

FCC Test Report

FCC ID	:	MXF-WRTB283N
Equipment	:	Dual band Router
Model No.	:	WRTB-283N
Brand Name	:	Gemtek
Applicant	:	Gemtek Technology Co., Ltd.
Address	:	No. 15-1 Zhanghua Road, Hsinchu Industrial Park, Hukou, Hsinchu, Taiwan, 30352.
Standard	:	47 CFR FCC Part 15.407
Received Date	:	Feb. 08, 2013
Tested Date	:	Feb. 20 ~ Apr. 02, 2013

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Test Setup Chart	7
1.3	Local Support Equipment List	7
1.4	The Equipment List	8
1.5	Testing Applied Standards	9
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	12
3.1	Conducted Emissions	12
3.2	Emission Bandwidth	17
3.3	RF Output Power	19
3.4	Peak Power Spectral Density	21
3.5	Peak Excursion	23
3.6	Transmitter Radiated and Band Edge Emissions	
3.7	Frequency Stability	53

Release Record

Report No.	Version	Description	Issued Date
FR320801AN	Rev. 01	Initial issue	Apr. 16, 2013

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.299MHz 46.34 (Margin 3.94dB) - AV	Pass
15.407(b) 15.209	Radiated Emissions	[dBuV/m at 3m]: 220.12MHz 44.91 (Margin 1.09dB) - QP	Pass
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(a)	RF Output Power	Power [dBm]: 11a: 16.37 HT20: 16.80 HT40: 16.60	Pass
15.407(a)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(a)	Peak Excursion	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS	
5150-5250	а	5180-5240	36-48 [4]	1	6-54 Mbps	
5150-5250	n (HT20)	5180-5240	36-48 [4]	3	MCS 0-23	
5150-5250	n (HT40)	5190-5230	38-46 [2]	3	MCS 0-23	

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Details

Ant. No.	Туре	Gain (dBi)	Connector	Remark
1	Embedded	2.58	UFL	
2	Embedded	1.73	UFL	
3	Printed	0.87		

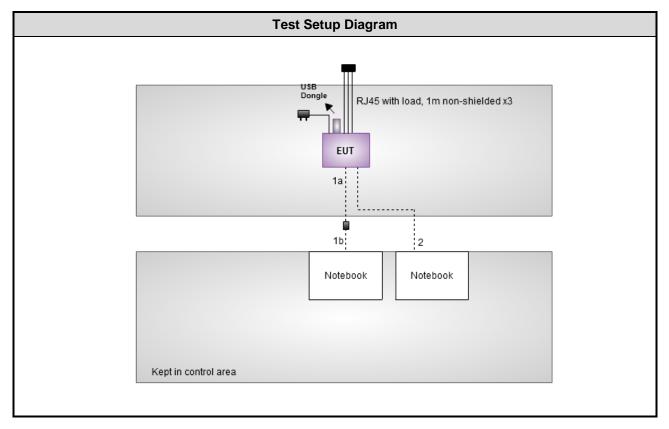
1.1.3 EUT Operational Condition

Supply Voltage	AC mains	DC	
Type of DC Source	Internal DC supply	External DC adapter	Battery

1.1.4 Accessories

	Accessories					
No. Equipment Description						
		Brand Name: DVE				
		Model Name: DSA-26PFA-15 FUS 120200				
1	1 AC Adapter 1	Power Rating: I/P: 100-240Vac, 50-60Hz, 0.8A O/P: 12Vdc, 2.0A				
		Power Line: 1.5m non-shielded cable w/o core				
		Brand Name: CWT				
		Model Name: SAG024F 4 US				
2	AC Adapter 2	Power Rating: I/P: 100-240Vac, 47-63Hz, 0.8A O/P: 12Vdc, 2.0A				
		Power Line: 1m non-shielded cable w/o core				
3	RJ45 cable	RJ45 2m shielded w/o core.				

1.1.5 Channel List


Frequency	band (MHz)	5150~5250		
802.11 a	/ n HT20	802.11n HT40		
Channel Frequency(MHz)		Channel	Frequency(MHz)	
36	5180	38	5190	
40	5200	46	5230	
44	5220			
48	5240			

1.1.6 Test Tool and Duty Cycle

Test Tool	Hyperterminal 5.1			
Duty Cycle Of Test Signal (%)	99.66% - IEEE 802.11a 98.43% - IEEE 802.11n (HT20) 96.48% - IEEE 802.11n (HT40)			
Duty Factor	0 - IEEE 802.11a 0 - IEEE 802.11n (HT20) 0.16 - IEEE 802.11n (HT40)			

1.2 Test Setup Chart

1.3 Local Support Equipment List

	Support Equipment List						
No.	Equipment	Brand	Model	S/N	FCC ID	Length (m)	
1	Notebook	DELL	E5420		DoC	a. RJ45 2m shielded w/o core. b. RJ45 10m non-shielded w/o core.	
2	Notebook	DELL	E5420		DoC	RJ45 10m non-shielded w/o core.	
3	USB Dongle	Transend	JetFlash V85				

Note: Item 1a was provided by client.

The Equipment List 1.4

EMI	Conducted Emission							
Test Site	Conduction room 1 / (CO01-WS)							
Instrument	Manufacturer Model No. Serial No. Calibration Date Calibration Un							
EMC Receiver	R&S	ESCS 30	100169	Dec. 12, 2012	Dec. 11, 2013			
LISN	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-667	Dec. 04, 2012	Dec. 03, 2013			
LISN (Support Unit)	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-666	Dec. 04, 2012	Dec. 03, 2013			
ISN	TESEQ	ISN T800	23342	Feb. 17, 2013	Feb. 16, 2014			
ISN	TESEQ	ISN T400	21653	Jun. 22, 2012	Jun. 21, 2013			
ISN	TESEQ	ISN T8-Cat6	27262	Sep. 17, 2012	Sep. 16, 2013			
ISN	TESEQ	ISN ST08	22589	Jan. 24, 2013	Jan. 23, 2014			
RF Current Probe	FCC	F-33-4	121630	Dec. 04, 2012	Dec. 03, 2013			
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 25, 2012	Dec. 24, 2013			
ESH3-Z6 V-Network	k R&S ESH3-Z6 100920 Nov. 21, 2012 Nov. 20, 2013							
Note: Calibration Interv	val of instruments listed a	above is one year.						

EMI	Radiated Emission	Radiated Emission									
Test Site	966 chamber1 / (03CH	966 chamber1 / (03CH01-WS)									
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Da									
3m semi-anechoic chamber	RIKEN	SAC-03	03CH01-WS	Jan. 04, 2013	Jan. 03, 2014						
Amplifier	Burgeon	BPA-530	100219	Nov. 28, 2012	Nov. 27, 2013						
Amplifier	Agilent	83017A	MY39501308	Dec. 18, 2012	Dec. 17, 2013						
Bilog Antenna	ScHwarzbeck	VULB9168	VULB9168-522	Jan. 11, 2013	Jan. 10, 2014						
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Feb. 18, 2013	Feb. 17, 2014						
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Jan. 14, 2013	Jan. 13, 2014						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 25, 2012	Dec. 24, 2013						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 25, 2012	Dec. 24, 2013						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 25, 2012	Dec. 24, 2013						
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-001	Dec. 25, 2012	Dec. 24, 2013						
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-002	Dec. 25, 2012	Dec. 24, 2013						
Spectrum Analyzer	R&S	FSV40	101498	Jan. 24, 2013	Jan. 23, 2014						
Receiver	ROHDE&SCHWARZ	ESR3	101658	Jan. 30, 2013	Jan. 29, 2013						
control	EM Electronics	EM1000	60612	N/A	N/A						

RF	RF Conducted	F Conducted								
Test Site	RF Conducted (TH01-)	RF Conducted (TH01-WS)								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until					
Spectrum Analyzer	R&S	FSV 40	101486	Nov. 14, 2012	Nov. 13, 2013					
Spectrum Analyzer	R&S	FSP 40	100593	Aug. 14, 2012	Aug. 13, 2013					
DC Power Source	G.W.	GPC-6030D	C671845	Jun. 19, 2012	Jun. 18, 2013					
AC Power Source	G.W	APS-9102	EL920581	Jul. 02, 2012	Jul. 01, 2013					
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	Nov. 21, 2012	Nov. 20, 2013					
Signal Generator	R&S	SMR40	100116	Jun. 26, 2012	Jun. 25, 2013					
Power Sensor	Anritsu	MA2411B	1027452	Sep. 08, 2012	Sep. 07, 2013					
Power Meter	Anritsu	ML2495A	1124009	Sep. 08, 2012	Sep. 07, 2013					
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345675/4	NA	NA					
RF Cable-3m	HUBER+SUHNER	SUCOFLEX_104	SN 345669/4	NA	NA					

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407 ANSI C63.10-2009 FCC KDB 412172 FCC KDB 789033 D01 General UNII Test procedures v01r02 FCC KDB 662911 D01 Multiple Transmitter Output v01r02

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty							
Parameters Uncertaint							
Bandwidth	±74.147 Hz						
Conducted power	±0.717 dB						
Power density	±2.687 dB						
Frequency error	±74.147 Hz						
Temperature	±0.3 °C						
AC conducted emission	±2.43 dB						
Radiated emission	±2.49 dB						

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By		
AC Conduction	CO01-WS	20°C / 53%	Skys Huang		
Radiated Emissions	03CH01-WS	25°C / 65%	Aska Huang Haru Yang		
RF Conducted	TH01-WS	24°C / 63%	Felix Sung		

