# **FCC Test Report**

Report No.: AGC05C120401F1

**TEST NAME** : FCC Part 95

FCC ID : N3EWWWT70489

MODEL NAME : Wrist Watch Walkie Talkie

**BRAND NAME** : N/A

**TEST MODEL** : #70489

**CLIENT**: Wild Planet Entertainment, Inc

**DATE OF ISSUE** : May 03, 2012

STANDARD(S) : FCC Part 95 Rules

REPORT VERSION : V1.0

## Attestation of Global Compliance Co., Ltd.

CAUTION: This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 43

## **VERIFICATION OF COMPLIANCE**

| Applicant:           | Wild Planet Entertainment, Inc                                                   |
|----------------------|----------------------------------------------------------------------------------|
|                      | 225 Bush Street, Suite 1300, San Francisco, California, United States, Zip:94104 |
| Manufacture          | Wild Planet Entertainment, Inc                                                   |
| Manufacturer:        | 225 Bush Street, Suite 1300, San Francisco, California, United States, Zip:94104 |
| Product Description: | Wrist Watch Walkie Talkie                                                        |
| Brand Name:          | N/A                                                                              |
| Model Number:        | #70489                                                                           |
| File Number:         | AGC05C120401F1                                                                   |
| Date of Test:        | Apr. 25 to Apr. 28, 2012                                                         |

## We hereby certify that:

The above equipment was tested by Attestation of Global Compliance Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2003 and TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part 95.

The test results of this report relate only to the tested sample identified in this report.

Tested By:

Curoky Chen May 03, 2012

Reviewed By:

Forrest Lei May 03, 2012

Approved By:

Solger Zhang May 03, 2012

## **TABLE OF CONTENTS**

| 1. GENERAL INFORMATION                                                                         |              | 5             |
|------------------------------------------------------------------------------------------------|--------------|---------------|
| 1.2 RELATED SUBMITTAL(S) / GRAM 1.3 TEST METHODOLOGY 1.4 TEST FACILITY 1.5 SPECIAL ACCESSORIES | NT (S)       | 6<br>6<br>6   |
| 2. SYSTEM TEST CONFIGURAT                                                                      | ION          | 7             |
| 2.2 EUT EXERCISE                                                                               | SYSTEM       | 7             |
| 3. SUMMARY OF TEST RESULT                                                                      | S            | 8             |
| 4. DESCRIPTION OF TEST FREC                                                                    | QUENCY RANGE | 9             |
|                                                                                                | 1            |               |
| 5.2 MEASUREMENT PROCEDURE<br>5.3TEST SETUP BLOCK DIAGRAM<br>5.4 TEST EQUIPMENT USED:           |              | 0<br> 1<br> 1 |
| 6. EMISSION BANDWIDTH                                                                          | 1            | 5             |
| 6.2 MEASUREMENT PROCEDURE<br>6.3 TEST SETUP BLOCK DIAGRAM .                                    |              | 5<br>5        |
| 7. UNWANTED RADIATION                                                                          |              | 8             |
| 7.2 MEASUREMENT PROCEDURE 7.3 TEST SETUP BLOCK DIAGRAM. 7.4 MEASUREMENT EQUIPMENT US           |              | 8<br>9<br>20  |
| 8. MODULATION CHARACTERIS                                                                      | STICS2       | 2             |
| 8.2 MEASUREMENT METHOD                                                                         |              | 22            |
|                                                                                                |              |               |

| Page | 4 | of | 43 |
|------|---|----|----|
|------|---|----|----|

| 8.4 MEASUREMENT RESULT    | 23 |
|---------------------------|----|
| 9. RF POWER OUTPUT        | 30 |
| 9.1 PROVISIONS APPLICABLE | 30 |
| 9.2 TEST PROCEDURE        | 30 |
| 9.3 TEST RESULT           | 31 |
| APPENDIX I                | 35 |
| PHOTOGRAPHS OF SETUP      | 35 |
| APPENDIX II               | 37 |
| EXTERNAL VIEW OF EUT      | 37 |

Page 5 of 43

## 1. GENERAL INFORMATION

## 1.1 PRODUCT DESCRIPTION

The EUT is a single channel Two-way Radio designed for voice communication. It is designed by way of utilizing the FM modulation achieves the system operating.

A major technical description of EUT is described as following:

| Communication Type       | Voice / Tone only                                                              |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------|--|--|--|--|
| Modulation               | FM(F3E)                                                                        |  |  |  |  |
| Emission Type            | 9K0F3E for FRS                                                                 |  |  |  |  |
| Linission Type           | 9K1F3E for GMRS                                                                |  |  |  |  |
| Audio                    | 2.5 KHz for FRS                                                                |  |  |  |  |
| Frequency Response       | 2.5 KHz for GMRS                                                               |  |  |  |  |
| Declared Output power    | 0.5W                                                                           |  |  |  |  |
| Decialed Odiput power    | (It was fixed by the manufacturer, any individual can't arbitrarily change it) |  |  |  |  |
| Maximum Transmitter      | 0.38w(25.8 dBm)for FRS                                                         |  |  |  |  |
| Power                    | 0.37w(25.7dBm) for GMRS                                                        |  |  |  |  |
| Frequency error          | 1.08ppm for FRS                                                                |  |  |  |  |
| Trequency entor          | 1.07ppm for GMRS                                                               |  |  |  |  |
| Receiver spurious        | 44.59 dBuV/m                                                                   |  |  |  |  |
| worst case               | 44.00 dbd v/iii                                                                |  |  |  |  |
| 99% occupied bandwidth   | 9.0113KHz for FRS                                                              |  |  |  |  |
| 3370 occupied ballawidth | 9.1389KHz for GMRS                                                             |  |  |  |  |
| Antenna Designation      | Internal Antenna, It isn't detachable                                          |  |  |  |  |
| 7 (Terma Designation     | Antenna Gain: 1.2dBi                                                           |  |  |  |  |
| Power Supply             | DC 4.5V by battery                                                             |  |  |  |  |
| Battery Endpoint         | DC 3.825V                                                                      |  |  |  |  |
| Operation Frequency      | Frequency Range:                                                               |  |  |  |  |
| Range                    | 462.5500MHz to 467.7125MHz (See 4. DESCRIPTION OF TEST                         |  |  |  |  |
| range                    | FREQUENCY RANGE)                                                               |  |  |  |  |
| Channel Number           | 22                                                                             |  |  |  |  |

NOTE: For more details, please refer to the User's manual of the EUT.

