

FCC TEST REPORT

- **REPORT NO.:** RF990805E04
 - MODEL NO.: BT-533, BTD-1M4, BT-583, BTD-Turbo, BT-511, BTD-2K2
 - FCC ID: N2E-BT533
 - **RECEIVED:** Aug. 05, 2010
 - **TESTED:** Aug. 17 to 25, 2010
 - **ISSUED:** Aug. 27, 2010
 - **APPLICANT:** Premier Communications Corporation
 - ADDRESS: 911 Mariner Street., Brea, CA 92821
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
- LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan
- **TEST LOCATION (1):** No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan
- **TEST LOCATION (2):** No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

This test report consists of 52 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1	CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
2.1	ME ASUREMENT UNCERTAINTY	6
3	GENERAL INFORMATION	7
3.1	GENERAL DESCRIPTION OF EUT	
3.2	DESCRIPTION OF TEST MODES	9
3.3	TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:	10
3.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	12
3.5	DESCRIPTION OF SUPPORT UNITS	
3.6	CONFIGURATION OF SYSTEM UNDER TEST	14
4	TEST PROCEDURES AND RESULTS	15
4.1	CONDUCTED EMISSION MEASUREMENT	
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
4.1.2	TEST INSTRUMENTS	15
4.1.3	TEST PROCEDURES	16
4.1.4	TEST SETUP	
4.1.5	EUT OPERATING CONDITIONS	17
2.0.1	TEST RESULTS	18
2.1	NUMBER OF HOPPING FREQUENCY USED	
2.1.1	LIMIT OF HOPPING FREQUENCY USED	20
2.1.2	TEST INSTRUMENTS	20
2.1.3	TEST PROCEDURES	20
2.1.4	DEVIATION FROM TEST STANDARD	20
2.1.5	TEST SETUP	
2.1.6	TEST RESULTS	21
2.2	DWELL TIME ON EACH CHANNEL	23
2.2.1	LIMIT OF DWELL TIME USED	
2.2.2	TEST INSTRUMENTS	23
2.2.3	TEST PROCEDURES	
2.2.4	DEVIATION FROM TEST STANDARD	24
2.2.5	TEST SETUP	24
2.2.6	TEST RESULTS	
2.3	CHANNEL BANDWIDTH	28
2.3.1	LIMITS OF CHANNEL BANDWIDTH	28
2.3.2	TEST INSTRUMENTS	28
2.3.3	TEST PROCEDURE	-
2.3.4	DEVIATION FROM TEST STANDARD	
2.3.5	TEST SETUP	
2.3.6	EUT OPERATING CONDITION	
2.3.7	TEST RESULTS	30

	A	DT
2.4	HOPPING CHANNEL SEPARATION	32
2.4.1	LIMIT OF HOPPING CHANNEL SEPARATION	32
2.4.2	TEST INSTRUMENTS	32
2.4.3	TEST PROCEDURES	32
2.4.4	DEVIATION FROM TEST STANDARD	33
2.4.5	TEST SETUP	33
2.4.6	TEST RESULTS	-
2.5	MAXIMUM PEAK OUTPUT POWER	
2.5.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	36
2.5.2	INSTRUMENTS	
2.5.3	TEST PROCEDURES	36
2.5.4	DEVIATION FROM TEST STANDARD	36
2.5.5	TEST SETUP	
2.5.6	EUT OPERATING CONDITION	37
2.5.7	TEST RESULTS	
2.6	RADIATED EMISSION MEASUREMENT	40
2.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	40
2.6.2	TEST INSTRUMENTS	41
2.6.3	TEST PROCEDURES	
2.6.4	DEVIATION FROM TEST STANDARD	42
2.6.5	TEST SETUP	43
2.6.6	TEST RESULTS	44
2.7	CONDUCTED OUT-BAND EMISSION MEASUREMENT	48
4.8.1	LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT	48
4.8.2	TEST INSTRUMENTS	48
4.8.3	TEST PROCEDURE	-
4.8.4	DEVIATION FROM TEST STANDARD	-
4.8.5	EUT OPERATING CONDITION	48
4.8.6	TEST RESULTS	-
3	INFORMATION ON THE TESTING LABORATORIES	-
4	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINE CHANGES TO THE EUT BY THE LAB	

1 CERTIFICATION

PRODUCT :	BT dongle for Radio
BRAND NAME :	Pryme
MODEL NO. :	BT-533, BTD-1M4, BT-583, BTD-Turbo, BT-511, BTD-2K2
APPLICANT :	Premier Communications Corporation
TESTED DATE :	Aug. 17 to 25, 2010
TEST SAMPLE :	ENGINEERING SAMPLE
STANDARDS :	47 CFR Part 15, Subpart C (Section 15.247)
	ANSI C63.4-2003

The above equipment (Model: BT-533) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY

(Carol Liao, Specialist), DATE: <u>Aug 27, 2010</u>

TECHNICAL ACCEPTANCE

DATE: Aug. 27, 2010

(Hank Chung, Deputy Manager)

APPROVED BY

(May Chen, Deputy Manager)

DATE: Aug 27, 2010

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: 47 CFR Part 15, Subpart C								
Standard Section	Test Type and Limit	Result	REMARK					
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit Minimum passing margin is -6.75dB at 0.252MHz					
15.247(a)(1) (I)-(ii)	Number of Hopping Frequency Used Spec.: At least 15 channels	PASS	Meet the requirement of limit					
15.247(a)(1) (ii)	Dwell Time on Each Channel Spec.: Max. 0.4 second within 31.6 second	PASS	Meet the requirement of limit					
15.247(a)(1) (I)-(ii)	Hopping Channel Separation Spec. : Min. 25 kHz or two-thirds of 20 dB bandwidth, which ever is greater	PASS	Meet the requirement of limit					
15.247(a)(2)	Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit					
15.247(b)	Maximum Peak Output Power Spec.: max. 125mW	PASS	Meet the requirement of limit					
15.247(c)	Transmitter Radiated Emissions Spec.: Table 15.209	PASS	Meet the requirement of limit Minimum passing margin is -16.9dB at 2483.72MHz					
15.247(c)	Conducted Out-Band Emissions Measurement	PASS	Meet the requirement of limit					
15.203	Antenna Requirement	PASS	No antenna connector is used.					