➢ FCC site registration No.: 657002

➢ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

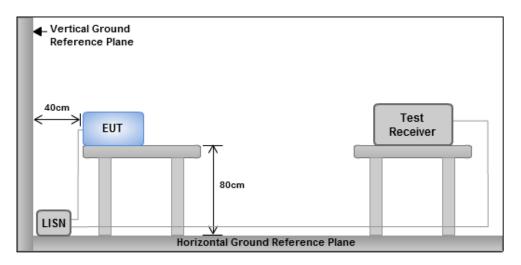
The Worst Test Modes and Channel Details						
Test Item(s)	Conducted Emissions					
Modulation, Data rate	HT20/MCS 16					
Test channel	5200					
Test Mode	Operating Mode Description					
A	DVE adapter					
В	CWT adapter					

	The Worst Test Modes and Channel Details					
Test Item(s)	Emission Bandwidth, RF Output Power, Peak Power Spectral Density Peak Excursion, Frequency Stability					
Modulation, Data rate 11a/6Mbps						
Test channel (MHz) 5180, 5200, 5240						
Test Mode Operating Mode Description						
- DVE adapter, ANT1 (chain 0)						
- DVE adapter, ANT2 (chain 1)						
- DVE adapter, ANT3 (chain 2)						
The EUT was pretested v and only its data was rec	with ANT1, ANT2 and ANT3, and found that ANT3 was the worst case for final test ord in this report.					
Modulation, Data rate	HT20/MCS 16, HT40/MCS 16					
Test channel (MHz) HT20: 5180, 5200, 5240 HT40: 5190, 5230						
Test Mode	Operating Mode Description					
-	DVE adapter, ANT1+ANT2+ANT3 (chain 0+chain 1+ chain 2)					

	The Worst Test Modes and Channel Details						
Test Item(s)	Radiated emission (below 1GHz)						
Modulation, Data rate	HT20/MCS 16						
Test channel (MHz)	nel (MHz) 5200						
Test Mode	Operating Mode Description						
A	DVE adapter						
В	CWT adapter						
Test Item(s)	Radiated emission (above 1GHz)						
Modulation, Data rate	11a/6Mbps						
Test channel (MHz)	11a: 5180, 5200, 5240						
Test Mode	Operating Mode Description						
A1	DVE adapter, ANT1 (chain 0)						
A2	DVE adapter, ANT2 (chain 1)						
A3	DVE adapter, ANT3 (chain 2)						
	with ANT1 and ANT2, and found that ANT1 was the worst case. Therefore, ANT1 test and only its data was record in this report.						
Modulation, Data rate	HT20/MCS 16, HT40/MCS 16						
Test channel (MHz)	11a, HT20: 5180, 5200, 5240 HT40: 5190, 5230						
Test Mode	Operating Mode Description						
A1	DVE adapter, ANT1+ANT2+ANT3 (chain 0+chain 1+ chain 2)						

3 Transmitter Test Results

3.1 Conducted Emissions

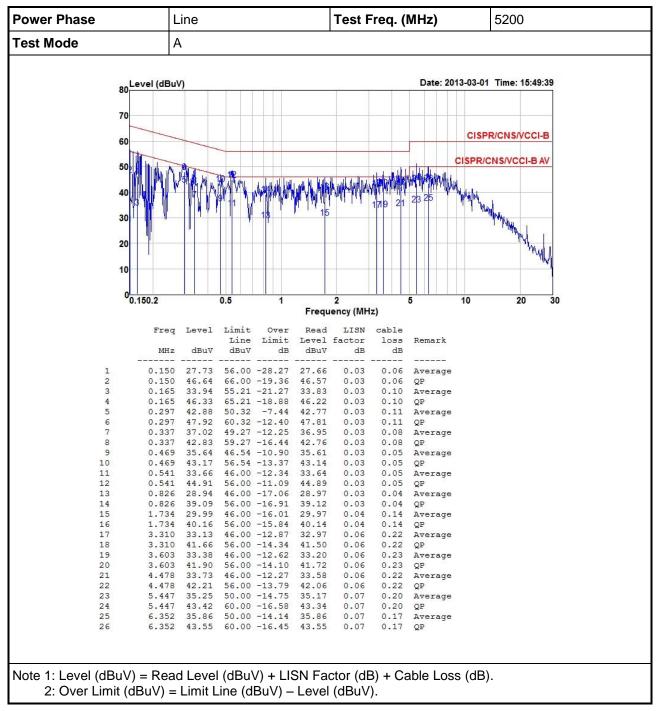

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5 66 - 56 * 56 - 46 *							
0.5-5 56 46							
5-30 60 50							
Note 1: * Decreases with the logarithm of the frequency.							

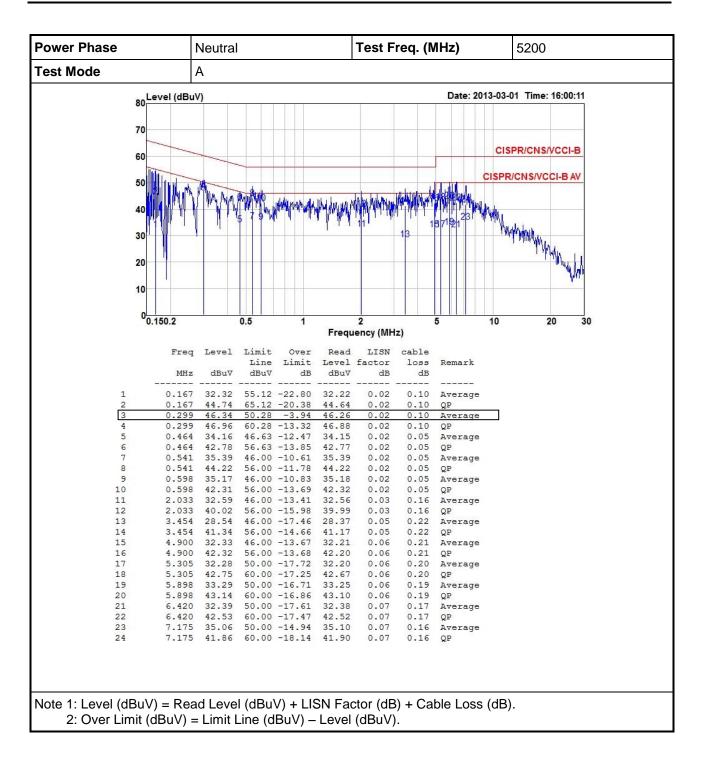
3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.

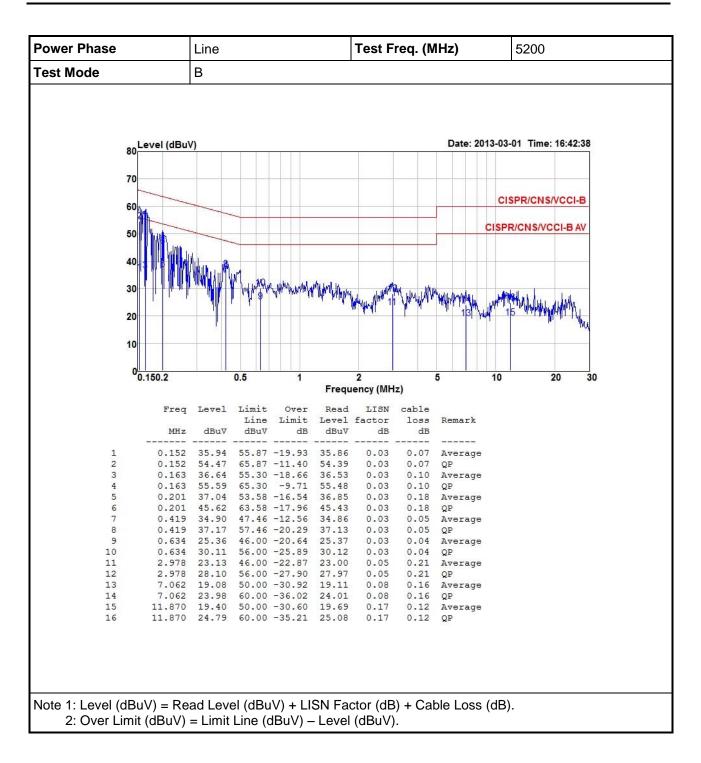
3.1.3 Test Setup



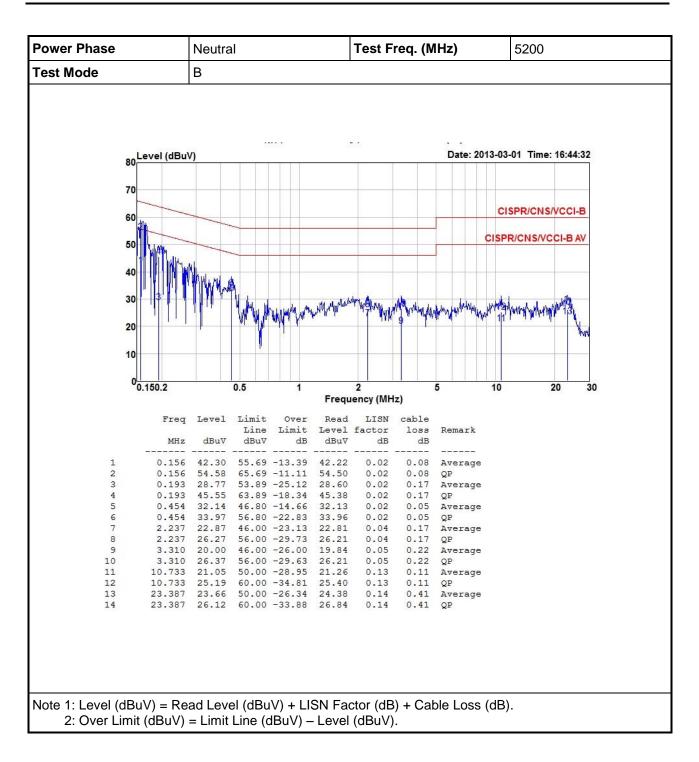
Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.4 Test Result of Conducted Emissions