Page 6 of 43

## 1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: N3EWWWT70489**, filing to comply with the FCC Part 95.

#### 1.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI C 63.4: 2003; TIA/EIA 603 and FCC CFR 47 Rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057.

#### 1.4 TEST FACILITY

The test site used to collect the radiated data is located on the address of Attestation of Global Compliance Co., Ltd. 2F., No.2 Building, Huafeng No.1 Technical Industrial Park, Sanwei, Xixiang, Baoan District, Shenzhen. The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003. FCC register No.: 259865 and IC register No.: 9083A

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

#### 1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

#### 1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 7 of 43

## 2. SYSTEM TEST CONFIGURATION

#### 2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

#### 2.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

#### 2.3 CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System

EUT

Table 2-1 Equipment Used in Tested System

| Item | Equipment                 | Model No. | Identifier           | Note |
|------|---------------------------|-----------|----------------------|------|
| 1    | Wrist Watch Walkie Talkie | #70489    | FCC ID: N3EWWWT70489 | EUT  |
|      | 1                         |           |                      |      |
|      | 1                         |           |                      |      |

Report No.: AGC05C120401F1 Page 8 of 43

## 3. SUMMARY OF TEST RESULTS

| FCC Rules | Description Of Test                 | Result    |
|-----------|-------------------------------------|-----------|
| §95.621   | Frequency Tolerance                 | Compliant |
| §2.1047   | Modulation Characteristic           | Compliant |
| §95.633   | Emission Bandwidth                  | Compliant |
| §95.635   | Unwanted Radiation                  | Compliant |
| §95.639   | RF Power output                     | Compliant |
| §15.209   | Radiated Emission on Receiving Mode | Compliant |

Page 9 of 43

## 4. DESCRIPTION OF TEST FREQUENCY RANGE

The EUT has been tested under normal operating condition. The top channel, the middle channel and the bottom channel are chosen for testing at each channel separation.

#### **EMISSION DESIGNATOR AND FREQUENCIES**

FRS Authorized Bandwidth 12.5 kHz

2.1033(c)(5) FRS Frequency Range:

95.627

1. 462.5625 8. 467.5625

2. 462.5875 9. 467.5875

3. 462.6125 10. 467.6125

4. 462.6375 11. 467.6375

5. 462.6625 12. 467.6625

6. 462.6875 13. 467.6875

7. 462.7125 14. 467.7125 MHz

GMRS Authorized Bandwidth 20.0 kHz

2.1033(c)(5) GMRS Frequency Range:

95.621

15. 462.5500

16.462.5750

17.462.6000

18.462.6250

19.462.6500

20.462.6750

21.462.7000

22.462.7250 MHz

**Note:** for FRS choose channel 1, 8, 14 for testing, and channel 18 for GMRS.

Page 10 of 43

### 5. FREQUENCY STABITITY

#### **5.1 PROVISIONS APPLICABLE**

Rule Parts. No.: Part 95.627(b)

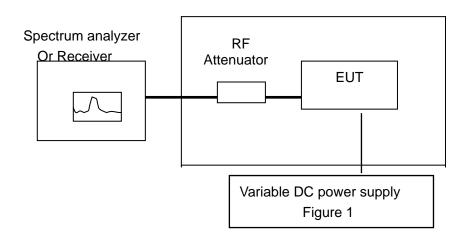
Each FRS unit must be maintained within a frequency tolerance of 0.00025%.

Each GMRS unit must be maintained within a frequency tolerance of 0.0005%.

#### **5.2 MEASUREMENT PROCEDURE**

#### 5.2.1 Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- 2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1KHz and Video Resolution Bandwidth to 1KHz and Frequency Span to 50KHz.Record this frequency as reference frequency.
- 3. Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10 ℃ decreased per stage until the lowest temperature -30 ℃ is measured, record all measured frequencies on each temperature step.


#### 5.2.2 Frequency stability versus input voltage

- 1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within  $15^{\circ}$ C to  $25^{\circ}$ C. Otherwise, an environment chamber set for a temperature of  $20^{\circ}$ C shall be used. The EUT shall be powered by DC 4.5 V
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
- 3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

Report No.: AGC05C120401F1 Page 11 of 43

## **5.3TEST SETUP BLOCK DIAGRAM**

## Temperature Chamber



## **5.4 TEST EQUIPMENT USED:**

| NAME OF EQUIPMENT | MANUFACTURER | MODEL | SERIAL NUMBER | CAL. DATE  |
|-------------------|--------------|-------|---------------|------------|
| Receiver          | R&S          | ESCI  |               | 2012.06.27 |
| Climate Chamber   | Albatross    |       |               | 2012.06.27 |

## 5.5 TEST RESULT

Report No.: AGC05C120401F1 Page 12 of 43

(1)Frequency stability versus ambient temperature

## FRS:

## **Bottom Channel**

| Reference Frequency:   | 462.5625     | Limit:     |                    | 5ppm       |
|------------------------|--------------|------------|--------------------|------------|
| Envionment Temperature | Power Supply | F          | requency Deviation | n          |
| (℃)                    | (V)          | (MHz)      | ppm                | %          |
| 50                     | 4.5          | 462.562371 | -0.2789            | -0.0000279 |
| 40                     | 4.5          | 462.562278 | -0.4799            | -0.0000480 |
| 30                     | 4.5          | 462.562201 | -0.6464            | -0.0000646 |
| 20                     | 4.5          | 462.562171 | -0.7113            | -0.0000711 |
| 10                     | 4.5          | 462.562169 | -0.7156            | -0.0000716 |
| 0                      | 4.5          | 462.562143 | -0.7718            | -0.0000772 |
| -10                    | 4.5          | 462.562101 | -0.8626            | -0.0000863 |
| -20                    | 4.5          | 462.562042 | -0.9901            | -0.0000990 |
| -30                    | 4.5          | 462.562031 | -1.0139            | -0.0001014 |

## Middle Channel

| Reference Frequency:   | 467.5625     | Limit:     |                    | 5ppm       |
|------------------------|--------------|------------|--------------------|------------|
| Envionment Temperature | Power Supply | F          | requency Deviation | n          |
| (℃)                    | (V)          | (MHz)      | ppm                | %          |
| 50                     | 4.5          | 467.562376 | -0.2652            | -0.0000265 |
| 40                     | 4.5          | 467.562282 | -0.4662            | -0.0000466 |
| 30                     | 4.5          | 467.562231 | -0.5753            | -0.0000575 |
| 20                     | 4.5          | 467.562175 | -0.6951            | -0.0000695 |
| 10                     | 4.5          | 467.562166 | -0.7143            | -0.0000714 |
| 0                      | 4.5          | 467.562141 | -0.7678            | -0.0000768 |
| -10                    | 4.5          | 467.562121 | -0.8106            | -0.0000811 |
| -20                    | 4.5          | 467.562099 | -0.8576            | -0.0000858 |
| -30                    | 4.5          | 467.562042 | -0.9795            | -0.0000980 |