2.1 ME ASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions	2.45 dB
Radiated emissions (30MHz-1GHz)	3.3 dB
Radiated emissions (1GHz ~18GHz)	2.19 dB
Radiated emissions (18GHz ~40GHz)	2.55 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	BT dongle for Radio
MODEL NO.	BT-533, BTD-1M4, BT-583, BTD-Turbo, BT-511, BTD-2K2
FCC ID	N2E-BT533
POWER SUPPLY	DC 12V from host equipment
MODULATION TYPE	GFSK
MODULATION TECHNOLOGY	FHSS
FREQUENCY RANGE	2402MHz ~ 2480MHz
NUMBER OF CHANNEL	79
MAXIMUM OUTPUT POWER	3.7 mW
ANTENNA TYPE	chip antenna (Gain :0dBi)
DATA CABLE	NA
I/O PORTS	NA
ASSOCIATED DEVICES	NA

NOTE:

1. The EUT has two brand names and six model names, which are identical to each other in all aspects except for the following information:

Brand Name	Model Name	Description
	BT-533	
Pryme	BT-583	difference casing
	BT-511	
	BTD-1M4	same as BT-533
No Brand	BTD-Turbo	same as BT-583
	BTD-2K2	same as BT-511

From the above models, model: **BT-533** was selected as representative model for the test and its data was recorded in this report.

2. The EUT was pre-tested under the following test modes for three different axes placements:

Test Mode	Description
Mode A	X-Z plane
Mode B	X-Y plane
Mode C	Y-Z plane

From the above modes, the radiated emission worst case was found in Mode C. Therefore only the test data of the mode was recorded in this report.

- 3. The EUT has built-in test mode and was programmed to output the typical output waveform at maximum level.
- 4. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

Seventy-nine channels are provided to this EUT.

3.3 TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:

EU	г		APPLICA	ABLE T	C			
		PLC	RE < 1G	RE ³ 1	G APCM	DESCRIPTION		
-		\checkmark	\checkmark	\checkmark	\checkmark	NA		
Where	Where PLC: Power Line Conducted Emission					RE < 1G: Radiated	Emission below 1GHz	
	RE ³ 1	G: Radia	ated Emissi	ion abov	e 1GHz	APCM: Antenna Po	ort Conducted Measurement	
Power I	ine Co	anduct	ed Emis	sion T	'ast:			
🖾 Pre	e-Scan	has be	en cond	ucted t	o determine		mode from all possible combinatio	
	ween a hitectu		e modula	ations,	data rates	and antenna por	ts (if EUT with antenna diversity	
		,	el(s) was	s (were) selected f	or the final test a	as listed below.	
	Availab		Tested		lodulation	Modulation		
	Chann		Channe	el To	echnology		_	
	0 to 78	8	0		FHSS	GFSK		
Pre bet	e-Scan ween a	has be availabl		ucted t	o determine		mode from all possible combinatic ts (if EUT with antenna diversity	
 ✓ Prebet bet arc ✓ Fol 	e-Scan ween a hitectu	has be availabl ire). chann	en cond e modul	ucted t ations, s (were	o determine data rates	and antenna por o <u>r the final test a</u>	ts (if EUT with antenna diversity	
 ✓ Prebet bet arc ✓ Fol 	e-Scan ween a hitectui llowing	has be availabl ire). chann ble	en condi e modula el(s) was	ucted t ations, s (were d I	o determine data rates) selected f	and antenna por or the final test a Modulation	ts (if EUT with antenna diversity	
 ✓ Prebet bet arc ✓ Fol 	e-Scan ween a hitectu llowing Availa l	has be availabl ire). chann ble nel	en condi e modula el(s) was Teste	ucted t ations, s (were d I	o determine data rates) selected f /odulation	and antenna por or the final test a Modulation	ts (if EUT with antenna diversity	
A Pre bet arc Fol A Fol Bet bet arc	e-Scan ween a hitectu llowing Availal Chanr 0 to 7 d Emis e-Scan ween a hitectu	has be availabl ire). chann ble nel 78 ssion T has be availabl ire).	en condi e modula el(s) was Tested Chann 0 est (Abc een condu e modula	ucted f ations, s (were d I eI I ove 1 (ucted f ations,	o determine data rates) selected f Modulation echnology FHSS GHz): o determine data rates	and antenna por or the final test a Modulation Type GFSK	ts (if EUT with antenna diversity as listed below. mode from all possible combination ts (if EUT with antenna diversity	
Adiate Adiate Adiate Adiate Adiate Adiate Adiate Adiate Adiate	-Scan ween a hitectu llowing Availal Chanr 0 to 7 d Emis -Scan ween a hitectu llowing	has be availabl ire). chann ble nel 78 has be availabl ire). chann ble	en condi e modula el(s) was Tested Chann 0 est (Abd en condi e modula el(s) was Tested	ucted f ations, s (were d I el 1 vove 1 (ucted f ations, s (were	o determine data rates) selected f Modulation echnology FHSS <u>GHz):</u> o determine data rates) selected f Iodulation	and antenna por or the final test a Modulation Type GFSK e the worst-case and antenna por or the final test a Modulation	ts (if EUT with antenna diversity as listed below. mode from all possible combination ts (if EUT with antenna diversity	
Adiate Adiate Adiate Adiate Adiate Adiate Adiate Adiate Adiate	e-Scan ween a hitectu llowing Availal Chanr 0 to 7 d Emis e-Scan ween a hitectu llowing	has be availabl ire). chann ble nel 78 ssion T has be availabl ire). chann ble el	en condi e modula el(s) was Tested Chann 0 est (Abc en condi e modula el(s) was	ucted f ations, s (were d I eI 1 ove 1 (ucted f ations, s (were	o determine data rates) selected f Modulation echnology FHSS GHz): o determine data rates) selected f	and antenna por or the final test a Modulation Type GFSK e the worst-case and antenna por or the final test a Modulation	ts (if EUT with antenna diversity as listed below. mode from all possible combination ts (if EUT with antenna diversity	

Conducted Out-Band Emission Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Available	Tested	Modulation	
Channel	Channel	Technology	Туре
0 to 78	0, 78	FHSS	GFSK

Antenna Port Conducted Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Available	Tested	Modulation	Modulation
Channel	Channel	Technology	Type
0 to 78	0, 39, 78	FHSS	GFSK

