encode into a secure WSA.
[used for signed WSA]
Specify the priorities of the PSIDs in the WSA to be

oriority Any valid priority value encoded in, find a permission-consistent certificate
to process if need to encode into a secure WSA.
[used for signed WSA]

. . Specify the expiration time of this data
expiry Any time value

[used for signed data]

The structure of the parameter encode sec wsa result in the above primitive is defined as:

struct encode sec wsa result

{

unsigned
unsigned
unsigned
unsigned

}s

char ret code;

int sign ret code;
int signed wsa len;
char

signed wsa[MAX MSG LENGTH];

The fields for encode sec wsa result structure are defined as the following table:

TRt ER S EE - EH - SNR |

ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

48

TREAaRFEmE

f Industrial Technology =
Research Institute CONF IDENT | AL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I
Field Description
ret_code Specify the result of the secure processing of this packet
Specify more detailed result of the signing process of this
sign_ret_code packet

[assigned if signed WSA]
signed_wsa_len Specify the length in bytes of the encoded WSA if success
signed_wsa Specify the encoded WSA if success

The structure of the parameter decode sec wsa pack in the above primitive is defined as:

struct decode sec wsa pack

{

unsigned int signed wsa len;
unsigned char signed wsa[MAX MSG LENGTH];
unsigned char secure handle;

}s

The fields for decode sec wsa pack structure are defined as the following table:
Field Valid Range Description

Specify the length in bytes of the input
encoded WSA content

signed_wsa_len 0~2048

signed_wsa Data string The input encoded WSA content
secure handle 0~255 The sequence number of the input WSA
- [not used]

The structure of the parameter decode sec_wsa_result inthe above primitive is defined as:
struct decode sec wsa result

{

unsigned char ret code;

unsigned char de ret code;
unsigned char ver ret code;
unsigned int wsa data len;

unsigned char wsa data[MAX MSG LENGTH];
bi

The fields for decode sec wsa result structure are defined as the following table:

Field Description
ret_code Specify the result of the secure processing of this packet
de_ret_code 22332? more detailed result of the data extracting process of this

TEERGTe kg Rl 2 F1E8Y - 8# - 4R | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

49

TR ZE R

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

Specify the result codes of the verification process of this WSA
[assigned if signed WSA and perform verification]
wsa_data_len Specify the length in bytes of the extracted WSA if success
wsa_data Specify the extracted WSA if success

ver_ret_code

TRl 2R YEsY -« #EE; - 4N | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

TREAaRFEmE

f Industrial Technology Bz
Research Institute CONF IDENTIAL
AL 4 : IWCU OBU 6.0A User Manual 1] I N O I

6 SAE J2735 BSM PROGRAMMING API

To support interoperability among DSRC applications, SAE J2735 standard defines standardized
messages. One of them is Basic Safety Message (BSM). Following are the BSM-related primitives:

int j2735 bsm encode (bsm standard item *input item ,char

output buf[] ,ssize t *output buf size ,unsigned char print level);

int j2735 bsm decode (bsm standard item *output item , char
input buf[] , size t input buf size, unsigned char print level);

The structure of the parameter bsm standard item in the above primitive is defined as:

struct bsm standard item str

{

unsigned char mask safetyExt:1,

mask status:1,

rest:6;
BSMblob item *blobl;
VehicleSafetyExtension item *safetyExt;
VehicleStatus item *status;

}bsm standard item;

The fields related to 2735 bsm encode are defined as the following table:
Field Description

input_item The input BSM data elements
output_buf If the return value is 0, output_buf will be a BSM encoded
- buffer.

output_buf_size If the return value is 0, output_buf_size will be the size of the
BSM encoded buffer.

print_level PRINT_NON: print nothing

B PRINT_BASIC: print encoded BSM struct

The fields related to 72735 bsm_ decode are defined as the following table:

Field Description

output_item If the return value is 0, output_item will be the decoded
bsm_standard_item.

input_buf The BSM encoded buffer

TR et a2 RSy - G - MK | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

51

TR ZE R

f Industrial Technology
Research Institute

AL 4 : IWCU OBU 6.0A User Manual SR

=

CONF IDENT I AL

¥ 11%&

input_buf_size

The size of BSM encoded buffer

print_level

PRINT_NON: print nothing
PRINT_BASIC: print decoded BSM struct

TR sehugsar 2k Es - #E - MR | ITRICONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE

52