## Top Channel

| Reference Frequency:   | 462.7250     | Limit:     |                    | 5ppm      |
|------------------------|--------------|------------|--------------------|-----------|
| Envionment Temperature | Power Supply | F          | requency Deviation | n         |
| (℃)                    | (V)          | (MHz)      | ppm                | %         |
| 50                     | 4.5          | 462.725502 | 1.0849             | 0.0001085 |
| 40                     | 4.5          | 462.725323 | 0.6980             | 0.0000698 |
| 30                     | 4.5          | 462.725301 | 0.6505             | 0.0000650 |
| 20                     | 4.5          | 462.725272 | 0.5878             | 0.0000588 |
| 10                     | 4.5          | 462.725192 | 0.4149             | 0.0000415 |
| 0                      | 4.5          | 462.725178 | 0.3847             | 0.0000385 |
| -10                    | 4.5          | 462.725101 | 0.2183             | 0.0000218 |
| -20                    | 4.5          | 462.725098 | 0.2118             | 0.0000212 |
| -30                    | 4.5          | 462.725041 | 0.0886             | 0.000089  |

Report No.: AGC05C120401F1 Page 13 of 43

#### **GMRS**:

## **Middle Channel**

| Reference Frequency:   | 467.5625     | Limit: 5ppm         |        |           |
|------------------------|--------------|---------------------|--------|-----------|
| Envionment Temperature | Power Supply | Frequency Deviation |        |           |
| (℃)                    | (V)          | (MHz)               | ppm    | %         |
| 50                     | 4.5          | 462.625493          | 1.0657 | 0.0001066 |
| 40                     | 4.5          | 462.625321          | 0.6939 | 0.0000694 |
| 30                     | 4.5          | 462.625327          | 0.7068 | 0.0000707 |
| 20                     | 4.5          | 462.625319          | 0.6895 | 0.0000690 |
| 10                     | 4.5          | 462.625311          | 0.6723 | 0.0000672 |
| 0                      | 4.5          | 462.625326          | 0.7047 | 0.0000705 |
| -10                    | 4.5          | 462.625331          | 0.7155 | 0.0000715 |
| -20                    | 4.5          | 462.625352          | 0.7609 | 0.0000761 |
| -30                    | 4.5          | 462.625372          | 0.8041 | 0.0000804 |

Report No.: AGC05C120401F1 Page 14 of 43

## (2)The manufacturer specified battery end point 3.825V

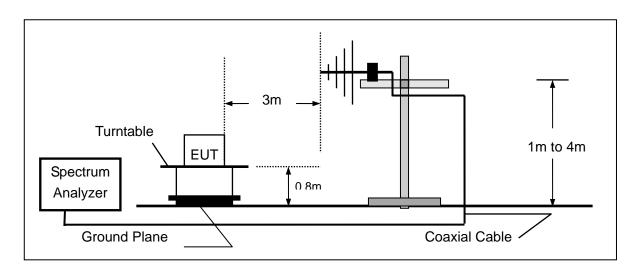
| channel | Frequency<br>MHz | Test Frequency<br>MHz | frequency<br>tolerance<br>% | frequency<br>tolerance<br>ppm |
|---------|------------------|-----------------------|-----------------------------|-------------------------------|
| 4       | 462.6375         | 462.637423            | -0.0000618                  | -0.618                        |
| 18      | 462.6250         | 462.624917            | -0.0000685                  | -0.685                        |

#### Remark:

- 1) Each FRS unit must be maintained within a frequency tolerance of 0.00025%.
- 2) Each GMRS unit must be maintained within a frequency tolerance of 0.0005%.

Page 15 of 43

#### 6. EMISSION BANDWIDTH


#### **6.1 PROVISIONS APPLICABLE**

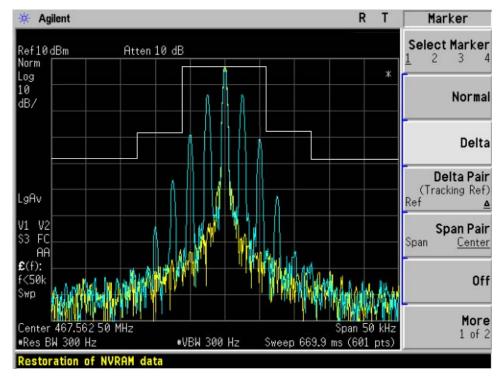
According to FCC Part 95 Section 95.635b (1) (3) (7): At least 25 dB on any frequency removed from the center of the authorized bandwidth by more than 50 %up to and including 100 % of the authorized bandwidth. At least 35 dB on any frequency removed from the center of the authorized BW by more than 100 % up to and including 250 % of the authorized BW. At least 43+log10(TP) dB on any frequency removed from the center of the authorized bandwidth by more than 250%. See the following plot.

#### **6.2 MEASUREMENT PROCEDURE**

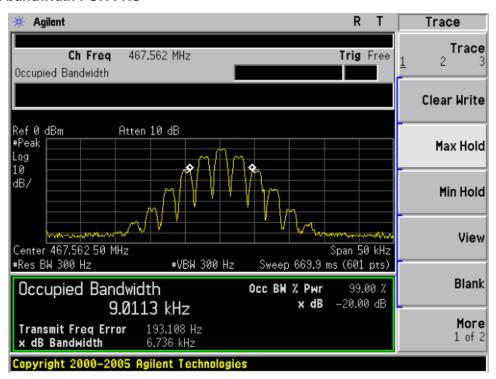
- 1). The EUT was placed on a turn table which is 0.8m above ground plane.
- 2). The EUT was modulated by 2.5 KHz Sine wave audio signal, The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing).
  - 3). Set SPA Center Frequency = fundamental frequency, RBW=VBW= 300 Hz, Span =50 KHz.
  - 4). Set SPA Max hold.