TEST CONDITION:

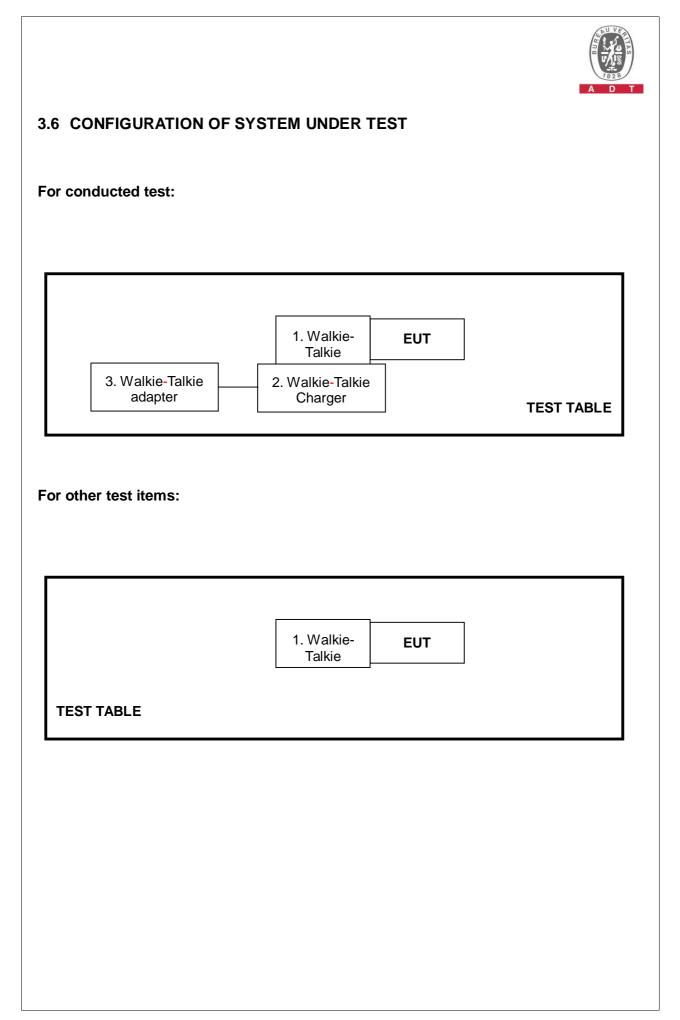
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE ³ 1G	26deg. C, 67%RH, 1014 hPa	DC 12V from host equipment	Duke Tseng
RE<1G	26deg. C, 67%RH, 1014 hPa	DC 12V from host equipment	Duke Tseng
APCM	25deg. C, 60%RH, 1014 hPa	DC 12V from host equipment	Kent Liu
PLC	26deg. C, 61%RH, 1014 hPa	DC 12V from host equipment	Wen Yu

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247) ANSI C63.4 : 2003

All test items have been performed and recorded as per the above standards.


3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Cond	Conducted test						
NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID		
1	Walkie-Talkie	MOTOROLA	GP-328	NA	NA		
2	Walkie-Talkie Charger	MOTOROLA	5486987A07	NA	NA		
3	Walkie-Talkie adapter	no brand	SCP48-240500	NA	NA		
Othe	r test items:						
NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID		
1	Walkie-Talkie	MOTOROLA	GP-328	NA	NA		

Cond	Conducted test					
NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS					
1	NA					
2	NA					
3	NA					
Othe	r test items:					
NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS					
1	NA					

NOTE: All power cords of the above support units are non shielded (1.8m).

4 TEST PROCEDURES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
0.15-0.5	Quasi-peak	Average	
0.13-0.3 0.5-5 5-30	66 to 56 56 60	56 to 46 46 50	

NOTE:

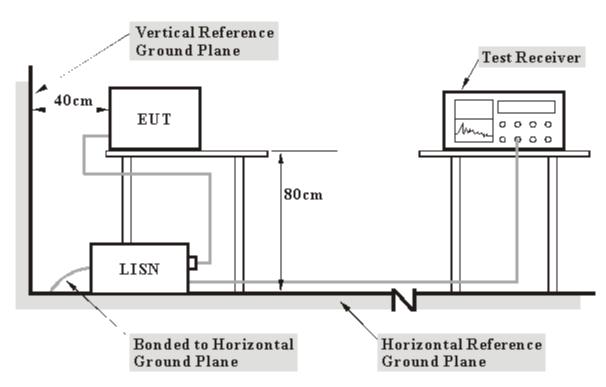
- 1. The lower limit shall apply at the transition frequencies.
- 2. All emanations from a class B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESCS 30	100287	Mar. 01, 2010	Feb. 28, 2011
Line-Impedance Stabilization Network (for EUT)	NSLK 8127	8127-523	Sep. 23, 2009	Sep. 22, 2010
Line-Impedance Stabilization Network (for Peripheral)	ENV-216	100072	June 11, 2010	June 10, 2011
RF Cable (JYEBAO)	5DFB	COACAB-001	Dec. 14, 2009	Dec. 13, 2010
50 ohms Terminator	50	3	Oct. 28, 2009	Oct. 27, 2010
Software	BV ADT_Cond_V7.3.7	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


2. The test was performed in Shielded Room No. A.

3 The VCCI Con A Registration No. is C-817.

4.1.3 TEST PROCEDURES

- a. The EUT/HOST was placed 0.4 meters from the conducting wall of the shielded room with EUT/HOST being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT/HOST were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits could not be reported

4.1.4 TEST SETUP

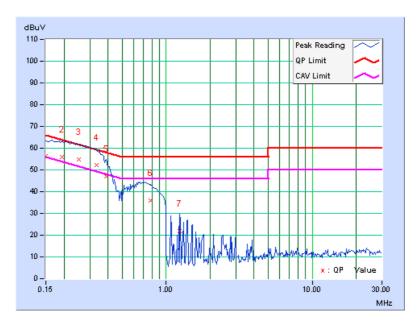
Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

it one other units and other metal planes support units.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.5 EUT OPERATING CONDITIONS

- 1 Connect the EUT with the support unit 1 (Walkie-Talkie) and which is placed on a testing table.
- 2 Support unit 1 (Walkie-Talkie) runs a test program "CSR v1.2" to enable EUT under transmission condition continuously at specific channel frequency.