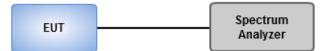


Tel: 886-3-271-8666


Fax: 886-3-318-0155

 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

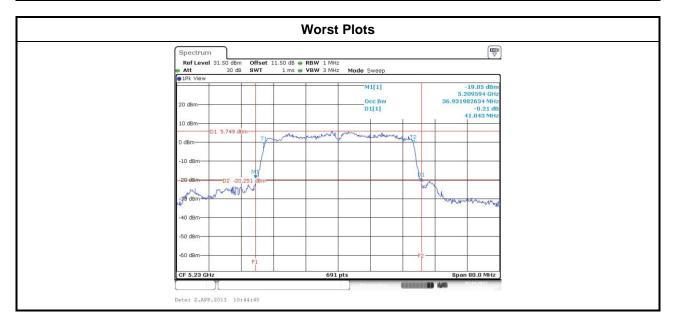
 Tel: 886-3-271-8666
 Fax: 886-3-318-0155



3.2 Emission Bandwidth

3.2.1 Test Procedures

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.


3.2.2 Test Setup

3.2.3 Test Result of Emission Bandwidth

Modulation	N	Freq.	26dE	Band	width (I	MHz)	99%	Bandv	vidth (N	/IHz)	Limit	(dBm)
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	99% BW	26dB BW
11a	1	5180			28.41				17.31		17.0	16.38
11a	1	5200			28.41				17.37		17.0	16.40
11a	1	5240			28.70				17.31		17.0	16.38
HT20	3	5180	26.78	27.25	27.13		18.00	18.06	18.00		17.0	16.55
HT20	3	5200	27.07	27.42	26.49		18.00	18.06	18.00		17.0	16.55
HT20	3	5240	26.55	27.65	26.96		18.00	18.00	18.00		17.0	16.55
HT40	3	5190	40.46	40.46	40.23		36.70	36.93	36.70		17.0	17.0
HT40	3	5230	40.81	41.04	40.58		36.58	36.93	36.82		17.0	17.0

3.3 **RF Output Power**

3.3.1 Limit of RF Output Power

	Frequency Band (GHz)	Limit					
\boxtimes	5.15~5.25	50mW or 4dBm+10 log B					
	5.25~5.35	250mW or 11dBm+10 log B					
	5.47~5.725 250mW or 11dBm+10 log B						
Note	Note: "B" is the 26dB emission bandwidth in MHz.						

3.3.2 Test Procedures

Spectrum analyzer

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Compute power by integrating the spectrum across the 26 dB EBW of the signal using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges.
- \Box 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
 - 2. Set sweep time \geq 10 * (number of points in sweep) * (symbol period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Compute power by integrating the spectrum across the 26 dB EBW of the signal using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges.
- \Box 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
 - Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Compute power by integrating the spectrum across the 26 dB EBW of the signal using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges.
 - 5. Add 10 $\log(1/x)$, where x is the duty cycle.

Power meter

A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than 6dB bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

RF Output Power (Spectrum Analyzer)

RF Output Power (Power Meter)

3.3.4 Test Result of Maximum Conducted Output Power

Modulation	tion Freq.		4	verage Po	ower (dBm	Total	Total	Limit	
Mode	Ν _{τχ}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
11a	1	5180			16.34		43.053	16.34	17
11a	1	5200			16.37		43.351	16.37	17
11a	1	5240			16.31		42.756	16.31	17
HT20	3	5180	12.15	11.67	12.03		47.054	16.73	17
HT20	3	5200	12.37	11.61	12.08		47.890	16.80	17
HT20	3	5240	11.90	11.58	12.10		46.094	16.64	17
HT40	3	5190	8.12	7.79	8.63		19.793	12.97	17
HT40	3	5230	11.80	11.20	12.40		45.696	16.60	17

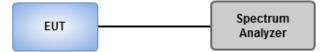
3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density

	Frequency Band (GHz)	Limit (dBm)
\square	5.15~5.25	4
	5.25~5.35	11
	5.47~5.725	11

3.4.2 Test Procedures

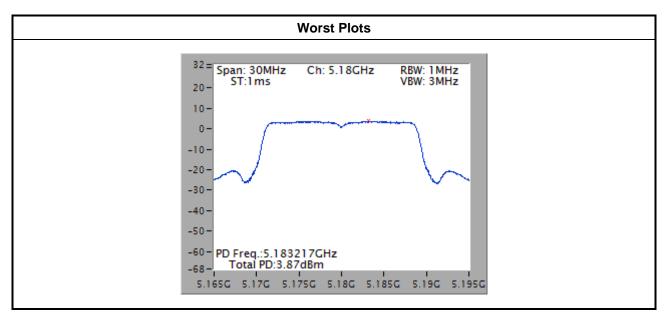
Method SA-1


- 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
- 2. Trace average 100 traces.
- 3. Use the peak marker function to determine the maximum amplitude level.

Method SA-2

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
- 2. Set sweep time \geq 10 * (number of points in sweep) * (symbol period of the transmitted signal).
- 3. Perform a single sweep.
- 4. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
 - 2. Set sweep time \geq 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 $\log(1/x)$, where x is the duty cycle.

Note: 11a and HT20 uses Method SA-1, HT40 uses Method SA-2 Alternative.


3.4.3 Test Setup

3.4.4	Test Result of Peak Power Spectral Density
U	

Modulation Mode	N _{TX}	Freq. (MHz)	PSD (dBm)	Duty Factor	Total PSD (dBm)	Limit (dBm)
11a	1	5180	3.86	0	3.86	4
11a	1	5200	3.80	0	3.80	4
11a	1	5240	3.77	0	3.77	4
HT20	3	5180	3.87	0	3.87	4
HT20	3	5200	3.84	0	3.84	4
HT20	3	5240	3.83	0	3.83	4
HT40	3	5190	-3.00	0.16	-2.84	4
HT40	3	5230	0.56	0.16	0.72	4

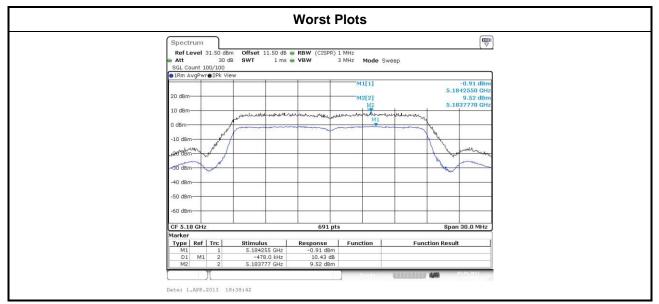
3.5 Peak Excursion

3.5.1 Peak Excursion Limit

Peak excursion of the modulation envelope shall not exceed 13 dB across any 1 MHz bandwidth.

3.5.2 Test Procedures

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = peak.
- 2. Trace mode = max-hold. Allow the sweeps to continue until the trace stabilizes.
- 3. Use the peak search function to find the peak of the spectrum.
- 4. Use the procedure of section 3.4.2 to measure the PPSD.
- 5. Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD


3.5.3 Test Setup

3.5.4 Test Result of Peak Excursion

Madulation		From	Peak Value (dBm)			PPSD (dBm)			Dutu	Peak Excursion (dB)				I inclu		
Modulation Mode	N _{TX}	Freq. (MHz)		Chair	ns No.			Chair	ns No.		Duty Factor		Chair	ns No.		Limit (dB)
			0	1	2	3	0	1	2	3		0	1	2	3	
11a	1	5180			12.63				3.86		0			8.77		13
11a	1	5200			12.00				3.80		0			8.20		13
11a	1	5240			12.28				3.77		0			8.51		13
HT20	3	5180	9.33	8.24	9.52		-0.41	-1.08	-0.91		0	9.74	9.32	10.43		13
HT20	3	5200	9.09	9.29	9.29		-0.58	-0.9	-0.93		0	9.67	10.19	10.22		13
HT20	3	5240	8.80	8.38	9.30		-0.52	-1.07	-0.67		0	9.32	9.45	9.97		13
HT40	3	5190	1.59	1.49	2.73		-7.93	-8.03	-7.08		0.16	9.36	9.36	9.65		13
HT40	3	5230	5.45	5.21	5.81		-3.65	-4.85	-3.88		0.16	8.94	9.90	9.53		13

Note1: Peak exclusion = Peak value – PPSD

Note2: If duty cycle of test signal is < 98%, duty factor is required to PPSD

Peak exclusion = Peak value - (PPSD + duty factor)

3.6 Transmitter Radiated and Band Edge Emissions

3.6.1 Limit of Transmitter Radiated and Band Edge Emissions

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

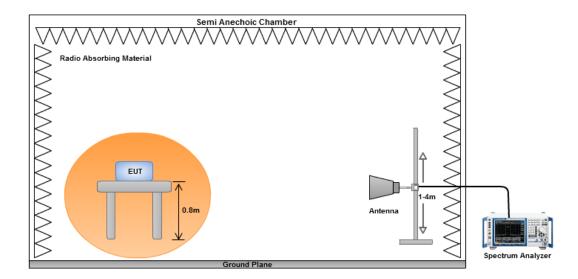
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