#### **6.3 TEST SETUP BLOCK DIAGRAM**

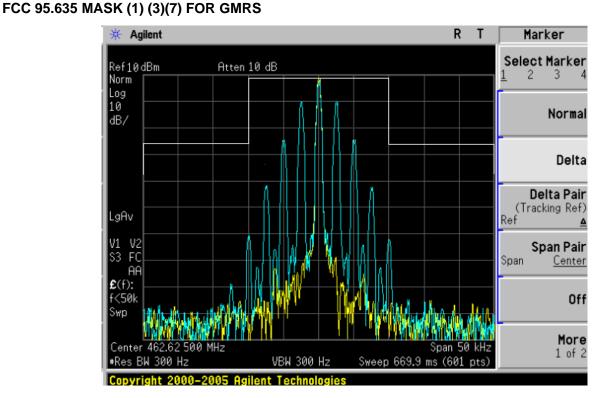



## **6.4 MEASUREMENT EQUIPMENT USED:**

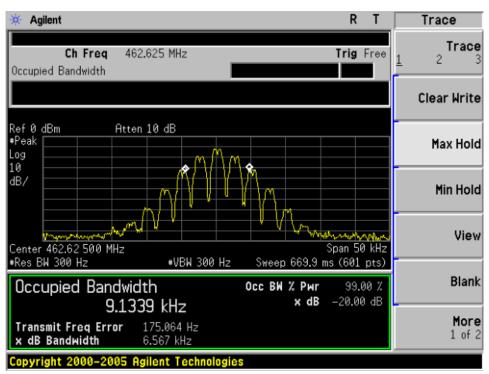
| NAME OF EQUIPMENT   | MANUFACTURER | MODEL  | SERIAL NUMBER | CAL. DATE  |
|---------------------|--------------|--------|---------------|------------|
| SPECTRUM ANALYZER   | AGILENT      | E4440A | US44300399    | 2012.06.27 |
| MODULATION ANALYZER | HP           | 8901B  | 3104A03367    | 2012.06.27 |
| BROADBAND ANT.      | R&S          | HL562  | A0304224      | 2012.06.27 |


Page 16 of 43

## Occupied bandwidth plot:


## FCC 95.635 MASK (1) (3)(7) FOR FRS




#### 99% Occupied bandwidth FOR FRS



## Page 17 of 43



#### 99% Occupied bandwidth FOR GMRS



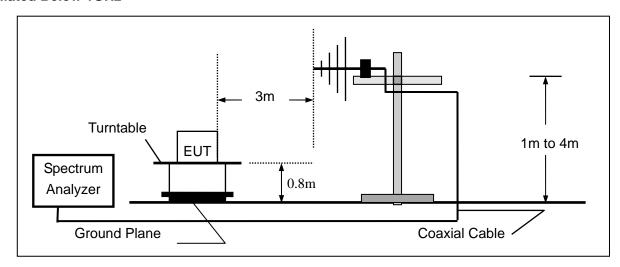
Page 18 of 43

#### 7. UNWANTED RADIATION

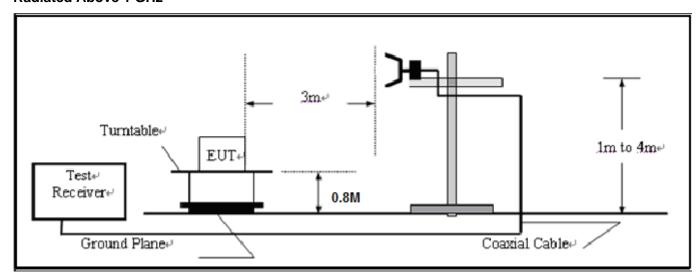
#### 7.1 PROVISIONS APPLICABLE

According to FCC Part 95 Section 95.635b (7): At least 43 + 10 log10 (T) dB on any frequency removed from the center of the authorized bandwidth by more than 250%.

#### 7.2 MEASUREMENT PROCEDURE


- Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

Report No.: AGC05C120401F1 Page 19 of 43


#### 7.3 TEST SETUP BLOCK DIAGRAM

**SUBSTITUTION METHOD: (Radiated Emissions)** 

**Radiated Below 1GHz** 



#### **Radiated Above 1 GHz**



Report No.: AGC05C120401F1 Page 20 of 43

## 7.4 MEASUREMENT EQUIPMENT USED:

| NAME OF EQUIPMENT | MANUFACTURER | MODEL   | SERIAL NUMBER | CAL. DATE  |
|-------------------|--------------|---------|---------------|------------|
| SPECTRUM ANALYZER | AGILENT      | E4440A  | US44300399    | 2012.06.27 |
| TEST RECEIVER     | R&S          | ESIB26  | A0304218      | 2012.06.27 |
| LOOP ANTENNA      | R&S          | HFH2-Z2 | A0304220      | 2012.06.27 |
| HORN ANT.         | R&S          | HF906   | 100150        | 2012.06.27 |
| BROADBAND ANT.    | R&S          | HL562   | A0304224      | 2012.06.27 |

## 7.5 MEASUREMENT RESULTS:

Calculation: Limit = 43+10log10 (TP)

Notes:

EL is the emission level of the Output Power expressed in dBm,, in this application, the EL is 0.38 (25.8 dBm).

Limit =  $43 + 10\log 10 (0.36) = 38.6$ 

## **Radiated emissions of the bottom Channel**

| Emission  | Ant.          | Radiated   | Radiated   | Measurement  |       | Result(P/F) |
|-----------|---------------|------------|------------|--------------|-------|-------------|
| Frequency | Polarity(H/V) | emissions  | emissions  | Result       | Limit |             |
| (MHz)     |               | PK(dBuV/m) | AV(dBuV/m) | Below        |       |             |
|           |               |            |            | carrier(dBc) |       |             |
| 462.56    | V             | 120.06     |            | 0            |       | Pass        |
| 925.12    | V             | 67.13      |            | 52.93        | 38.6  | Pass        |
| 1387.68   | V             | 66.25      |            | 53.81        | 38.6  | Pass        |
| 1850.24   | V             | 63.87      |            | 56.19        | 38.6  | Pass        |
| 2312.8    | V             | 56.74      |            | 63.32        | 38.6  | Pass        |
| 2775.36   | V             | 49.78      |            |              | 38.6  | Pass        |
| 3237.92   | V             | 48.23      |            |              | 38.6  | Pass        |
| 3700.48   | V             | 48.57      |            |              | 38.6  | Pass        |
| 4163.04   | V             | 46.97      |            |              | 38.6  | Pass        |
| 4625.61   | V             | 42.91      |            |              | 38.6  | Pass        |