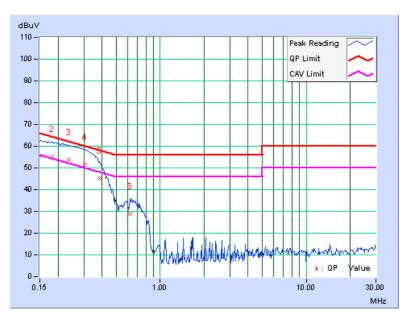


2.0.1 TEST RESULTS

PHASE Line (L)			Line (L) 6DB BANDWIDTH 9 kHz							
	Freq.	Corr.	Readin	g Value		ssion evel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.150	0.03	56.44	26.64	56.47	26.67	66.00	56.00	-9.53	-29.33
2	0.193	0.04	55.98	25.98	56.02	26.02	63.91	53.91	-7.89	-27.89
3	0.252	0.04	54.91	24.97	54.95	25.01	61.71	51.71	-6.75	-26.69
4	0.334	0.05	52.15	21.82	52.20	21.87	59.36	49.36	-7.16	-27.49
5	0.388	0.05	47.02	-	47.07	-	58.10	48.10	-11.03	-
6	0.783	0.15	35.87	-	36.02	-	56.00	46.00	-19.98	-
7	1.230	0.21	21.72	-	21.93	-	56.00	46.00	-34.07	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



PHA	PHASE Neutral (N)			6	6DB BANDWIDTH 9 kHz					
	Freq.	Corr	. Readin	Reading Value		ssion vel	l l imit		Margin	
No		Facto	or [dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.150	0.04	55.51	-	55.55	-	66.00	56.00	-10.45	-
2	0.181	0.05	55.09	24.51	55.14	24.56	64.43	54.43	-9.29	-29.87
3	0.236	0.05	53.62	26.24	53.67	26.29	62.24	52.24	-8.57	-25.95
4	0.306	0.06	51.56	21.16	51.62	21.22	60.07	50.07	-8.46	-28.86
5	0.384	0.06	45.07	-	45.13	-	58.18	48.18	-13.06	-
6	0.623	0.12	28.83	-	28.95	-	56.00	46.00	-27.05	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

2.1 NUMBER OF HOPPING FREQUENCY USED

2.1.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 hopping frequencies, and should be equally spaced.

2.1.2 TEST INSTRUMENTS

	ESCRIPTION & ANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Sp	pectrum Analyzer	E4446A	MY48250253	Aug. 02, 2010	Aug. 01, 2011

NOTE:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

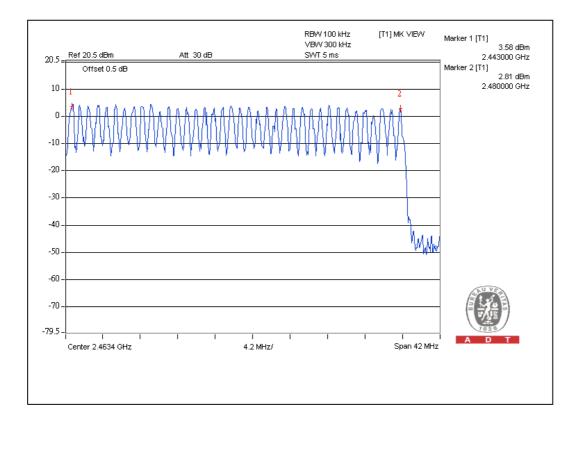
2.1.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

2.1.4 DEVIATION FROM TEST STANDARD

No deviation

2.1.5 TEST SETUP



2.1.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

2.2 DWELL TIME ON EACH CHANNEL

2.2.1 LIMIT OF DWELL TIME USED

For FHSS, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 31.6 second period. For hybrid systems, the average time of occupancy on any frequency should not exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

2.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer	E4446A	MY48250253	Aug. 02, 2010	Aug. 01, 2011

NOTE:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

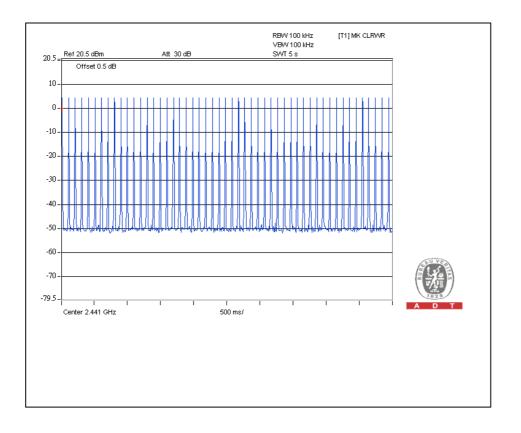
2.2.3 TEST PROCEDURES

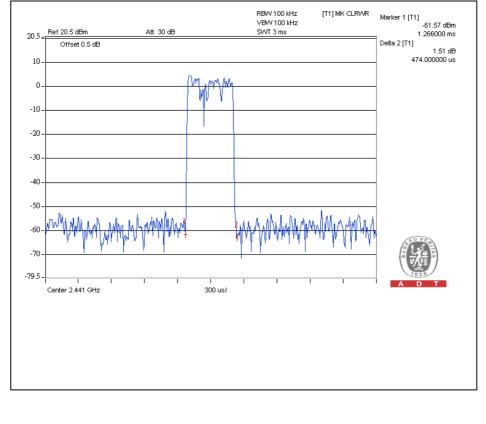
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

