

FCC C2PC Test Report

FCC ID	:	MXF-WMDS183
Equipment	:	LoRa RF Board
Model No.	:	WMDS-183
Brand Name	:	Gemtek
Applicant	:	Gemtek Technology Co., Ltd.
Address	:	No.15-1 Zhoughua Rd, Hsinchu Industrial Park, Hukou, Hsinchu, Taiwan, R.O.C
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Sep. 12, 2018
Tested Date	:	Sep. 18 ~ Nov. 06, 2018

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Approved by:

ong Cher

Along Cherly/ Assistant Manager Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	3
1.3	Test Setup Chart	3
1.4	The Equipment List	9
1.5	Test Standards10)
1.6	Measurement Uncertainty10)
2	TEST CONFIGURATION	I
2.1	Testing Condition11	I
2.2	The Worst Test Modes and Channel Details	I
3	TRANSMITTER TEST RESULTS12	2
3.1	Conducted Emissions	
3.2	Unwanted Emissions into Restricted Frequency Bands17	7
4	TEST LABORATORY INFORMATION	7

Release Record

Report No.	Version	Description	Issued Date
FR782401-04	Rev. 01	Initial issue	Nov. 21, 2018

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.295MHz 40.25 (Margin -10.14dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 102.48MHz 39.99 (Margin -3.51dB) - PK	Pass

1 General Description

1.1 Information

This report is prepared for FCC class II change.

This report is issued as a supplementary report to original ICC report no. FR782401. The difference is adding a host as section 1.1.2

In this report, conducted emission and radiated emission tests had been re-tested and only its data was presented in the following sections.

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)Ch. Freq. (MHz)Channel NumberData Rate (bit/sec)Spread FactorChannel Bandwidth (kHz)						
902 ~ 928	923.3 ~ 927.5	1 ~ 8 [8]	980 ~ 21900	12 ~ 7	500	
Note 1: RF output power specifies that Maximum Conducted (Average) Output Power. Note 2: The device uses CSS modulation.						

1.1.2 Information of Host

Brand Name	machineQ
Product name 8-Channel LoRa Gateway	
Model name HXQX1AP0S	
Certified module (installed in the system)	FCC ID: XMR201605EC25A

1.1.2.1 Antenna of Host

For LoRa

Ant. No.	Brand	Туре	Gain (dBi)	Connector	Remark
1	LoRa antenna (External)	Dipole	0.96	SMA	Lora Antenna
2	LoRa antenna (Internal)	Monopole	-1.65	UFL	Lora Antenna

For LTE / WCDMA

Ant. No.	Туре	Connector	Gain (dBi)	Operating Band
			4.49	LTE Band 2 / WCDMA Band II
1	PIFA	UFL	3.59	LTE Band 4 / WCDMA Band IV
			2.05	LTE Band 12 / WCDMA Band V

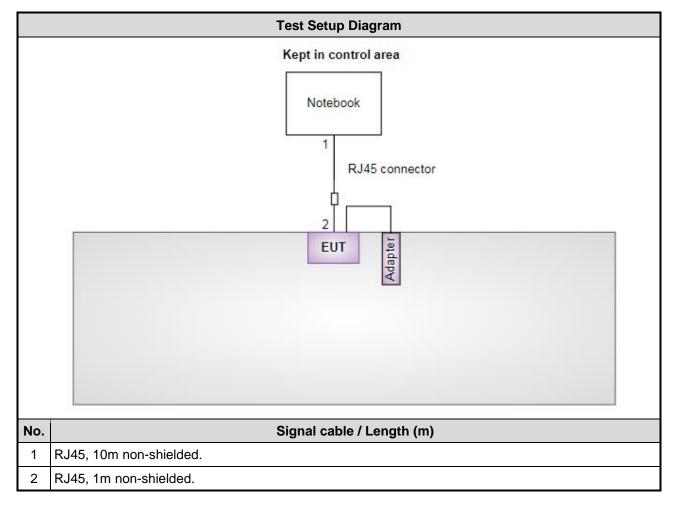
1.1.2.2 Power Supply Type of Host

Power Supply Type	12Vdc from adapter

1.1.2.3 Accessories of Host

	Accessories				
No. Equipment Description		Description			
1	AC adapter	Brand: machineQ Model: WB-24J12FU Power Rating: I/P: 100-240Vac, 50-60Hz, 0.7A Max O/P: 12Vdc, 2A Power Line: 1.2m non-shielded without core			
2	AC adapter	Brand: PHIHONG Model: PSAC24A-120L6 Power Rating: I/P: 100-240Vac, 50-60Hz, 51-73VA O/P: 12Vdc, 2A Power Line: 1.2m non-shielded without core			
3	RJ45 cable	1m shielded without core			