Report No.: AGC05C120401F1 Page 21 of 43

Limit =43+10log 10 (0.38) = 38.8

## Radiated emissions of the middle Channel

| Emission  | Ant.          | Radiated   | Radiated   | Measurement  |       | Result(P/F) |
|-----------|---------------|------------|------------|--------------|-------|-------------|
| Frequency | Polarity(H/V) | emissions  | emissions  | Result       | Limit |             |
| (MHz)     |               | PK(dBuV/m) | AV(dBuV/m) | Below        |       |             |
|           |               |            |            | carrier(dBc) |       |             |
| 467.56    | V             | 119.81     |            | 0            | 1     | Pass        |
| 935.13    | V             | 68.12      |            | 51.69        | 38.8  | Pass        |
| 1402.69   | V             | 65.74      |            | 54.07        | 38.8  | Pass        |
| 1870.25   | V             | 63.87      |            | 55.94        | 38.8  | Pass        |
| 2337.81   | V             | 58.45      |            | 61.36        | 38.8  | Pass        |
| 2805.38   | V             | 49.54      |            |              | 38.8  | Pass        |
| 3272.94   | V             | 47.32      |            |              | 38.8  | Pass        |
| 3740.50   | V             | 48.41      |            |              | 38.8  | Pass        |
| 4208.06   | V             | 46.68      |            |              | 38.8  | Pass        |
| 4675.63   | V             | 42.57      |            |              | 38.8  | Pass        |

Limit =  $43 + 10\log 10 (0.37) = 38.7$ 

#### Radiated emissions of the top Channel

|           | Radiated chilosions of the top channel |            |            |              |       |             |
|-----------|----------------------------------------|------------|------------|--------------|-------|-------------|
| Emission  | Ant.                                   | Radiated   | Radiated   | Measurement  |       |             |
| Frequency | Polarity(H/V)                          | emissions  | emissions  | Result       | Limit | Booult/D/E\ |
| (MHz)     |                                        | PK(dBuV/m) | AV(dBuV/m) | Below        |       | Result(P/F) |
|           |                                        |            |            | carrier(dBc) |       |             |
| 467.73    | V                                      | 119.64     |            | 0            |       | Pass        |
| 935.46    | V                                      | 68.12      |            | 56.32        | 38.7  | Pass        |
| 1870.92   | V                                      | 64.37      |            | 53.38        | 38.7  | Pass        |
| 3741.84   | V                                      | 65.21      |            | 54.42        | 38.7  | Pass        |
| 7483.68   | V                                      | 55.23      |            | 63.99        | 38.7  | Pass        |
| 14967.36  | V                                      | 46.87      |            |              | 38.7  | Pass        |
| 29934.72  | V                                      | 45.44      |            |              | 38.7  | Pass        |
| 59869.44  | V                                      | 44.31      |            |              | 38.7  | Pass        |
| 119738.88 | V                                      | 42.56      |            |              | 38.7  | Pass        |
| 239477.76 | V                                      | 41.65      |            |              | 38.7  | Pass        |

Note: Transmitter spurious worst case was showed.

Page 22 of 43

#### 8. MODULATION CHARACTERISTICS

#### **8.1 PROVISIONS APPLICABLE**

According to CFR 47 section 2.1047(a), for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

#### **8.2 MEASUREMENT METHOD**

#### 8.2.1 Modulation Limit

- (1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1KHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- (2). Repeat step 1 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

#### 8.2.2 Audio Frequency Response

- (1). Configure the EUT as shown in figure 1.
- (2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).
- (3). Vary the Audio frequency from 100 Hz to 10 KHz and record the frequency deviation.
- (4). Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 KHz reference).

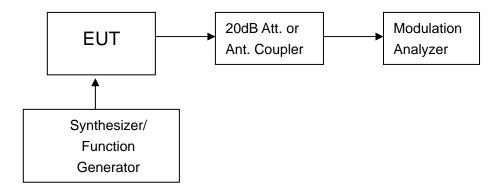
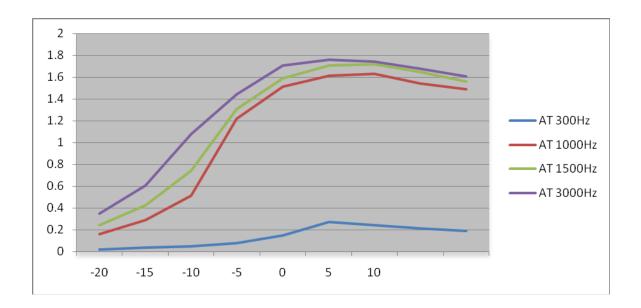



Figure 1: Modulation characteristic measurement configuration

#### **8.3 MEASUREMENT INSTRUMENTS**

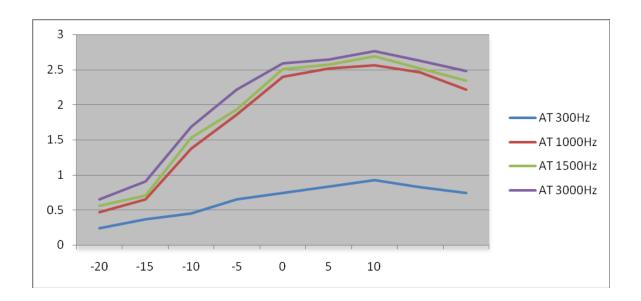
| NAME OF EQUIPMENT   | MANUFACTURER | MODEL | SERIAL NUMBER | CAL. DATE  |
|---------------------|--------------|-------|---------------|------------|
| Modulation Analyzer | HP           | 8901B | 3104A03367    | 2012.06.27 |


Report No.: AGC05C120401F1 Page 23 of 43

## **8.4 MEASUREMENT RESULT**

## (a). Modulation Limit:

Middle Channel @ 12.5 KHz Channel Separations


| Modulation<br>Level<br>(dB) | Peak Freq.<br>Deviation<br>At 300 Hz | Peak Freq. Deviation At 1000 Hz | Peak Freq.<br>Deviation<br>At 1500 Hz | Peak Freq.<br>Deviation<br>At 3000 Hz |
|-----------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------------|
| -20                         | 0.02                                 | 0.16                            | 0.24                                  | 0.35                                  |
| -15                         | 0.04                                 | 0.29                            | 0.42                                  | 0.61                                  |
| -10                         | 0.05                                 | 0.51                            | 0.74                                  | 1.08                                  |
| -5                          | 0.08                                 | 1.22                            | 1.31                                  | 1.44                                  |
| 0                           | 0.15                                 | 1.51                            | 1.59                                  | 1.71                                  |
| +5                          | 0.27                                 | 1.61                            | 1.71                                  | 1.76                                  |
| +10                         | 0.24                                 | 1.63                            | 1.72                                  | 1.74                                  |
| +15                         | 0.21                                 | 1.54                            | 1.65                                  | 1.68                                  |
| +20                         | 0.19                                 | 1.49                            | 1.56                                  | 1.61                                  |