2.2.4 DEVIATION FROM TEST STANDARD

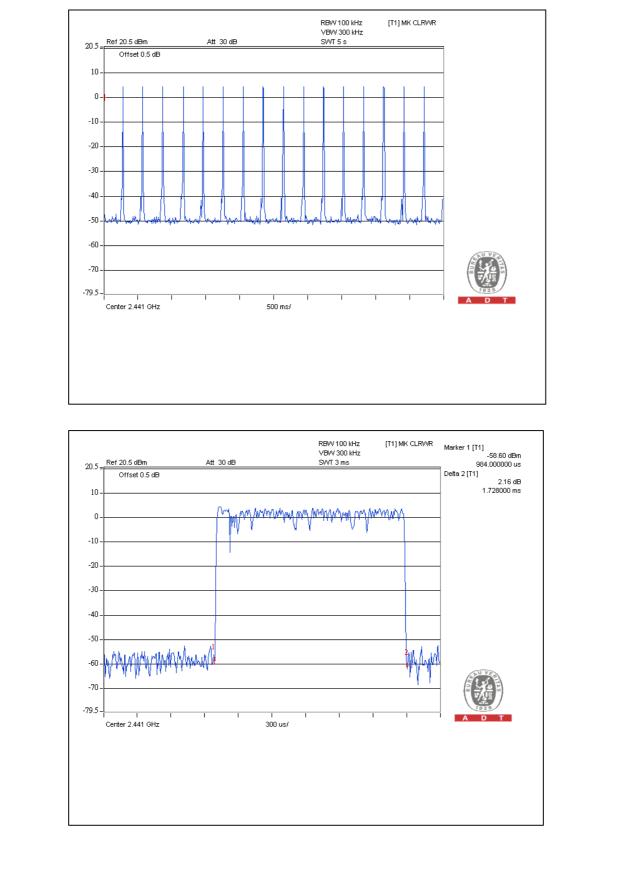
No deviation

2.2.5 TEST SETUP

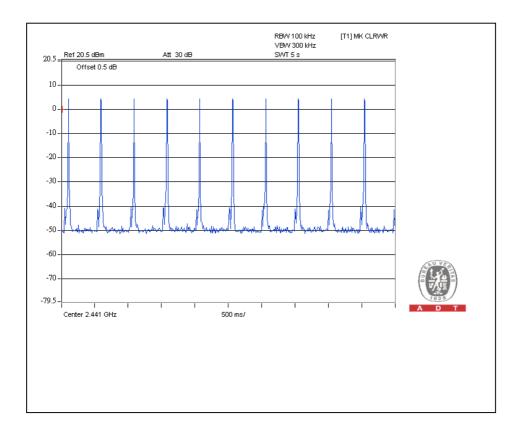

2.2.6 TEST RESULTS

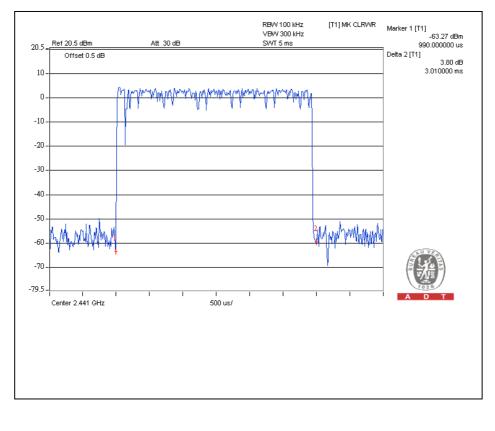

Mode	de Number of transmission in a 31.6 (79Hopping*0.4) Length of transmission time (msec)		Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) *6.32=316.00 times	0.474	149.8	400
DH3	16 (times / 5 sec) *6.32=101.12 times	1.728	174.7	400
DH5	10 (times / 5 sec) *6.32=63.2 times	3.01	190.2	400

Test plots of the transmitting time slot are shown on next three pages.



DH1




DH3

DH5

2.3 CHANNEL BANDWIDTH

2.3.1 LIMITS OF CHANNEL BANDWIDTH

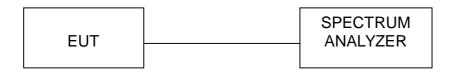
For frequency hopping system operating in the 2400-2483.5MHz, If the two-thirds 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dB bandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

2.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer	E4446A	MY48250253	Aug. 02, 2010	Aug. 01, 2011

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2.3.3 TEST PROCEDURE

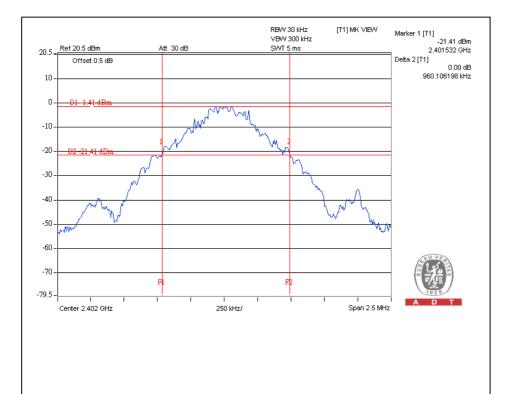

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

2.3.4 DEVIATION FROM TEST STANDARD

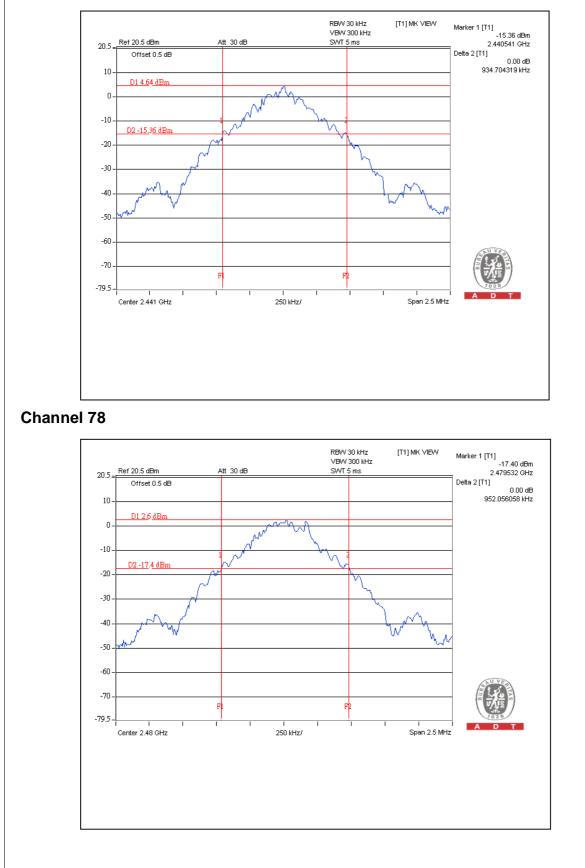
No deviation

2.3.5 TEST SETUP

2.3.6 EUT OPERATING CONDITION


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

2.3.7 TEST RESULTS


CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (MHz)
0	2402	0.96
39	2441	0.93
78	2480	0.95

Channel 0

Channel 39

2.4 HOPPING CHANNEL SEPARATION

2.4.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25 kHz or two-thirds of 20dB hopping channel bandwidth (whichever is greater).