1.1.3 Channel List


Channel	Frequency(MHz)
1	923.3
2	923.9
3	924.5
4	925.1
5	925.7
6	926.3
7	926.9
8	927.5

1.2 Local Support Equipment List

	Support Equipment List						
No.	No. Equipment Brand Model FCC ID Remarks						
1	Notebook	DELL	Latitude E6430	DoC			

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Conducted Emission					
Test Site	Conduction room 1 / ((CO01-WS)				
Tested Date	Sep. 18, 2018					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until	
Receiver	R&S	ESR3	101657	Jan. 05, 2018	Jan. 04, 2019	
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 13, 2017	Nov. 12, 2018	
RF Cable-CON	EMC	EMCCFD300-BM-B M-6000	50821	Dec. 18, 2017	Dec. 17, 2018	
Measurement Software	AUDIX	e3	6.120210k	NA	NA	
Note: Calibration Inte	rval of instruments liste	d above is one year.		·	•	

Test Item	Radiated Emission						
Test Site	966 chamber1 / (03Cl	H01-WS)					
Tested Date	Nov. 05 ~ Nov. 06, 20	18					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101498	Dec. 04, 2017	Dec. 03, 2018		
Receiver	R&S	ESR3	101658	Nov. 20, 2017	Nov. 19, 2018		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 18, 2018	Jul. 17, 2019		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 20, 2017	Dec. 19, 2018		
Preamplifier	EMC	EMC02325	980225	Jul. 20, 2018	Jul. 19, 2019		
Preamplifier	Agilent	83017A	MY39501308	Oct. 04, 2018	Oct. 03, 2019		
Preamplifier	EMC	EMC184045B	980192	Aug. 09, 2018	Aug. 08, 2019		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	May 09, 2018	May 08, 2019		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 07, 2017	Dec. 06, 2018		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 07, 2017	Dec. 06, 2018		
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	16052	Dec. 07, 2017	Dec. 06, 2018		
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 07, 2017	Dec. 06, 2018		
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 07, 2017	Dec. 06, 2018		
Measurement Software	AUDIX	e3	6.120210g	NA	NA		

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 15.247 Meas Guidance v05

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Power density	±0.463 dB
Conducted emission	±2.670 dB
AC conducted emission	±2.90 dB
Radiated emission ≤ 1GHz	±3.66 dB
Radiated emission > 1GHz	±5.63 dB

Test Configuration 2

2.1 **Testing Condition**

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	25°C / 58%	Alex Tsai
Radiated Emissions	03CH01-WS	23-25°C / 63%	Roger Lu Aska Huang

➢ FCC Designation No.: TW2732

➢ FCC site registration No.: 181692

IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Test Frequency (MHz)	Channel Bandwidth (kHz)	Modulation / SF	Test Configuration
Conducted Emissions	923.3 / 927.5	500	CSS / 12	
Radiated Emissions	923.3 / 927.5	500	CSS / 12	
NOTE				

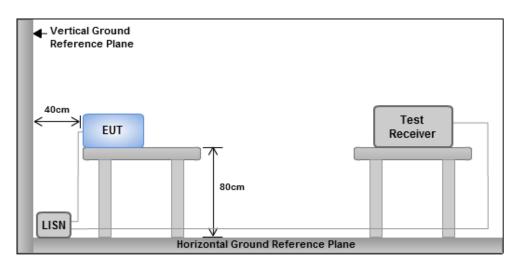
1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

2. Two adapters (machineQ and PHIHONG) had been covered during the pretest, and found that PHIHONG adapter was the worst case and was selected for final test.

External antenna is not tested since antenna type is same as original filling antenna and gain is lower. 3.