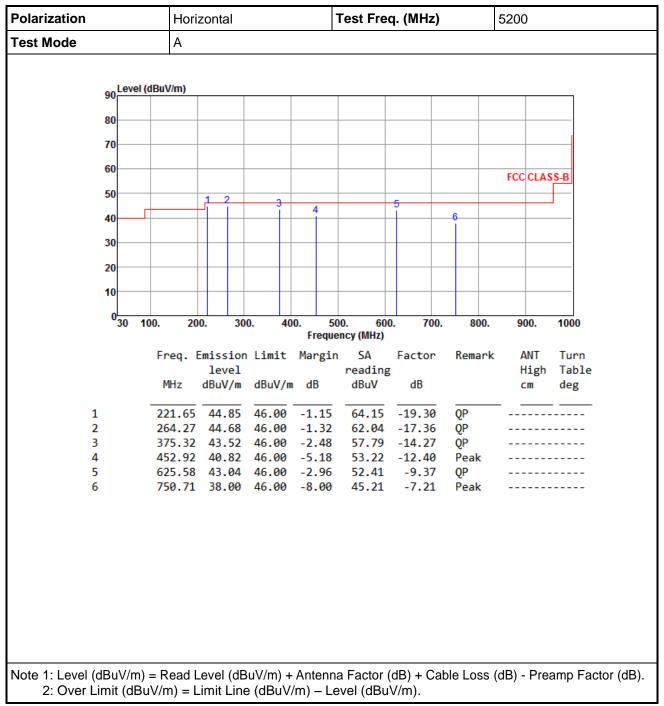
Un-restricted band emissions above 1GHz Limit					
Operating Band	Limit				
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]				
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]				
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]				
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]				

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

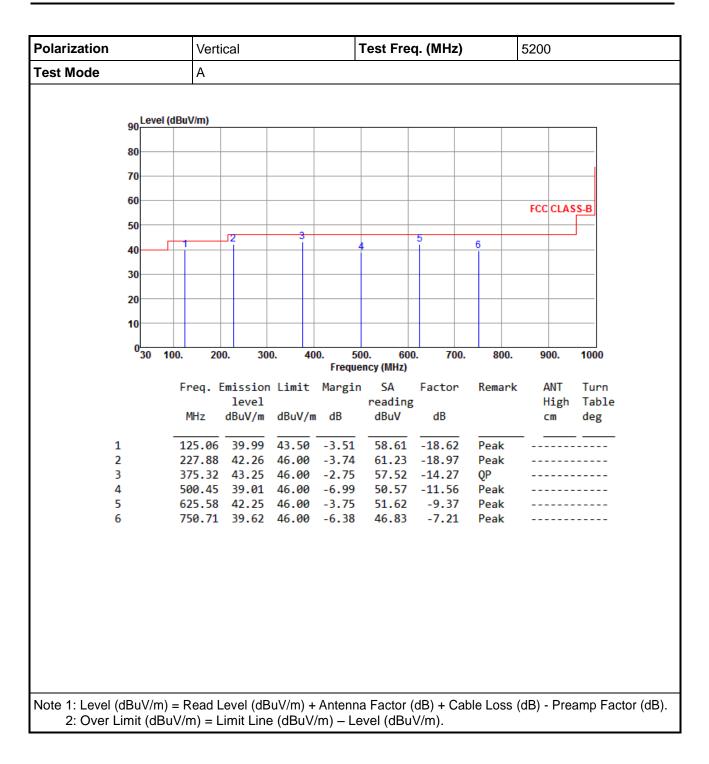

3.6.2 Test Procedures

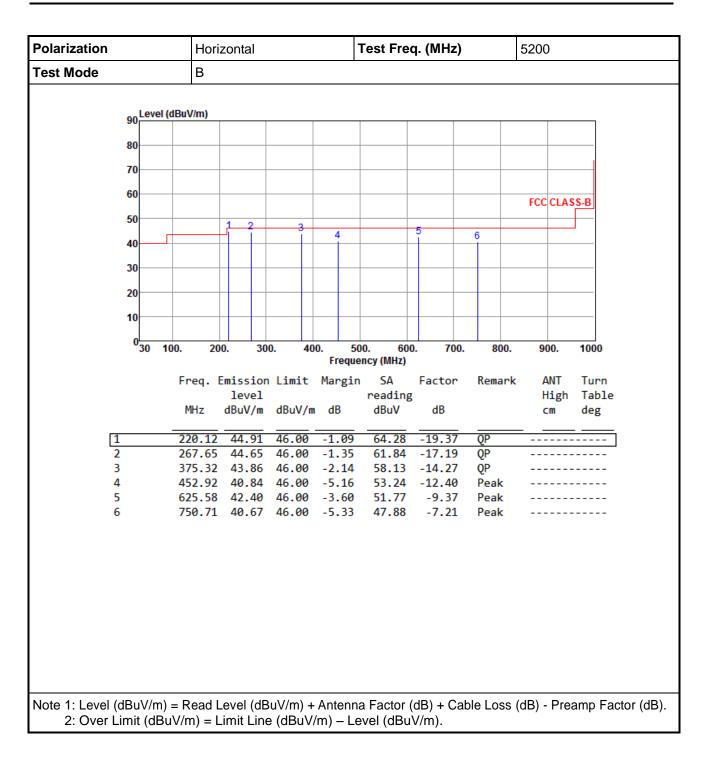
- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

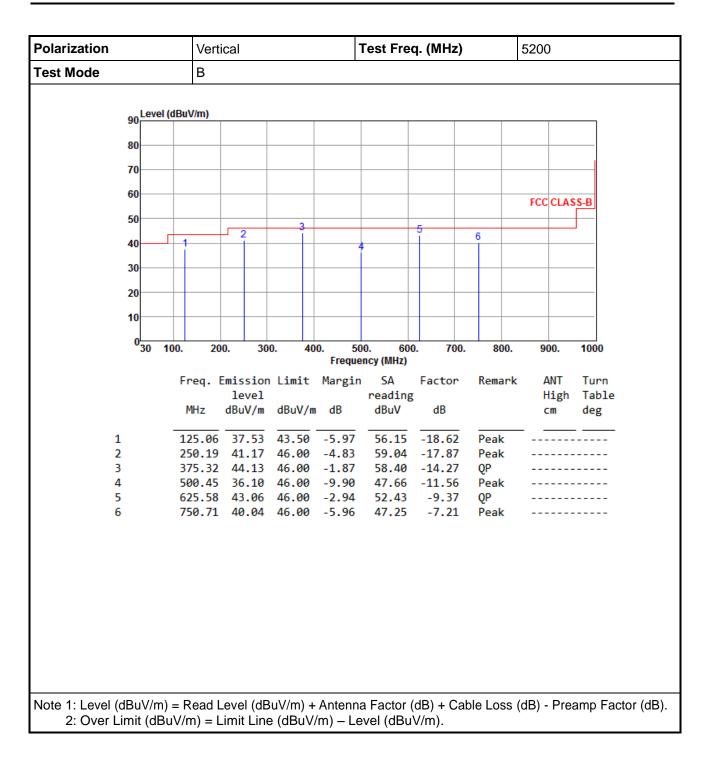

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=3MHz and RMS detector is for average measured value of radiated emission above 1GHz.