2.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer	E4446A	MY48250253	Aug. 02, 2010	Aug. 01, 2011

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

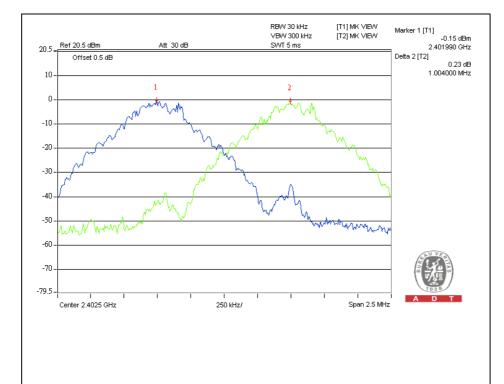
2.4.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

2.4.4 DEVIATION FROM TEST STANDARD

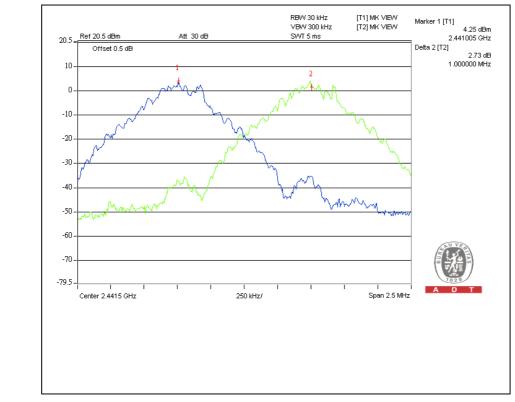
No deviation

2.4.5 TEST SETUP

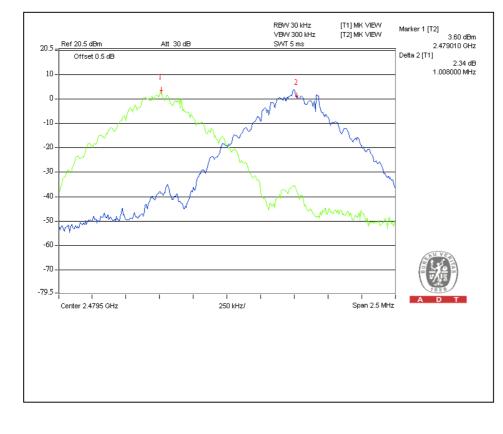


2.4.6 TEST RESULTS

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	1.004	0.640	PASS
39	2441	1.000	0.620	PASS
78	2480	1.008	0.633	PASS


The minimum limit is two-thirds of 20dB bandwidth. Test results please refer to below pages.

Channel 0



Channel 39

Channel 78

2.5 MAXIMUM PEAK OUTPUT POWER

2.5.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Limit is 125mW.

2.5.2 INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer	E4446A	MY48250253	Aug. 02, 2010	Aug. 01, 2011

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2.5.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3 MHz RBW and 10 MHz VBW.
- 4. Measure the captured power within the band and recording the plot.
- 5. Repeat above procedures until all frequencies measured were complete.

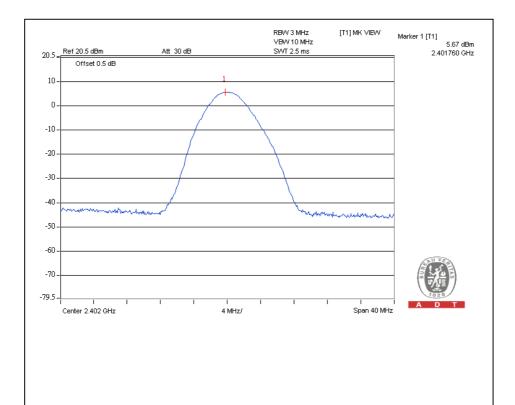
2.5.4 DEVIATION FROM TEST STANDARD

No deviation

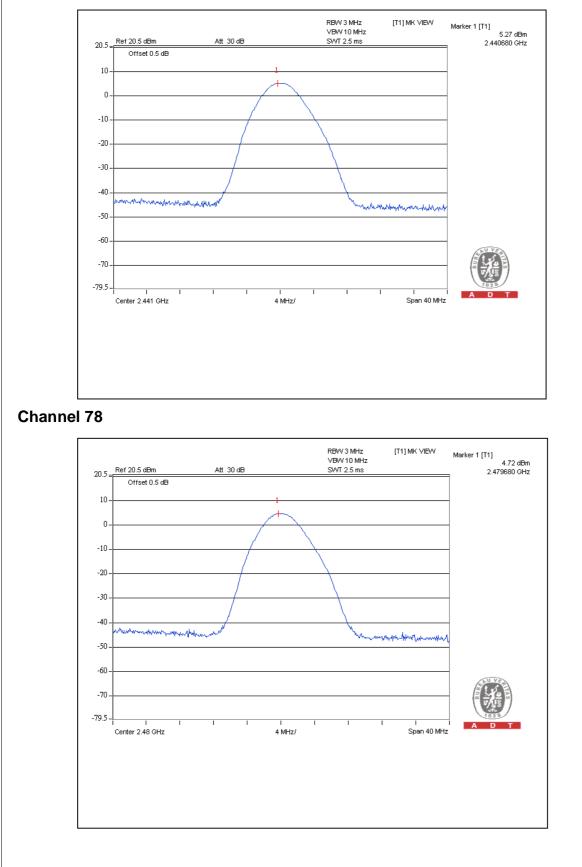
2.5.5 TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

2.5.6 EUT OPERATING CONDITION


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

2.5.7 TEST RESULTS


CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (mW)	PASS/FAIL
0	2402	3.7	5.7	125	PASS
39	2441	3.4	5.3	125	PASS
78	2480	3.0	4.7	125	PASS