3 Transmitter Test Results

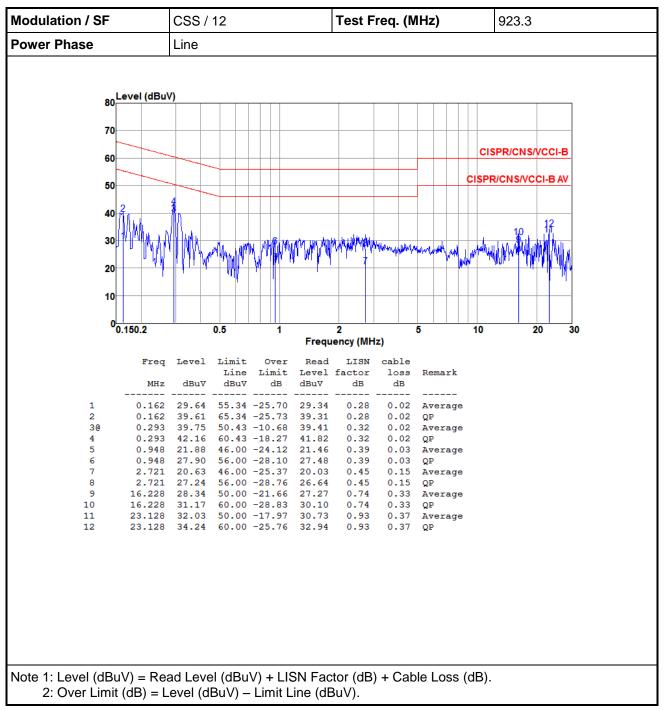
3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

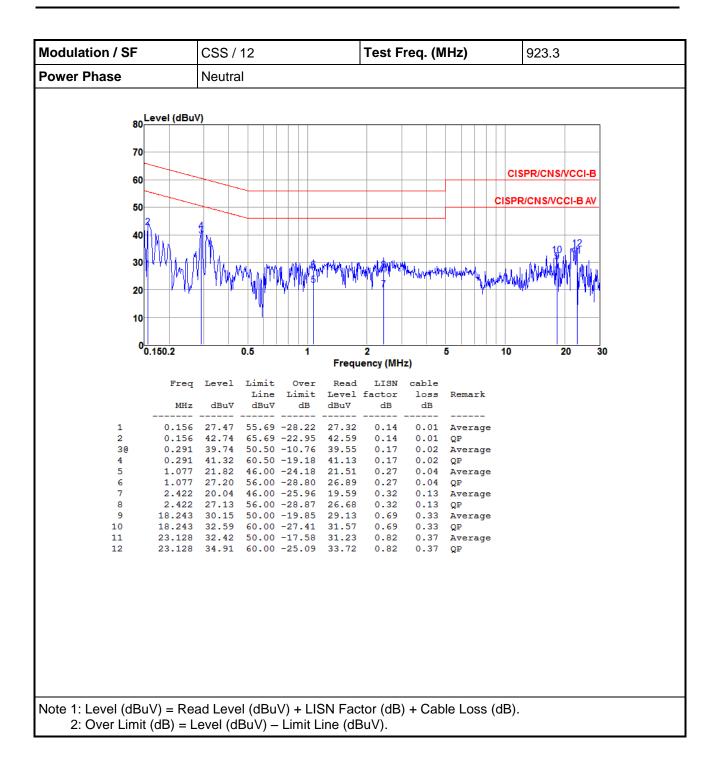
	Conducted Emissions Limit	
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarith	im of the frequency.	•