3.6.3 Test Setup

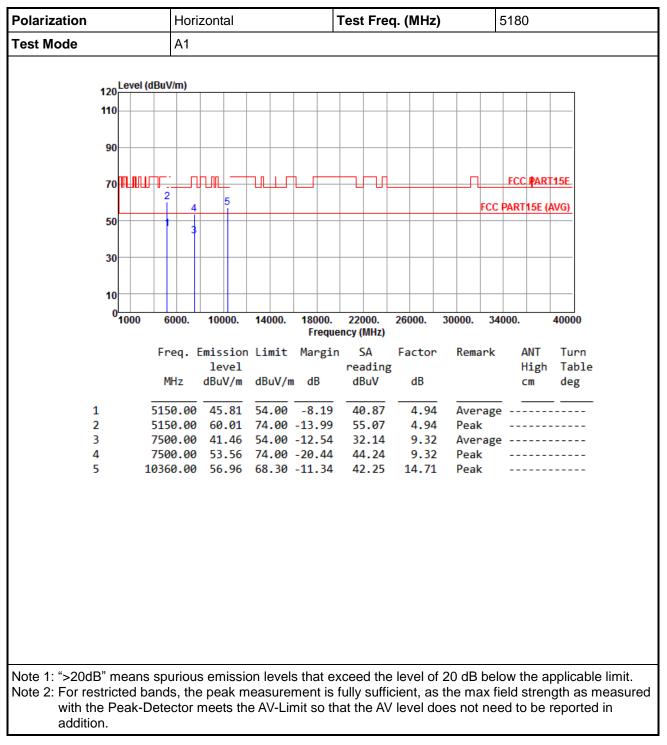


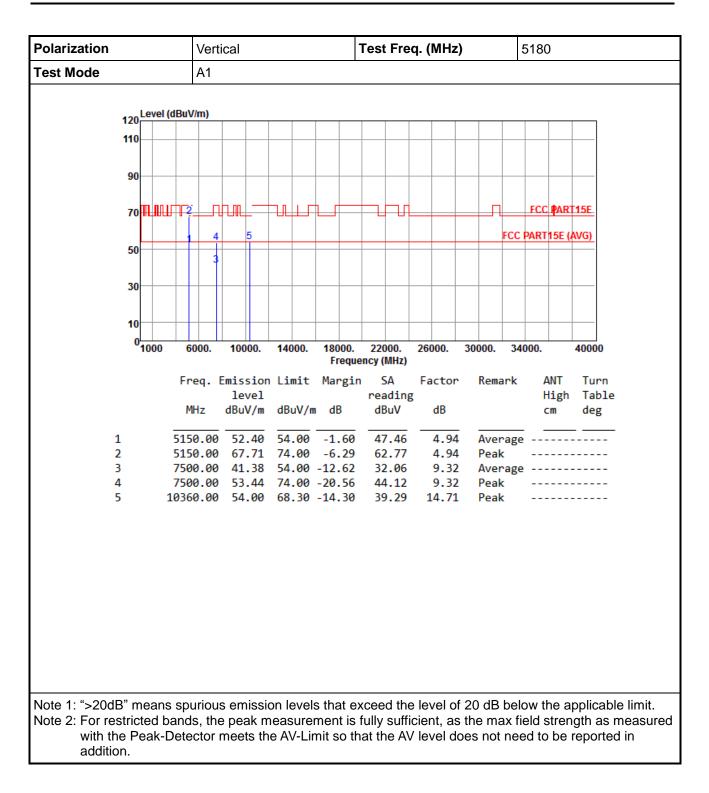


No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

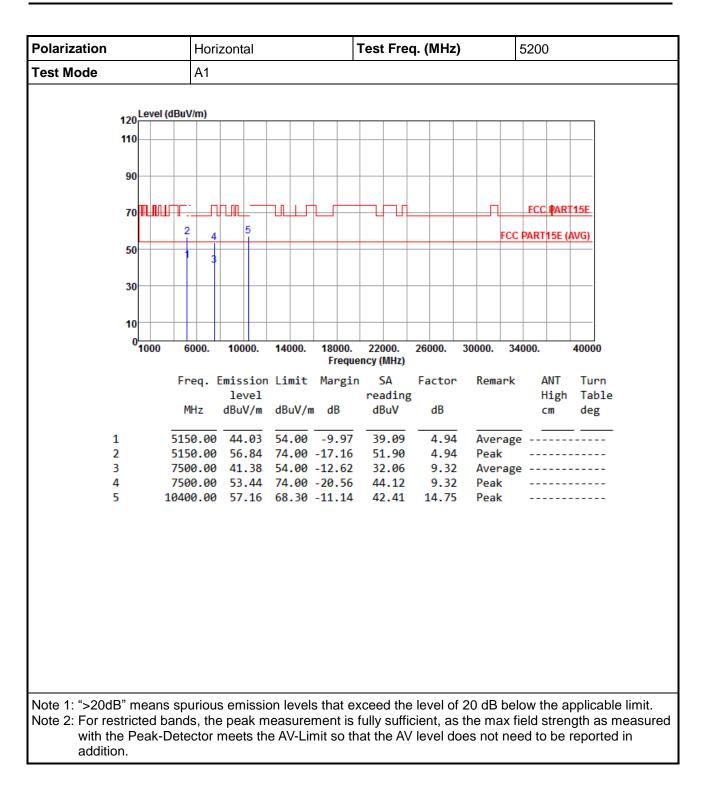


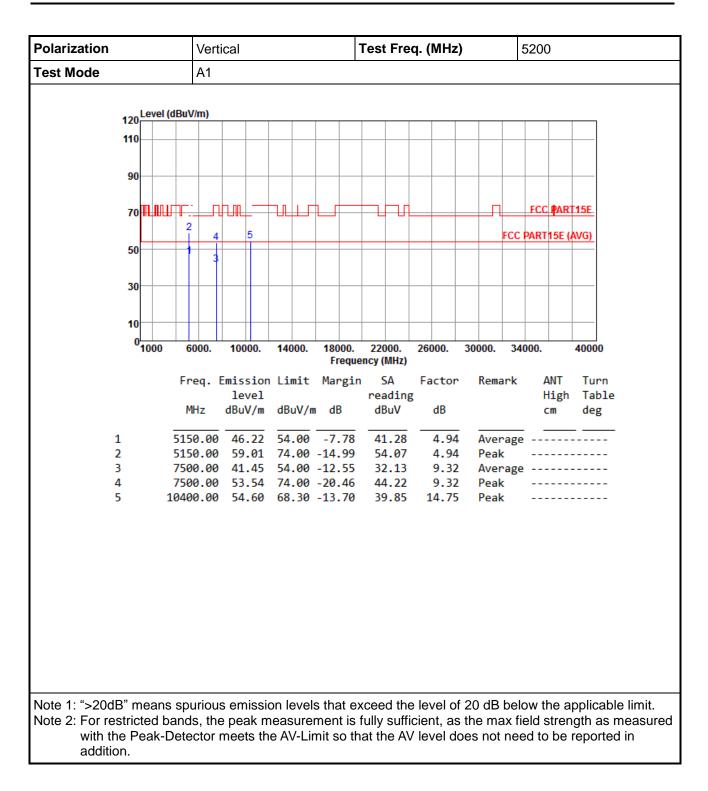
No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155





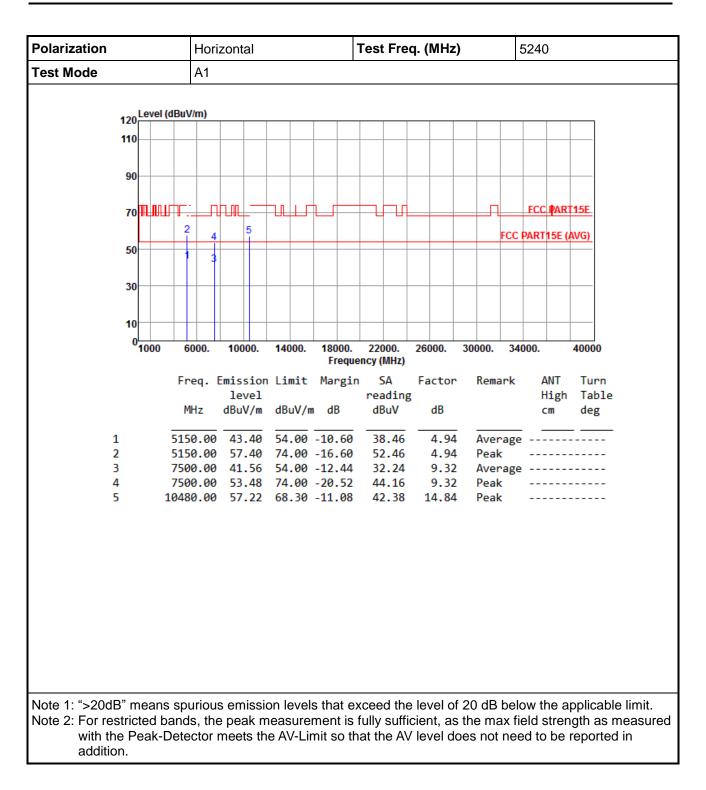
3.6.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a





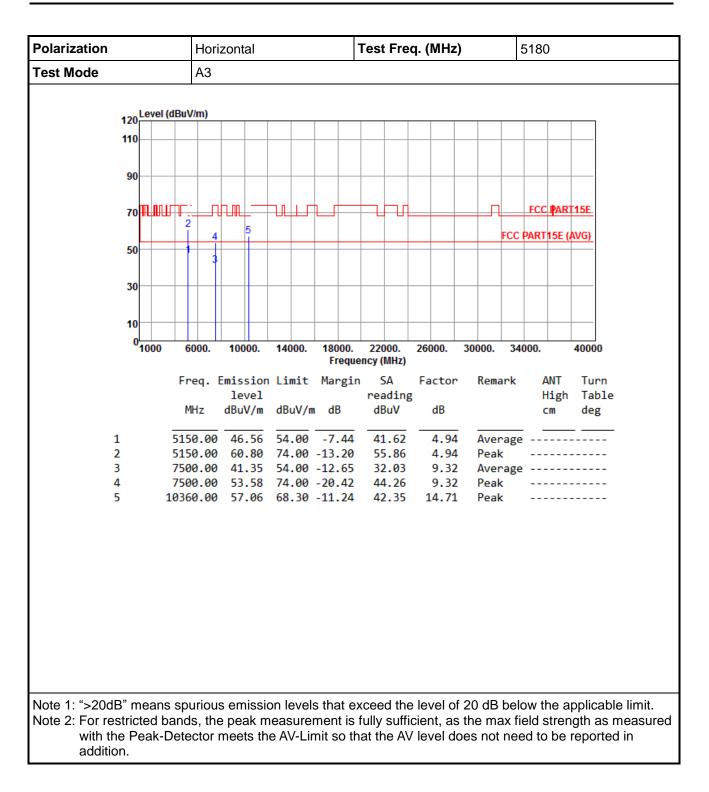
 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