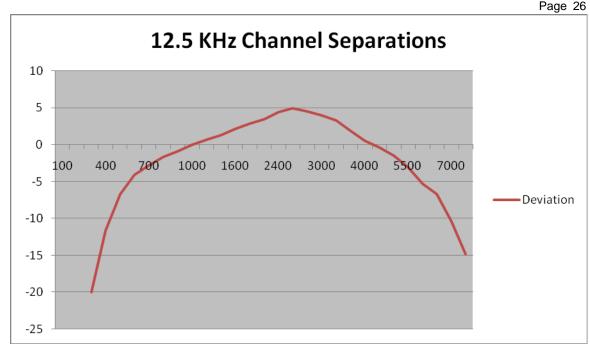


Report No.: AGC05C120401F1 Page 24 of 43

Middle Channel @ 20 KHz Channel Separations

| Modulation<br>Level<br>(dB) | Peak Freq.<br>Deviation<br>At 300 Hz | Peak Freq.<br>Deviation<br>At 1000 Hz | Peak Freq.<br>Deviation<br>At 1500 Hz | Peak Freq.<br>Deviation<br>At 3000 Hz |
|-----------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| -20                         | 0.24                                 | 0.47                                  | 0.56                                  | 0.65                                  |
| -15                         | 0.37                                 | 0.65                                  | 0.71                                  | 0.91                                  |
| -10                         | 0.45                                 | 1.37                                  | 1.53                                  | 1.68                                  |
| -5                          | 0.65                                 | 1.86                                  | 1.93                                  | 2.21                                  |
| 0                           | 0.75                                 | 2.4                                   | 2.51                                  | 2.59                                  |
| +5                          | 0.84                                 | 2.51                                  | 2.57                                  | 2.64                                  |
| +10                         | 0.93                                 | 2.56                                  | 2.69                                  | 2.76                                  |
| +15                         | 0.83                                 | 2.46                                  | 2.52                                  | 2.62                                  |
| +20                         | 0.75                                 | 2.21                                  | 2.34                                  | 2.48                                  |



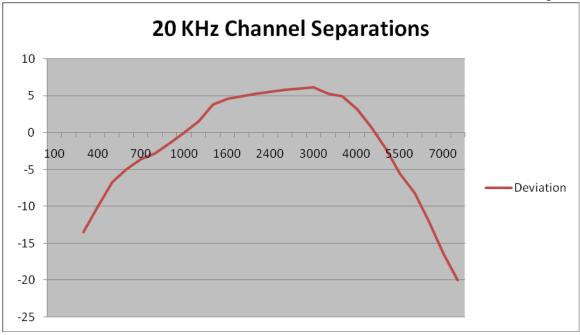

Report No.: AGC05C120401F1 Page 25 of 43

## (b). Audio Frequency Response:

## Middle Channel @12.5 KHz Channel Separation

| Frequency (Hz) | Deviation (KHz) | Audio Frequency |
|----------------|-----------------|-----------------|
|                |                 | Response(dB)    |
| 100            |                 |                 |
| 200            |                 |                 |
| 300            | 0.05            | -20.00          |
| 400            | 0.13            | -11.70          |
| 500            | 0.23            | -6.74           |
| 600            | 0.31            | -4.15           |
| 700            | 0.36            | -2.85           |
| 800            | 0.41            | -1.72           |
| 900            | 0.45            | -0.92           |
| 1000           | 0.5             | 0.00            |
| 1200           | 0.54            | 0.67            |
| 1400           | 0.58            | 1.29            |
| 1600           | 0.64            | 2.14            |
| 1800           | 0.69            | 2.80            |
| 2000           | 0.74            | 3.41            |
| 2400           | 0.83            | 4.40            |
| 2500           | 0.88            | 4.91            |
| 2800           | 0.84            | 4.51            |
| 3000           | 0.79            | 3.97            |
| 3200           | 0.73            | 3.29            |
| 3600           | 0.62            | 1.87            |
| 4000           | 0.53            | 0.51            |
| 4500           | 0.48            | -0.35           |
| 5000           | 0.42            | -1.51           |
| 5500           | 0.35            | -3.10           |
| 6000           | 0.27            | -5.35           |
| 6500           | 0.23            | -6.74           |
| 7000           | 0.15            | -10.46          |
| 7500           | 0.09            | -14.89          |
| 9000           |                 |                 |
| 10000          |                 |                 |
| 12000          |                 |                 |
| 14000          |                 |                 |
| 18000          |                 |                 |
| 20000          |                 |                 |
| 30000          |                 |                 |

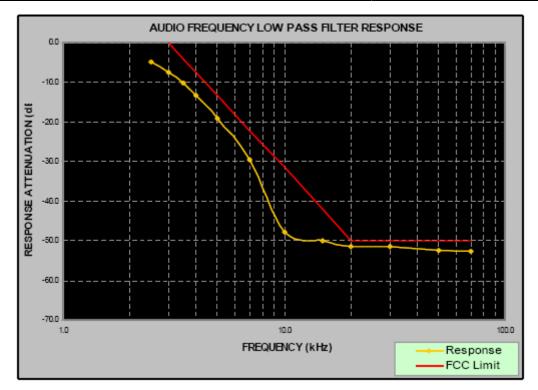
Report No.: AGC05C120401F1 Page 26 of 43




Report No.: AGC05C120401F1 Page 27 of 43

## Middle Channel @20 KHz Channel Separation

| Frequency (Hz) | Deviation (KHz) | Audio Frequency |
|----------------|-----------------|-----------------|
| . , ,          | ,               | Response(dB)    |
| 100            |                 |                 |
| 200            | <del></del>     |                 |
| 300            | 0.17            | -13.45          |
| 400            | 0.25            | -10.10          |
| 500            | 0.37            | -6.70           |
| 600            | 0.45            | -5.00           |
| 700            | 0.53            | -3.58           |
| 800            | 0.58            | -2.79           |
| 900            | 0.68            | -1.41           |
| 1000           | 0.8             | 0.00            |
| 1200           | 0.95            | 1.49            |
| 1400           | 1.24            | 3.81            |
| 1600           | 1.35            | 4.54            |
| 1800           | 1.41            | 4.92            |
| 2000           | 1.46            | 5.23            |
| 2400           | 1.51            | 5.52            |
| 2500           | 1.56            | 5.80            |
| 2800           | 1.59            | 5.97            |
| 3000           | 1.62            | 6.13            |
| 3200           | 1.46            | 5.23            |
| 3600           | 1.41            | 4.92            |
| 4000           | 1.15            | 3.15            |
| 4500           | 0.87            | 0.73            |
| 5000           | 0.62            | -2.21           |
| 5500           | 0.42            | -5.60           |
| 6000           | 0.31            | -8.23           |
| 6500           | 0.2             | -12.04          |
| 7000           | 0.12            | -16.48          |
| 7500           | 0.08            | -20.00          |
| 9000           |                 |                 |
| 10000          |                 |                 |
| 12000          |                 |                 |
| 14000          |                 |                 |
| 18000          |                 |                 |
| 20000          |                 |                 |
| 30000          |                 |                 |