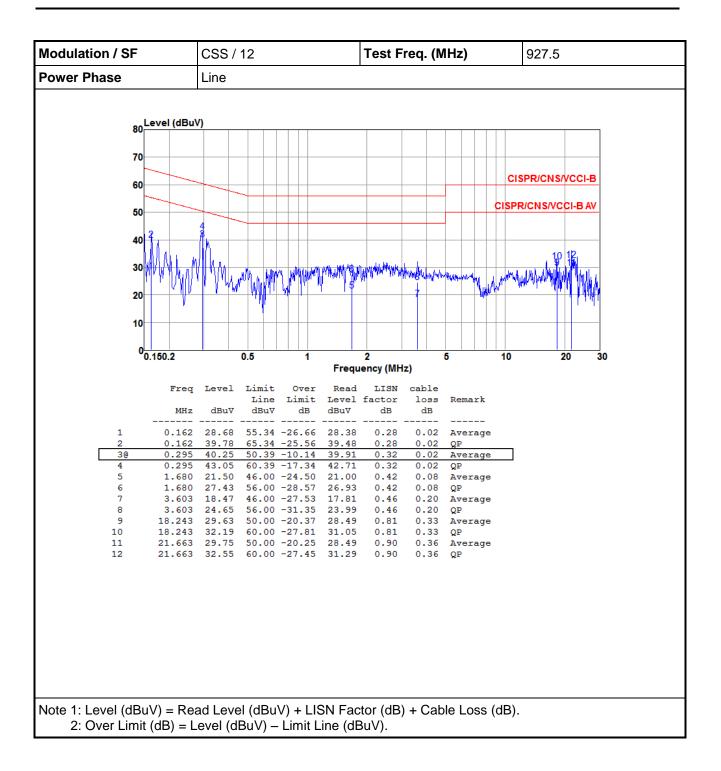
3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

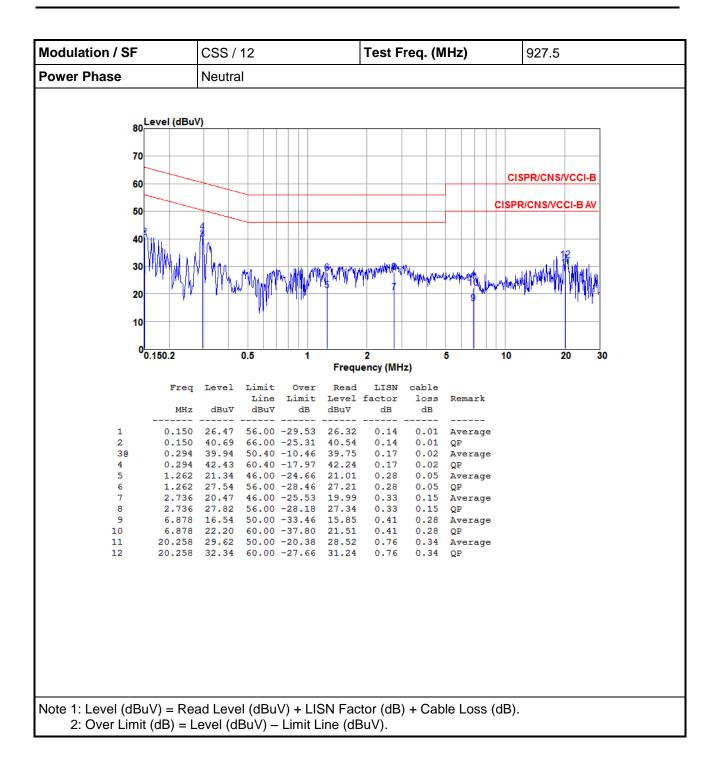

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes



3.1.4 Test Result of Conducted Emissions



3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

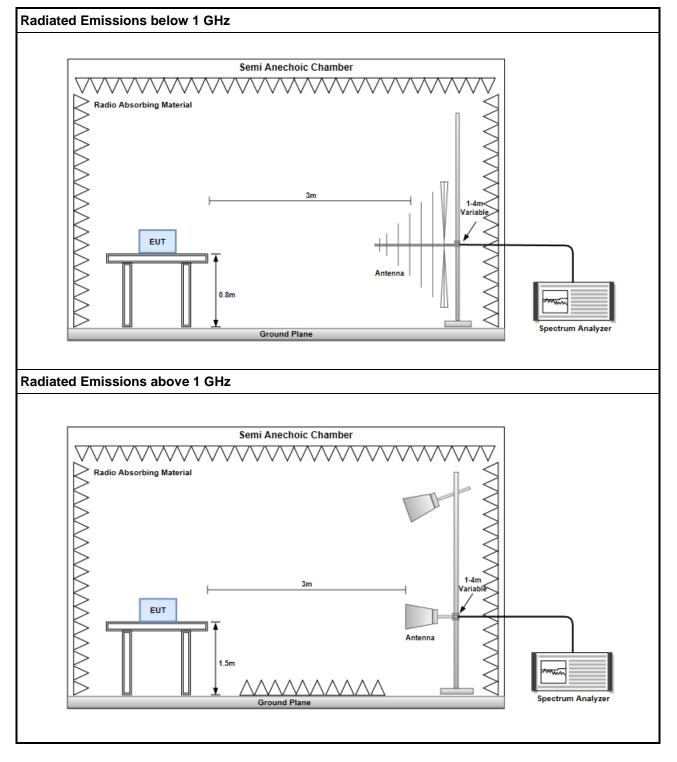
	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