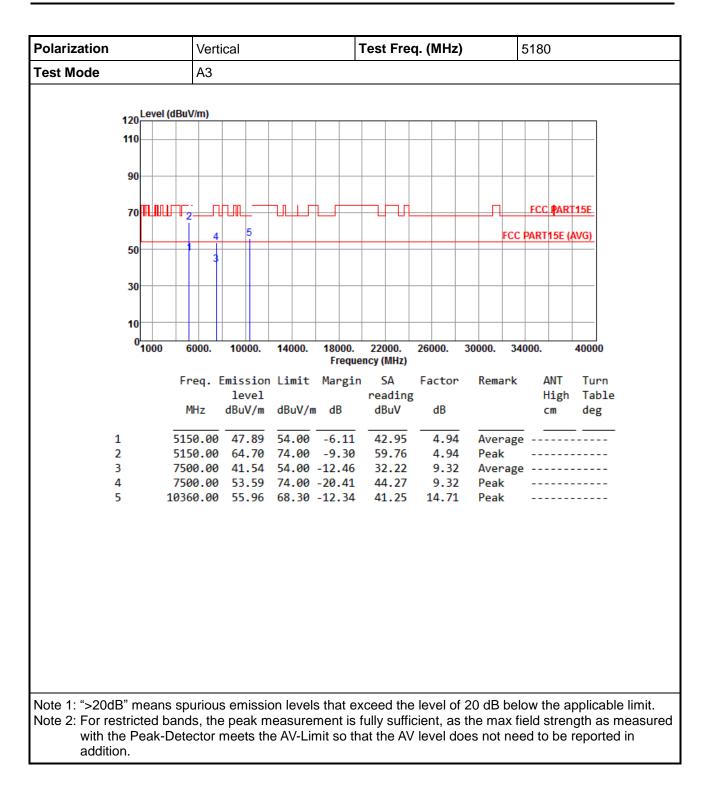
 Tel: 886-3-271-8666
 Fax: 886-3-318-0155

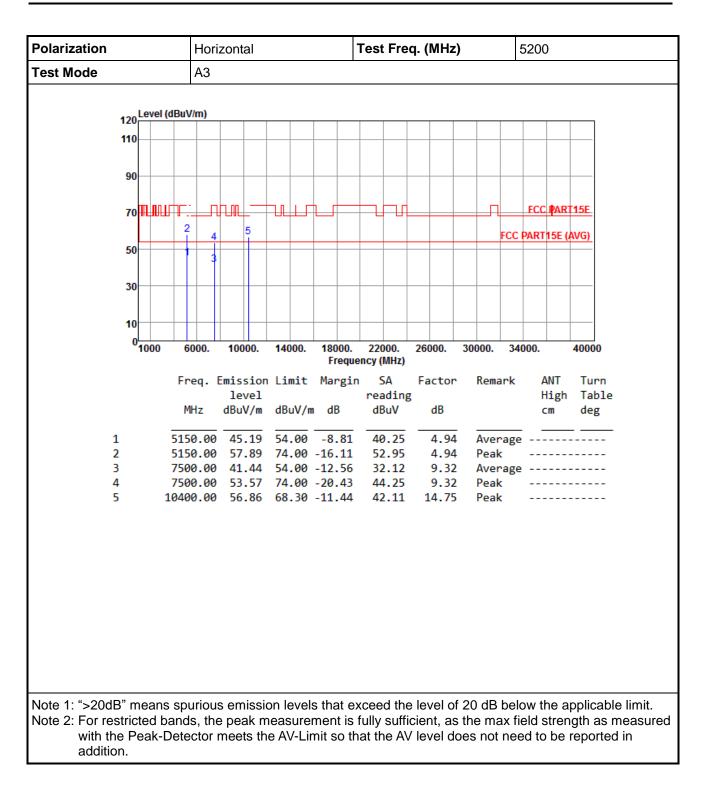


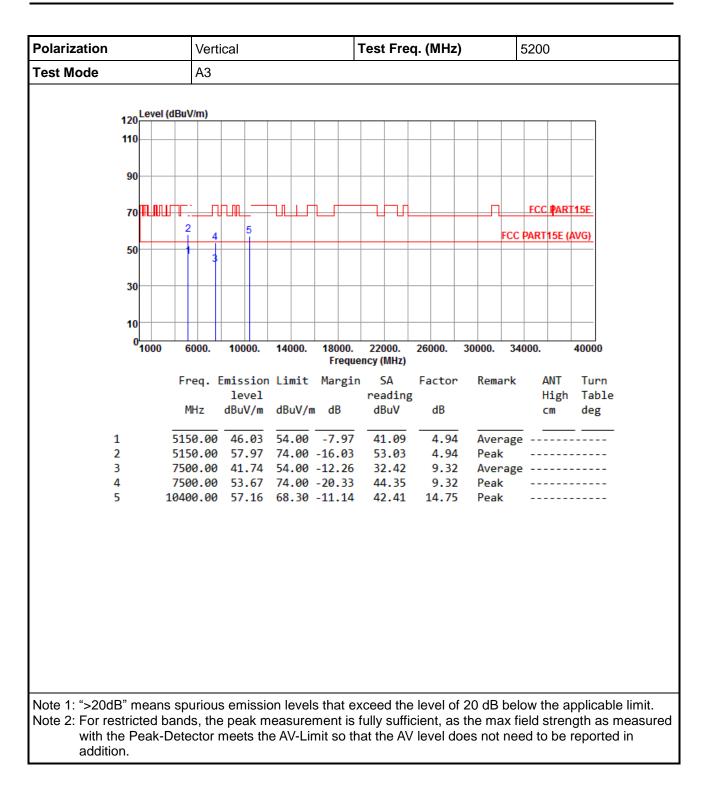


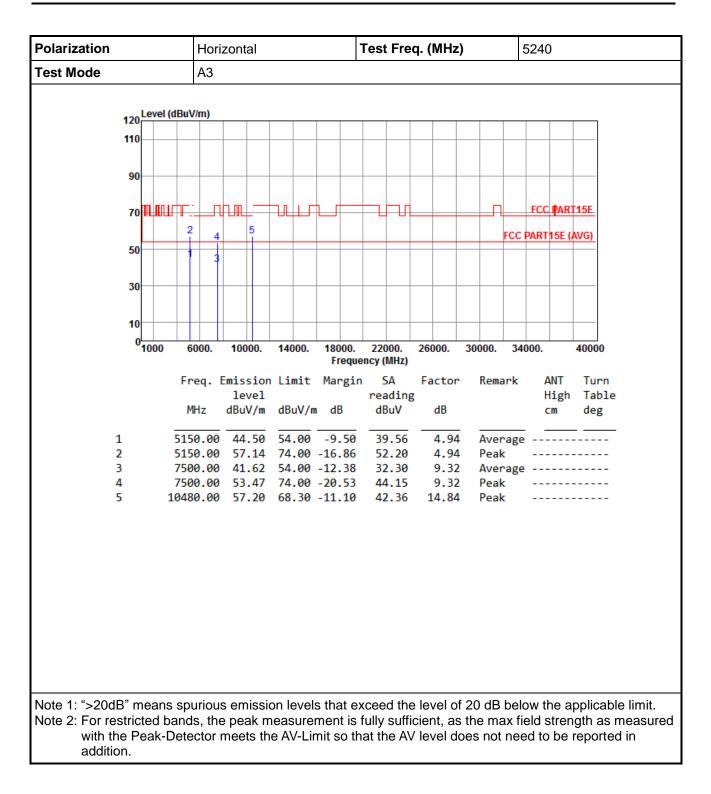
 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