Report No.: AGC05C120401F1 Page 28 of 43



Report No.: AGC05C120401F1 Page 29 of 43

## (c). Audio Frequency low Pass Filter Response:

| Audio Fraguency | Response Attenuation | FCC Limit |
|-----------------|----------------------|-----------|
| Audio Frequency | (dB)                 | (dB)      |
| 2.5             | -4.93                |           |
| 3.0             | -7.41                | 0.0       |
| 3.5             | -10.23               | -4.0      |
| 4.0             | -13.27               | -7.5      |
| 5.0             | -19.08               | -13.3     |
| 7.0             | -29.39               | -22.1     |
| 10.0            | -47.75               | -31.4     |
| 15.0            | -50.01               | -42.0     |
| 20.0            | -51.37               | -50.0     |
| 30.0            | -51.45               | -50.0     |
| 50.0            | -52.29               | -50.0     |
| 70.0            | -52.70               | -50.0     |



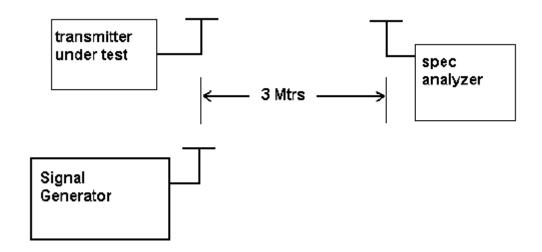
Page 30 of 43

#### 9. RF POWER OUTPUT

#### 9.1 PROVISIONS APPLICABLE

**Rule Part No.:** §95.639

Requirements: Power output shall not exceed 0.50 Watts effective radiated power for the FRS channels.


There can be no provisions for increasing the power or varying the power. No GMRS channel, under any condition of modulation, shall exceed:

- 1. 50W Carrier power (average TP during one modulated RF cycle) when transmitting emissions type A1D, F1D, G1D, A3E, F3E, or G3E.
- 2. 50W peak envelope TP when transmitting emission type H1D, J1D, R1D, H3E, J3E, or R3E

#### 9.2 TEST PROCEDURE

RF power is measured as ERP as the antenna is permanently attached. The substitution method was used. With a nominal battery voltage, and the transmitter properly adjusted the RF output measures:

#### **Test Setup Diagram:**



Report No.: AGC05C120401F1 Page 31 of 43

## 9.3 TEST RESULT

| Power Measurement Results |             |                             |  |  |  |  |  |
|---------------------------|-------------|-----------------------------|--|--|--|--|--|
| Channel                   | Channel     | Measurement Result For 0.5W |  |  |  |  |  |
|                           |             | ERP                         |  |  |  |  |  |
|                           | 462.5625MHz | 0.36w(25.5dBm)              |  |  |  |  |  |
| FRS                       | 467.5625MHz | 0.38w(25.8dBm)              |  |  |  |  |  |
|                           | 467.7125MHz | 0.37w (25.7dBm)             |  |  |  |  |  |
| GMRS                      | 462.6250MHz | 0.37w(25.7dBm)              |  |  |  |  |  |

NOTE: The EUT was measured in 3 orientations with respect to the receive antenna and the orientation with the highest radiated power results is shown (Vertical Polarization).

Report No.: AGC05C120401F1 Page 32 of 43

## 10. Radiated Emission on Receiving Mode

#### 10.1 **PROVISIONS APPLICABLE**

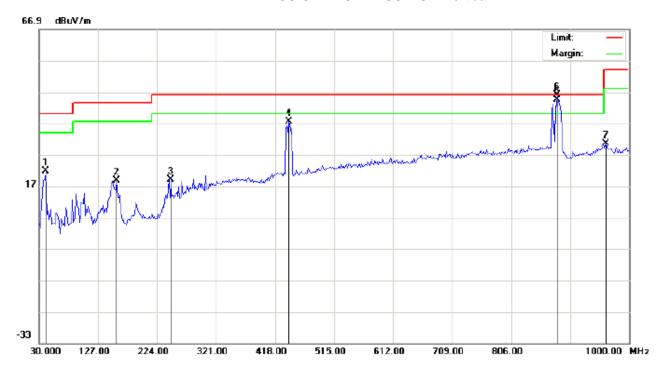
FCC Part 15 Subpart B Section 15.109

#### 10.2 **TEST METHOD**

ANSI C 63.4: 2009

#### 10.3 **TEST INSTRUMENTS**

| NAME OF EQUIPMENT | MANUFACTURER | MODEL       | SERIAL NUMBER | CAL. DATE  |
|-------------------|--------------|-------------|---------------|------------|
| SPECTRUM ANALYZER | AGILENT      | E4440A      | N/A           | 2012.06.27 |
| LOOP ANTENNA      | A.H.         | SAS-526B    | 264           | 2012.06.27 |
| HORN ANT.         | EM           | EM-AH-10180 | N/A           | 2012.06.27 |
| BROADBAND ANT.    | A.H.         | SAS-521-4   | N/A           | 2012.06.27 |


Report No.: AGC05C120401F1 Page 33 of 43

Temperature: 26

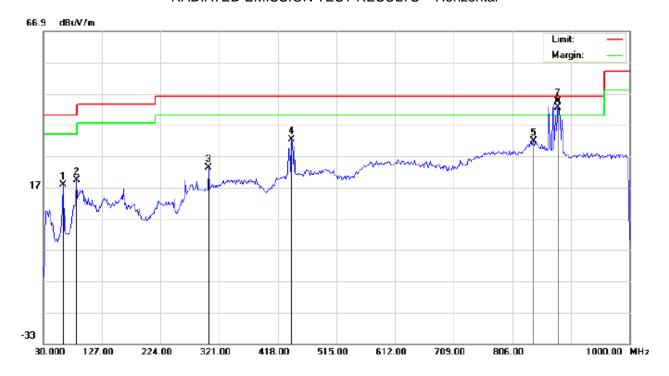
Humidity: 60 %

## 10.4 MEASURE RESULT (MEASURED AT 3M USING FCC PART15 B LIMITS)

RADIATED EMISSION TEST RESULTS - Vertical



Site: site #1 Polarization: Vertical Limit: FCC Class B 3M Radiation Power:


EUT: Wrist Watch Walkie Talkie Distance: 3m

M/N: #70489 Mode: RX Note:

| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     |    | MHz      | dBuV    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   |    | 41.3167  | 16.39   | 5.32   | 21.71       | 40.00  | -18.29 | peak     |                   |                 |         |
| 2   |    | 157.7167 | 3.78    | 14.92  | 18.70       | 43.50  | -24.80 | peak     |                   |                 |         |
| 3   |    | 246.6333 | 4.83    | 14.23  | 19.06       | 46.00  | -26.94 | peak     |                   |                 |         |
| 4   |    | 440.6333 | 15.99   | 21.48  | 37.47       | 46.00  | -8.53  | peak     |                   |                 |         |
| 5   | İ  | 881.7382 | 14.55   | 30.04  | 44.59       | 46.00  | -1.41  | QP       | 150               | 139             |         |
| 6   | *  | 881.9833 | 16.04   | 29.98  | 46.02       | 46.00  | 0.02   | peak     |                   |                 |         |
| 7   |    | 961.2000 | 1.75    | 28.85  | 30.60       | 54.00  | -23.40 | peak     |                   |                 |         |

Report No.: AGC05C120401F1 Page 34 of 43

## RADIATED EMISSION TEST RESULTS - Horizontal



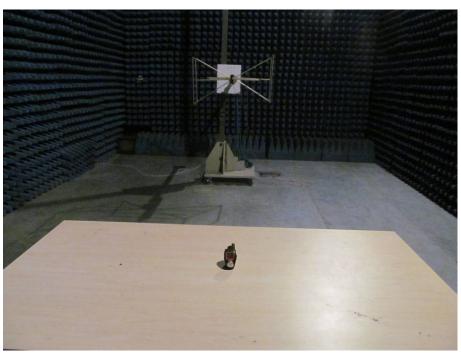
Site: site #1

Limit: FCC Class B 3M Radiation EUT: Wrist Watch Walkie Talkie

M/N: #70489 Mode: RX Note:

Temperature: 26 Polarization: Horizontal Power: Humidity: 60 %

Distance: 3m


| No. | Mk | Freq.    | Reading                    | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|----------------------------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     |    | MHz      | dBuV dB/m dBuV/m dBuV/m dB |        | cm          | degree |        |          |                   |                 |         |
| 1   |    | 62.3333  | 14.32                      | 3.48   | 17.80       | 40.00  | -22.20 | peak     |                   |                 |         |
| 2   |    | 84.9666  | 5.29                       | 13.89  | 19.18       | 40.00  | -20.82 | peak     |                   |                 |         |
| 3   |    | 303.2167 | 5.96                       | 17.21  | 23.17       | 46.00  | -22.83 | peak     |                   |                 |         |
| 4   |    | 440.6333 | 10.77                      | 21.48  | 32.25       | 46.00  | -13.75 | peak     |                   |                 |         |
| 5   |    | 841.5667 | 0.62                       | 31.17  | 31.79       | 46.00  | -14.21 | peak     |                   |                 |         |
| 6   | ļ  | 881.7228 | 13.42                      | 29.01  | 42.43       | 46.00  | -3.57  | QP       | 150               | 113             |         |
| 7   | *  | 881.9833 | 15.53                      | 28.98  | 44.51       | 46.00  | -1.49  | peak     |                   |                 |         |

Report No.: AGC05C120401F1 Page 35 of 43

## **APPENDIX I PHOTOGRAPHS OF SETUP**

Report No.: AGC05C120401F1 Page 36 of 43

## RADIATED TEST SETUP



Report No.: AGC05C120401F1 Page 37 of 43

## **APPENDIX II EXTERNAL VIEW OF EUT**

Report No.: AGC05C120401F1 Page 38 of 43

TOP VIEW OF EUT



**BOTTOM VIEW OF EUT** 



Report No.: AGC05C120401F1 Page 39 of 43

## LEFT VIEW OF EUT



RIGHT VIEW OF EUT



Report No.: AGC05C120401F1 Page 40 of 43

## FRONT VIEW OF EUT



**BACK VIEW OF EUT** 

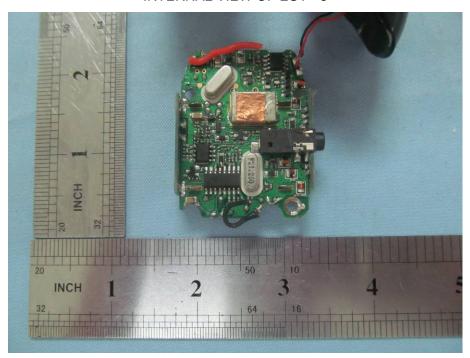


Report No.: AGC05C120401F1 Page 41 of 43

## OPEN VIEW OF EUT

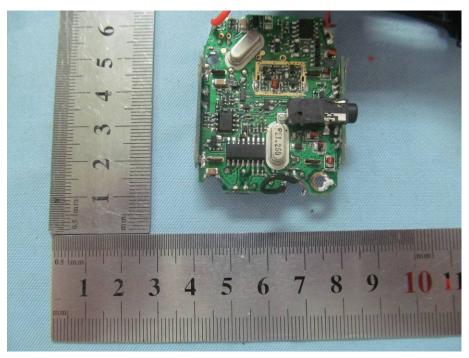


INTERNAL VIEW OF EUT - 1

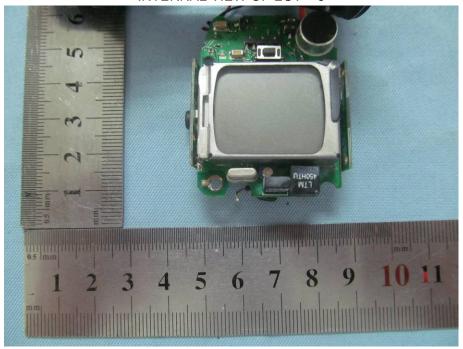



Report No.: AGC05C120401F1 Page 42 of 43

## INTERNAL VIEW OF EUT - 2




INTERNAL VIEW OF EUT - 3




Report No.: AGC05C120401F1 Page 43 of 43

## INTERNAL VIEW OF EUT - 4



INTERNAL VIEW OF EUT - 5



----END OF REPORT----