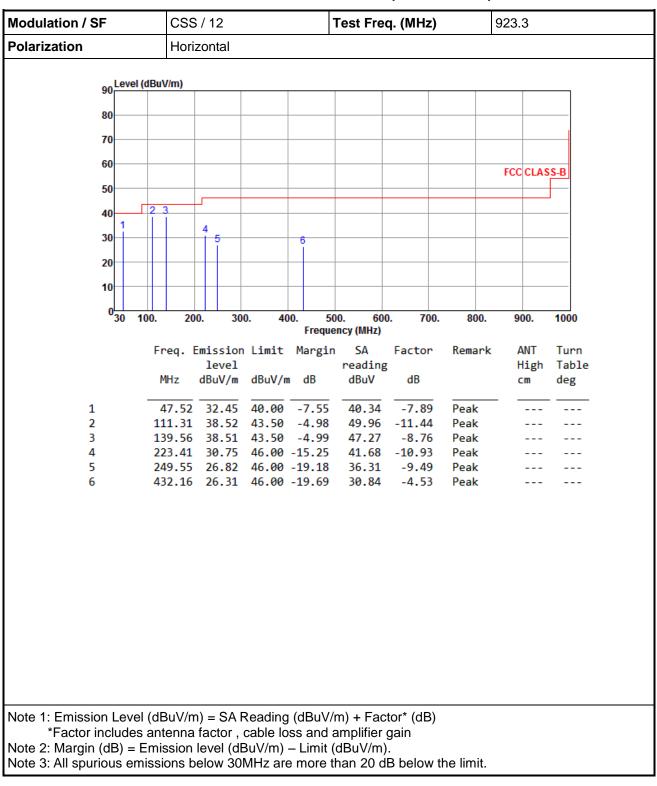
Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