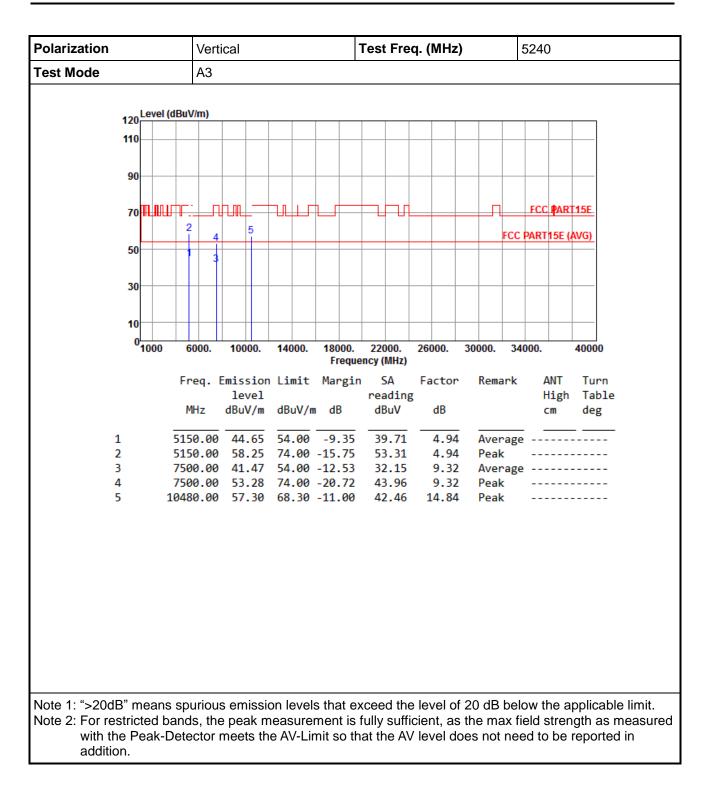

 Tel: 886-3-271-8666
 Fax: 886-3-318-0155





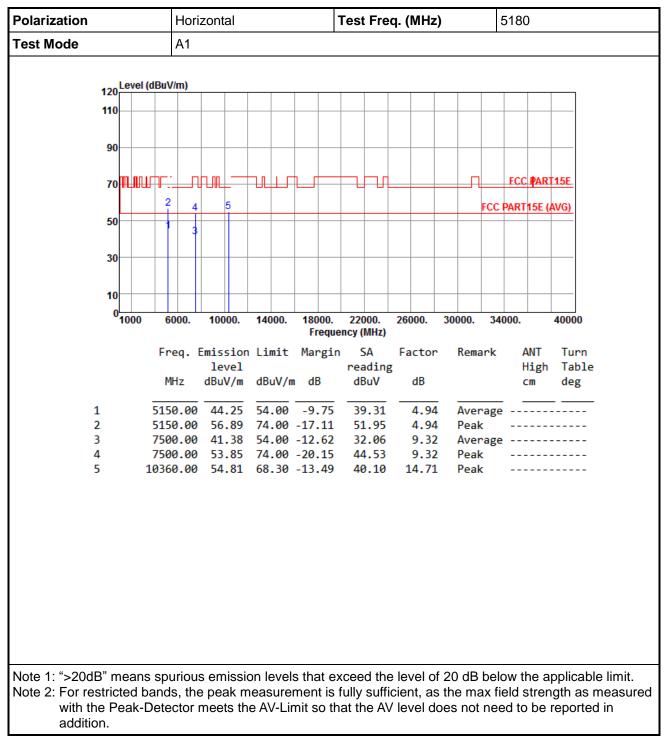


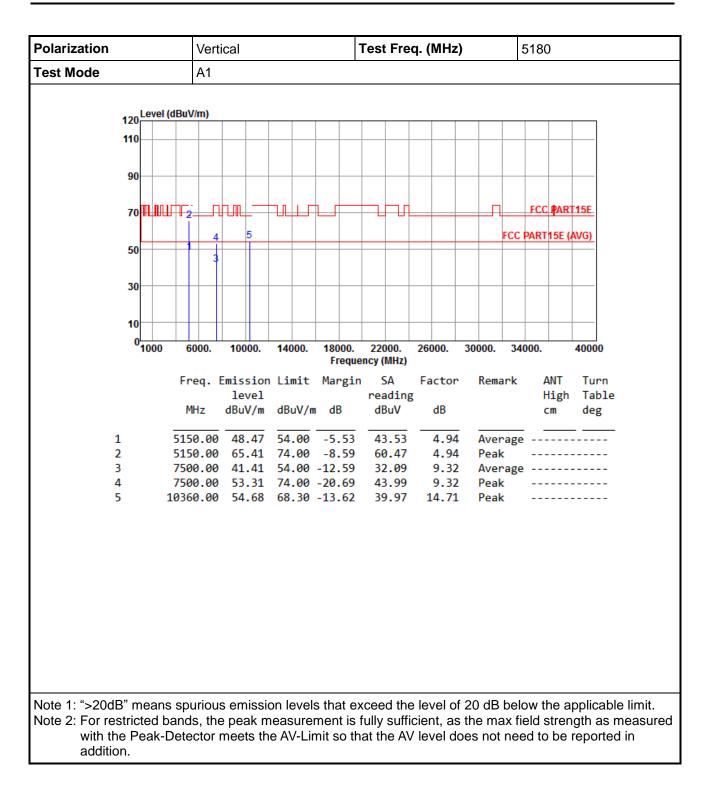


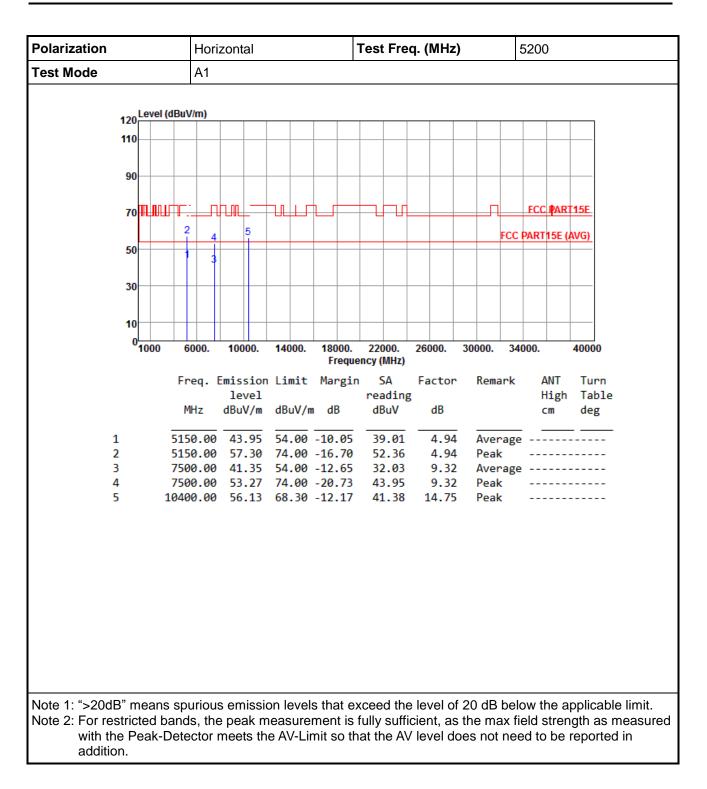


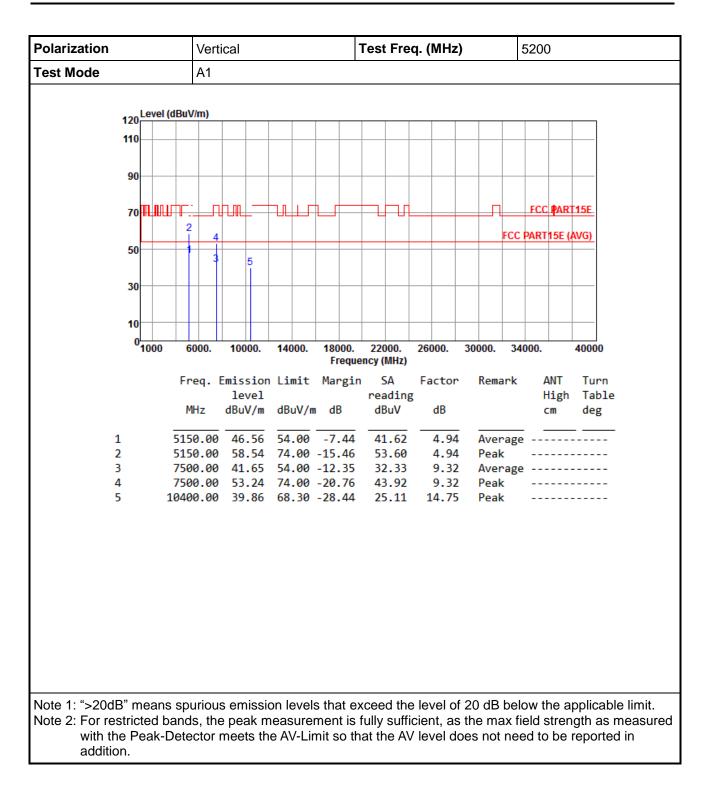
Tel: 886-3-271-8666

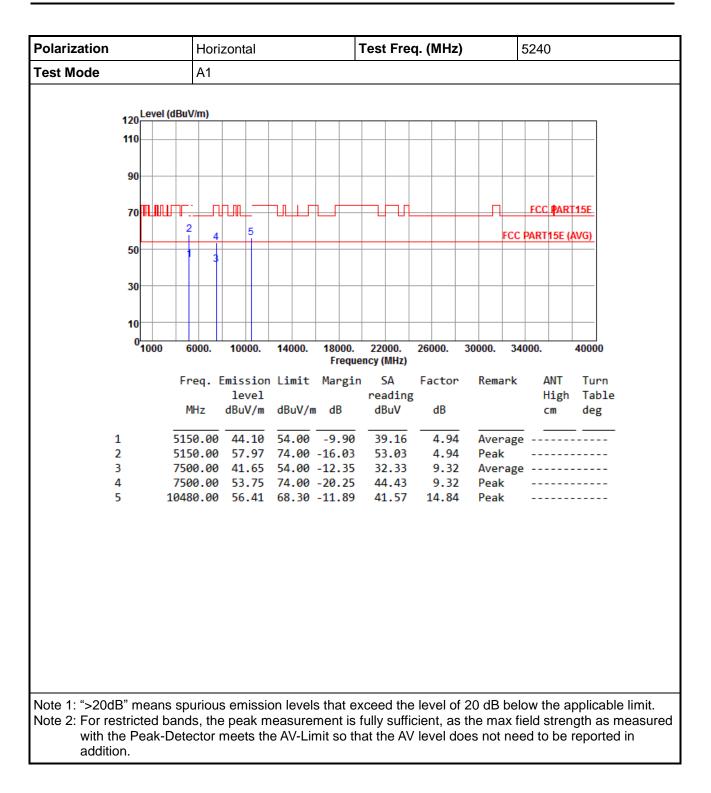
Fax: 886-3-318-0155

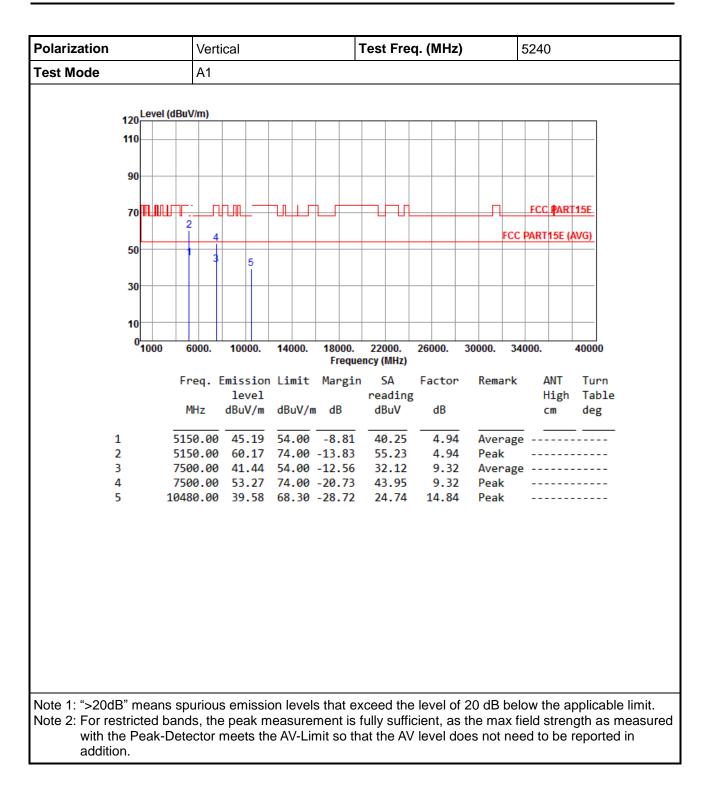


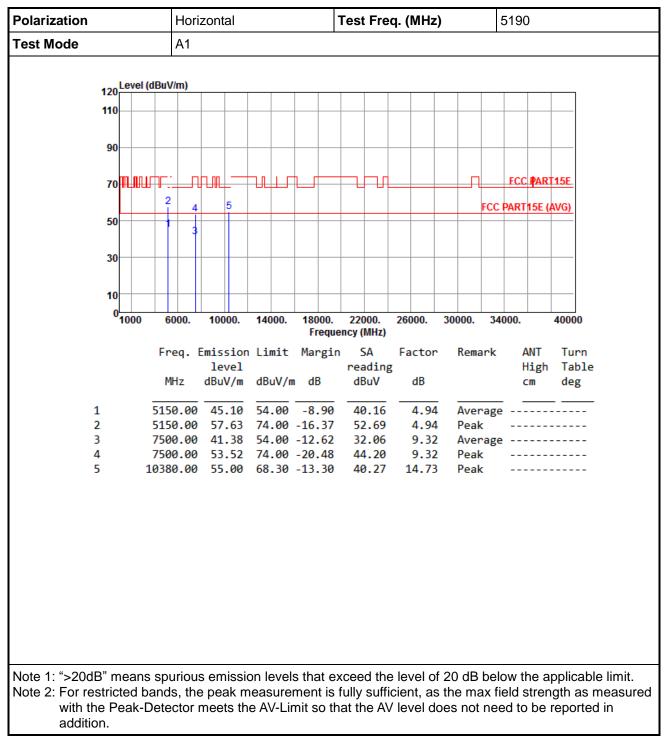


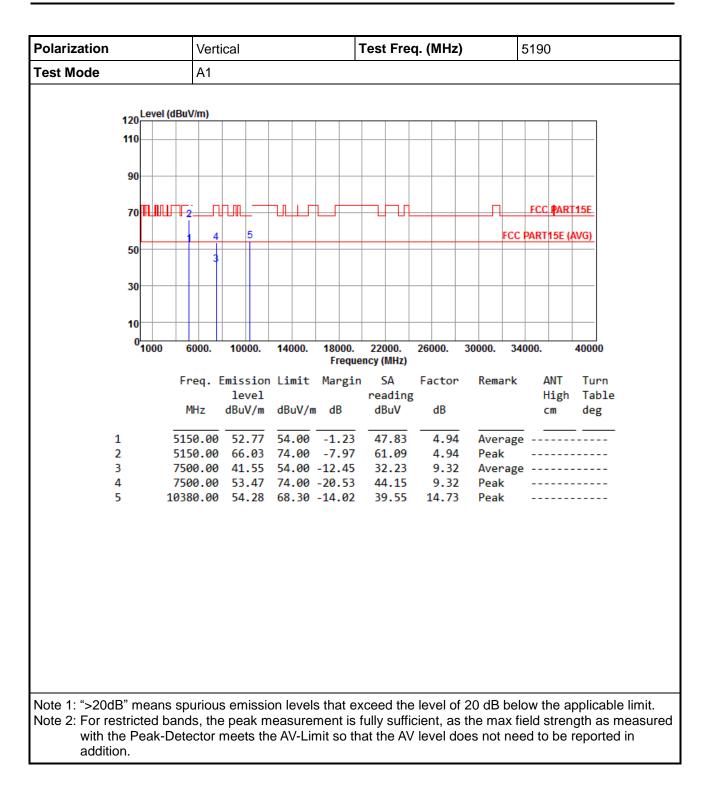

3.6.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

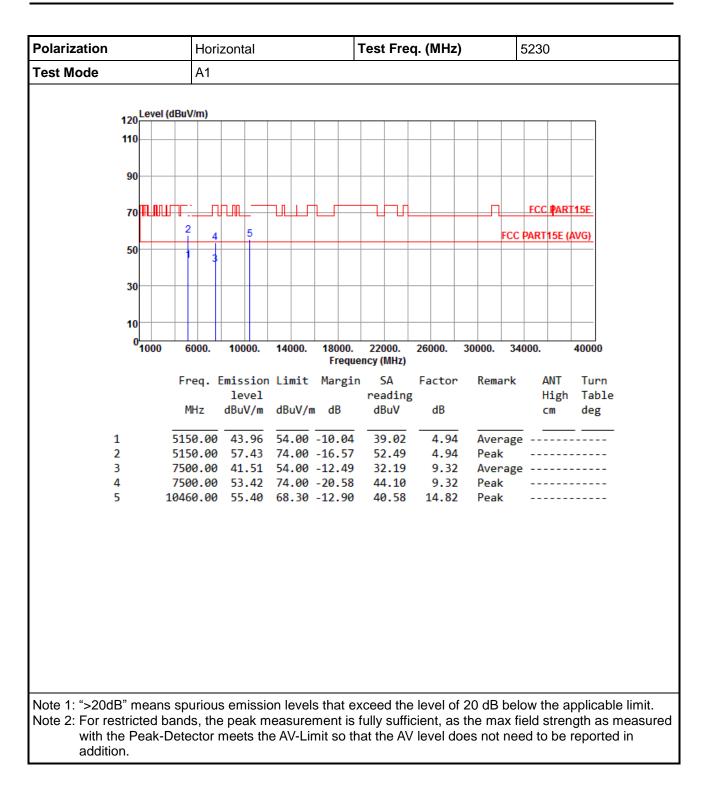


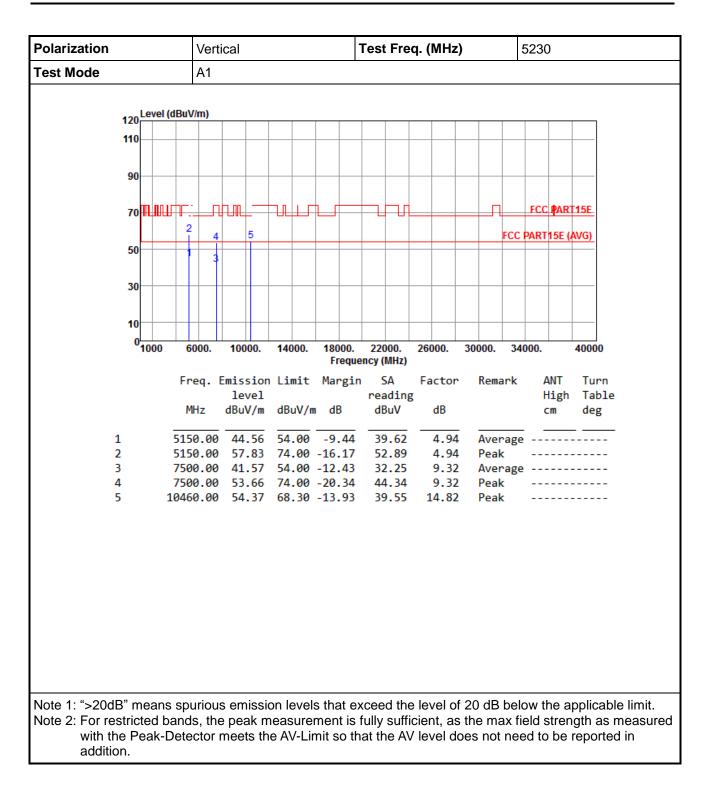




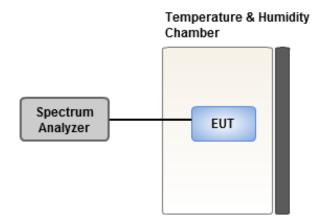





3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40



3.7 Frequency Stability


3.7.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.7.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- 2. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.7.3 Test Setup

Frequency: 5200 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	-0.08	0.03	0.27	0.50	
T20°CVmin	4.88	5.18	5.41	5.26	
T50°CVnom	3.68	4.28	4.05	4.14	
T40°CVnom	-1.55	-0.80	-2.03	-1.25	
T30°CVnom	0.22	0.12	0.14	0.61	
T20°CVnom	1.00	0.90	1.13	0.76	
T10°CVnom	0.91	1.12	0.92	1.21	
T0°CVnom	0.92	0.89	0.77	1.27	
T-10°CVnom	0.77	0.55	1.42	0.95	
T-20°CVnom	0.13	0.24	0.68	0.12	
T-30°CVnom	-0.20	-0.50	0.09	0.30	
Vnom [V]: 110 Vi		/max [V]: 126.5	Vmin [V]: 9	/min [V]: 93.5	
Tnom [°C]: 20 7		Tmax [°C]: 50	Tmin [°C]: -	Tmin [°C]: -30	

3.7.4 Test Result of Frequency Stability

=END=