Channel 0

Channel 39

2.6 RADIATED EMISSION MEASUREMENT

2.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

2.6.2 TEST INSTRUMENTS

DESCRIPTION &			CALIBRATED	CALIBRATED	
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL	
Agilent Spectrum Analyzer	E4446A	MY48250253	Aug. 02, 2010	Aug. 01, 2011	
Agilent Pre-Selector	N9039A	MY46520311	July 14, 2010	July 13, 2011	
Agilent Signal Generator	N5181A	MY49060517	July 14, 2010	July 13, 2011	
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-03	Nov. 18, 2009	Nov. 17, 2010	
Agilent Pre-Amplifier	8449B	3008A02578	July 05, 2010	July 04, 2011	
Miteq Pre-Amplifier	AFS33-1800265 0-30-8P-44	881786	NA	NA	
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-360	Sep. 30, 2009	Sep. 29, 2010	
AISI Horn_Antenna	AIH.8018	0000320091110	Nov. 16, 2009	Nov. 15, 2010	
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Sep. 30, 2009	Sep. 29, 2010	
RF CABLE	NA	RF104-201 RF104-203 RF104-204	Dec. 24, 2009	Dec. 23, 2010	
RF Cable	NA	CHGCAB_001	NA	NA	
Software	ADT_Radiated_ V8.7.05	NA	NA	NA	
CT Antenna Tower & Turn Table	NA	NA	NA	NA	

 Iurn lable
 Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

 2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

 3. The test was performed in 966 Chamber No. G.

 4. The FCC Site Registration No. is 966073.

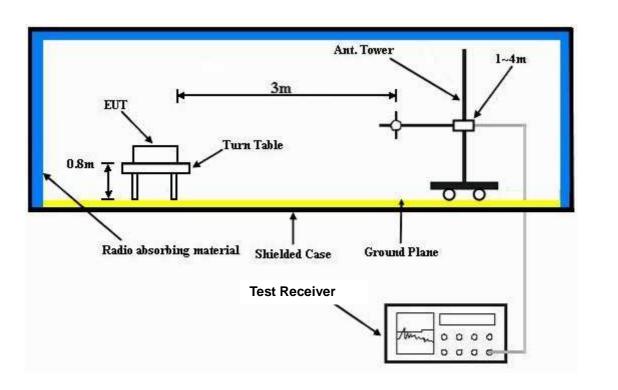
 5. The VCCI Site Registration No. is G-137.

 6. The CANADA Site Registration No. is IC 7450H-2.

2.6.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection at frequency above 1GHz.

2.6.4 DEVIATION FROM TEST STANDARD

No deviation

2.6.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

2.6.6 TEST RESULTS

BELOW 1GHz WORST-CASE DATA :

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 0		FREQUENCY RANGE	Below 1000MHz	
INPUT POWER	DC 12V from host equipment	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	26deg. C, 67%RH 1013 hPa	TESTED BY	Duke Tseng	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	168.08	14.9 QP	43.5	-28.6	2.50 H	18	1.51	13.43
2	229.07	15.0 QP	46.0	-31.0	2.00 H	74	2.91	12.10
3	417.60	21.3 QP	46.0	-24.7	2.25 H	165	3.55	17.75
4	893.06	23.5 QP	46.0	-22.5	1.00 H	299	-2.64	26.12
5	915.68	24.1 QP	46.0	-21.9	2.00 H	0	-2.28	26.36
6	956.07	23.8 QP	46.0	-22.2	1.00 H	255	-2.85	26.69
		ANTENNA	POLARIT	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	62.57	18.6 QP	40.0	-21.4	2.00 V	342	5.58	13.04
2	135.99	23.3 QP	43.5	-20.2	1.25 V	0	9.77	13.53
3	396.04	21.2 QP	46.0	-24.8	1.25 V	0	3.91	17.26
4	417.60	20.8 QP	46.0	-25.2	1.25 V	241	3.08	17.75
5	660.01	23.1 QP	46.0	-22.9	1.00 V	297	0.49	22.65
6	940.67	25.2 QP	46.0	-20.8	1.75 V	124	-1.32	26.56

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level - Limit value.

GFSK MODULATION

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 0		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER	DC 12V from host equipment	DETECTOR FUNCTION	Peak (PK)	
ENVIRONMENTAL CONDITIONS	26deg. C, 67%RH 1014 hPa	TESTED BY	Duke Tseng	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	2388.42	56.6 PK	74.0	-17.4	1.16 H	324	24.95	31.65
2	2388.42	26.5 AV	54.0	-27.5	1.16 H	324	-5.15	31.65
3	*2402.00	94.6 PK			1.16 H	324	62.90	31.70
4	*2402.00	64.5 AV			1.16 H	324	32.80	31.70
5	4804.00	53.7 PK	74.0	-20.3	1.78 H	6	14.80	38.90
6	4804.00	23.6 AV	54.0	-30.4	1.78 H	6	-15.30	38.90
		ANTENNA	POLARIT	(& TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	2387.47	56.6 PK	74.0	-17.4	1.20 V	329	24.95	31.65
2	2387.47	26.5 AV	54.0	-27.5	1.20 V	329	-5.15	31.65
3	*2402.00	96.8 PK			1.20 V	329	65.10	31.70
4	*2402.00	66.7 AV			1.20 V	329	35.00	31.70
5	4804.00	52.0 PK	74.0	-22.0	1.38 V	0	13.10	38.90
6	4804.00	21.9 AV	54.0	-32.1	1.38 V	0	-17.00	38.90

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. "* ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB.
- 7. Average value = peak reading + 20log(duty cycle).

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 39		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER	DC 12V from host equipment	DETECTOR FUNCTION	Peak (PK)	
ENVIRONMENTAL CONDITIONS	26deg. C, 67%RH 1014 hPa	TESTED BY	Duke Tseng	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)	
1	*2441.00	95.3 PK			1.16 H	327	63.47	31.83	
2	*2441.00	65.2 AV			1.16 H	327	33.37	31.83	
3	4882.00	55.5 PK	74.0	-18.5	1.77 H	3	16.33	39.17	
4	4882.00	25.4 AV	54.0	-28.6	1.77 H	3	-13.77	39.17	
5	7323.00	54.9 PK	74.0	-19.1	1.00 H	6	8.27	46.63	
6	7323.00	24.8 AV	54.0	-29.2	1.00 H	6	-21.83	46.63	
		ANTENNA	POLARITY	(& TEST DI	STANCE: V	ERTICAL A	ТЗМ		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 I

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	*2441.00	96.4 PK			1.18 V	325	64.57	31.83
2	*2441.00	66.3 AV			1.18 V	325	34.47	31.83
3	4882.00	53.3 PK	74.0	-20.7	1.38 V	2	14.13	39.17
4	4882.00	23.2 AV	54.0	-30.8	1.38 V	2	-15.97	39.17
5	7323.00	54.0 PK	74.0	-20.0	1.00 V	20	7.37	46.63
6	7323.00	23.9 AV	54.0	-30.1	1.00 V	20	-22.73	46.63

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: $20\log(3.125 / 100) = -30.1 \text{ dB}$.
- 7. Average value = peak reading + 20log(duty cycle).