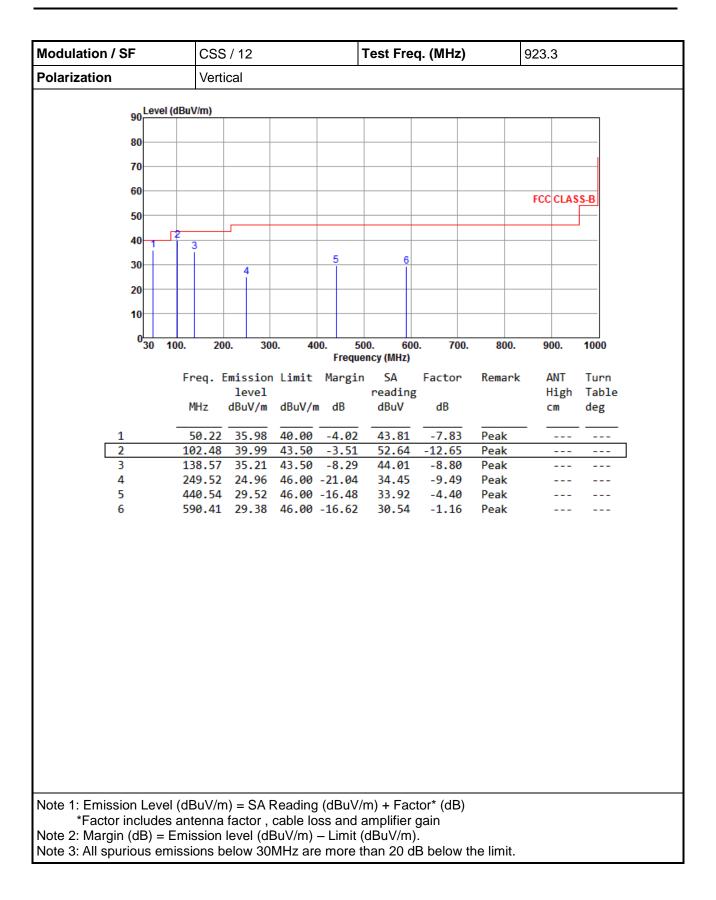
3.2.2 Test Procedures


- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

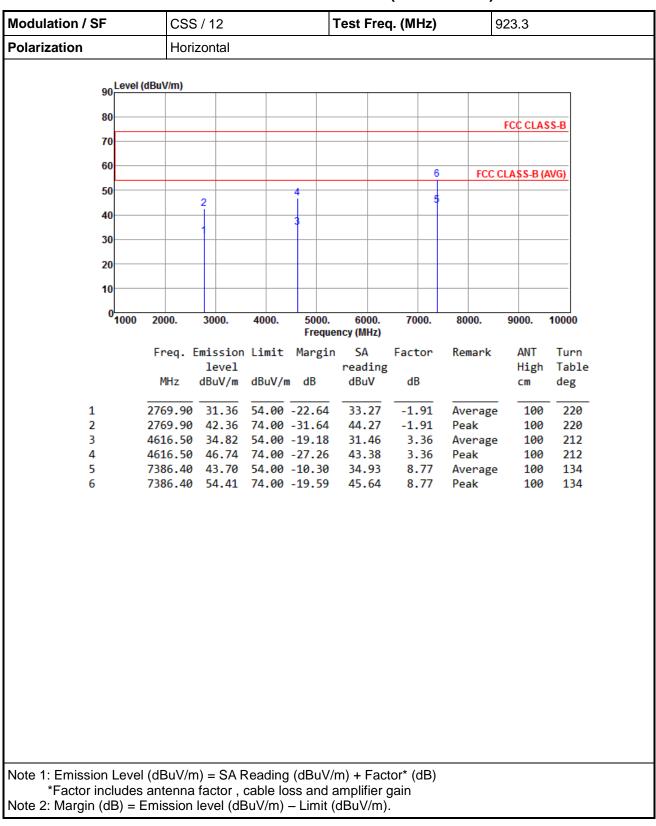
Note:


- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

3.2.3 Test Setup



3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)



Modulation / SF	CSS	CSS / 12 Test Freq. (MHz) 927.5								
Polarization	Horizontal									
90 Level (dE	uV/m)									
80										
70										
60								FCC CLAS	SS-B	
50									—	
40	3									
30		4		-5	6					
				Ĭ						
20										
10										
0 <mark></mark>	. 200	0. 30	0. 40	0. 50		0. 700). 800.	900.	1000	
					ncy (MHz)	- .			-	
	Freq. E	mission level	Limit	Margin	SA reading		Remark	: ANT High	Turn Table	
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg	
1 -	53.55	32.71	40.00	-7.29	40.74	-8.03	Peak			
2	102.48	35.24	43.50	-8.26	47.89	-12.65	Peak			
		35.62		-7.88 -12.35	44.28 44.59	-8.66 -10.94				
5				-18.45						
6	597.68	29.85	46.00	-16.15	30.85	-1.00	Peak			
Note 1: Emission Level (BuV/m) = SA F	Reading	(dBuV/r	n) + Fac	tor* (dB)			
*Factor includes a	ntenna	factor,	cable lo	ss and a	mplifier	gain	,			
Note 2: Margin (dB) = En							d . P . P			
Note 3: All spurious emis	sions be	elow 30	viHz are	e more th	nan 20 d	IR pelow	the limit.			

Modulation / SF	CSS	CSS / 12 Test Freq. (MHz) 927.5									
Polarization	Vertical										
90 Level (dE	3uV/m)										
80											
70											
60								FCC CLAS	S-B		
50											
40 1 2											
	3	4		E	6						
30				1							
20											
10											
0 <mark></mark> 30100	. 20	0. 30	0. 40)0. 50	0. 60	0. 700	. 800.	900.	1000		
					ncy (MHz)						
	Freq. E	mission level) Limit	Margin	SA reading		Remark	ANT High	Turn Table		
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	, dB		cm	deg		
1 -	54.16	35.44	10 00	56	43.56	-8.12	Peak				
		38.52			51.15	-12.63	Peak				
		33.52			42.28	-8.76	Peak				
				-14.57 -18.32	42.37 32.08		Peak Peak				
				-16.87			Peak				
Note 1: Emission Level (dBuV/m	i) = SA F	Reading	(dBuV/	m) + Fac	tor* (dB)					
*Factor includes a	ntenna	factor,	cable lo	ss and a	amplifier	gain					
Note 2: Margin (dB) = En	nission	ievel (dE	⊰uv/m)	– Limit (dBuV/m)).					

3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Modulation / S	6F	CSS	CSS / 12 Test Freq. (MHz) 923.3										
Polarization		Vertical											
	onLevel	(dBuV/m)											
	80								FCC CLA	SS-B			
	70												
	60						6						
	50				4			FCC	CLA\$S-B(AVG)			
	50		2										
	40		1		3								
	30												
	20												
	10												
	10												
	0 <mark>1000</mark>	2000.	3000.	4000.	5000. Freque	6000. ncy (MHz)	7000.	8000.	9000.	10000			
		Frea. F	mission	Limi†			Factor	Remark	ANT	Turn			
			level		_	reading	g		High				
		MHz	dBuV/m	dBuV/n	n dB	dBuV	dB		cm	deg			
1		2769.90	35.38	54.00	-18.62	37.29	-1.91	Average	100	244			
2		2769.90	43.95	74.00	-30.05	45.86	-1.91	Peak	100	244			
3		4616.50				34.95	3.36	Average					
4		4616.50 7386.40				44.33 38.69		Peak Average	100 100				
6		7386.40						Peak	100				
Note 1: Emissi	on Leve	l (dBuV/m	n) = SA F	Reading	ı (dBuV/ı	n) + Fac	ctor* (dB)						
*Factor	ncludes	s antenna	factor, o	cable lo	ss and a	amplifier	gain						
Note 2: Margin	(dB) =	Emission	level (dE	BuV/m)	– Limit (dBuV/m).						

Modulation / S	F	CSS	CSS / 12 Test Freq. (MHz) 927.5									
Polarization		Horiz	zontal									
	oo Level	(dBuV/m)										
	80								FCC CLA	SS-B		
	70											
	60											
							6	FCC	CLASS-B	(AVG)		
	50		2		4		5					
	40		Ī									
	30		1		1							
	20											
	10											
	0 <mark></mark>	2000.	3000.	4000.	5000.	6000.	7000.	8000.	9000.	10000		
		F		12		ncy (MHz)	C	Demente	ANT	T		
		Freq. c	level	LIMIC	Margin	SA reading	Factor	Remark	ANT High	Turn Table		
		MHz	dBuV/m	dBuV/n	n dB	dBuV	dB		cm	deg		
		2702 50		<u></u>				-				
1		2782.50 2782.50			-21.54 -31.54	34.32 44.32	-1.86 -1.86	Average Peak	≥ 100 100			
3		4637.50				30.40	3.43	Average				
4		4637.50				43.16	3.43	Peak	100			
5		7420.00 7420.00				35.53 45.78	8.81 8.81	Average Peak	≥ 100 100			
0		7420.00	54.55	74.00	-17.41	43.70	0.01	FEAK	100	155		
lote 1: Emissic	on Leve	l (dBuV/m) = SA R	Reading	ı (dBuV/r	n) + Fac	tor* (dB)					
*Factor in	ncludes	antenna	factor, o	cable lo	ss and a	mplifier	gain					
lote 2: Margin												

Modulation / SF		CSS / 12 Test Freq. (MHz) 927.5											
Polarization		Vertical											
00	Level (dBuV/m)											
80									FC	C CLAS	SS-B		
70													
60								6					
								F	CC CLA	\$S-B (/	AVG)		
50			2		4			5					
40													
30													
20													
10								_			—		
0	1000	2000.	3000.	4000.	5000			. 8000.	9(000.	10000		
		F F		12		iency (MHz)					т		
		Freq. E	mission level	Limit	margi	n SA readin	Factor	r Remar		ANT High	Turn Table		
		MHz	dBuV/m	dBuV/r	n dB	dBuV	dB			cm	deg		
1 2		2782.50 2782.50							ge	100 100	245 245		
3		4637.50							ge	100	125		
4		4637.50							-	100	125		
5 6		7420.00 7420.00							ge	100	87 87		
0		7420.00	57.51	74.00	-10.49	48.70	0.0	L Peak		100	0/		
Note 1: Emission I								3)					
*Factor incl													
Note 2: Margin (dE) = E	IIIISSION	evei (aE	uv/m)		(uBuV/M	1).						

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—