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 78		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER	DC 12V from host equipment	DETECTOR FUNCTION	Peak (PK)	
ENVIRONMENTAL CONDITIONS	26deg. C, 67%RH 1014 hPa	TESTED BY	Duke Tseng	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2480.00	93.4 PK			1.15 H	325	61.45	31.95			
2	*2480.00	63.3 AV			1.15 H	325	31.35	31.95			
3	2483.68	56.5 PK	74.0	-17.5	1.15 H	325	24.53	31.97			
4	2483.68	26.4 AV	54.0	-27.6	1.15 H	325	-5.57	31.97			
5	4960.00	55.8 PK	74.0	-18.2	1.78 H	5	16.38	39.42			
6	4960.00	25.7 AV	54.0	-28.3	1.78 H	5	-13.72	39.42			
7	7440.00	55.0 PK	74.0	-19.0	1.00 H	3	8.44	46.56			
8	7440.00	24.9 AV	54.0	-29.1	1.00 H	3	-21.66	46.56			
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2480.00	93.4 PK			1.16 V	326	61.45	31.95			
2	*2480.00	63.3 AV			1.16 V	326	31.35	31.95			
3	2483.72	57.1 PK	74.0	-16.9	1.16 V	326	25.13	31.97			
4	2483.72	27.0 AV	54.0	-27.0	1.16 V	326	-4.97	31.97			
5	4960.00	53.6 PK	74.0	-20.4	1.39 V	3	14.18	39.42			
6	4960.00	23.5 AV	54.0	-30.5	1.39 V	3	-15.92	39.42			
7	7440.00	54.2 PK	74.0	-19.8	1.00 V	18	7.64	46.56			
8	7440.00	24.1 AV	54.0	-29.9	1.00 V	18	-22.46	46.56			

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB.
- 7. Average value = peak reading + 20log(duty cycle).

2.7 CONDUCTED OUT-BAND EMISSION MEASUREMENT

4.8.1 LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer	E4446A	MY48250253	Aug. 02, 2010	Aug. 01, 2011

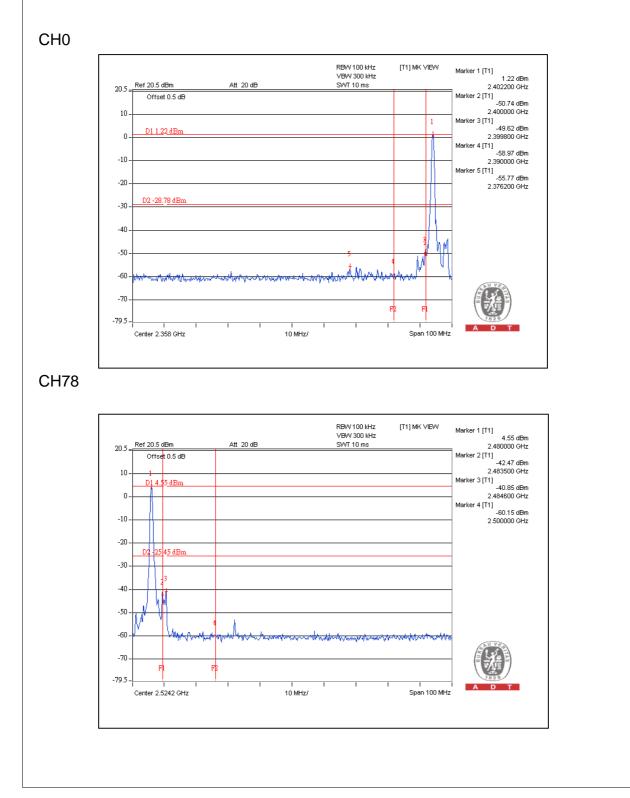
NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.8.3 TEST PROCEDURE

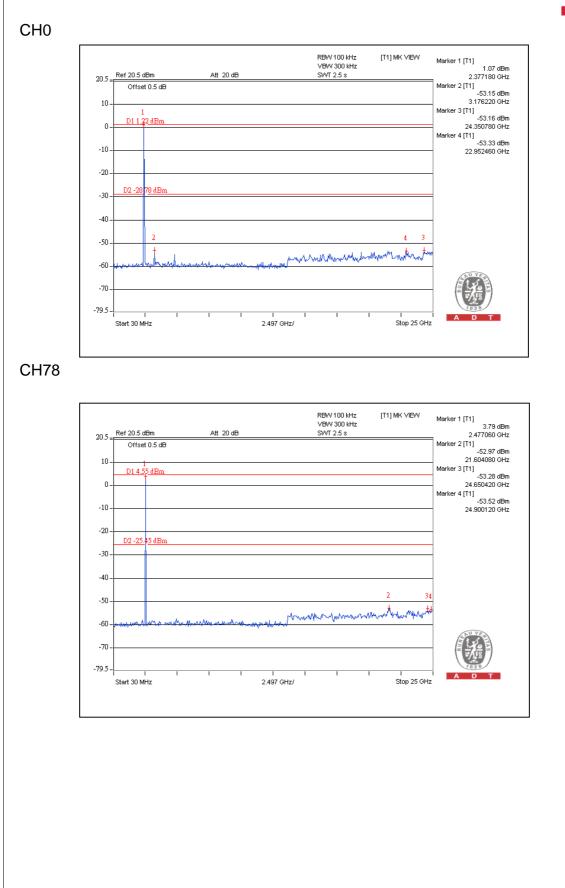
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set RBW a of spectrum analyzer to 100 kHz and VBW of spectrum analyzer to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 DEVIATION FROM TEST STANDARD

No deviation


4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.



4.8.6 TEST RESULTS

Emissions radiated outside of the specified frequency bands, please refer following pages for met the requirement of the general radiated emission limits in § 15.209.

3 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025:

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Email: <u>service@adt.com.tw</u> Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

4 APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

--- END ----