FCC Co-Location Test Report

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Approved by:

Table of Contents

1 GENERAL DESCRIPTION 5
1.1 Information 5
1.2 The Equipment List 6
1.3 Test Standards6
1.4 Measurement Uncertainty 7
2 TEST CONFIGURATION 8
2.1 Testing Condition 8
2.2 The Worst Test Modes and Channel Details 8
3 TRANSMITTER TEST RESULTS 9
3.1 Unwanted Emissions into Restricted Frequency Bands 9
4 TEST LABORATORY INFORMATION 23

Release Record

Report No.	Version	Description	Issued Date
FG851703CO	Rev. 01	Initial issue	Jun. 27, 2018

Summary of Test Results

FCC Rules	Test Items	Measured	Result
$15.247(\mathrm{~d}) / 15.209$		[dBuV/m at 3m]: 55.22 MHz	
$2.1053 / 22.917(\mathrm{a})$	Radiated Emissions	$38.97($ Margin $-1.03 \mathrm{~dB})-\mathrm{QP}$	
$2.1053 / 24.238(\mathrm{a})$	[dBuV/m at 3m]: 593.57MHz	Pass	
$2.1053 / 27.53(\mathrm{~h})$	$44.97($ Margin $-1.03 \mathrm{~dB})-\mathrm{QP}$		

International
Certification
Corp.

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description
Gemtek	WLTFQT-141GN	Cat4 Indoor CPE	Main tested model.
	Blu-Castle		

+ All models are electrically identical, different model names are for marketing purpose.

1.1.2 Specification of the Equipment under Test (EUT)

WLAN	
Operating Frequency	802.11b/g/n: 2412 MHz ~ 2462 MHz
Modulation Type	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
WWAN	
Operating Frequency	GPRS: 824.2 ~ 848.8 MHz WCDMA: $826.4 \sim 846.6 \mathrm{MHz}$ GPRS: 1850.2 ~ 1909.8 MHz WCDMA: 1852.4 ~ 1907.6 MHz
Modulaton Type	GPRS: GMSK WCDMA / HSDPA / DC-HSDPA: QPSK (uplink)
LTE	
Operating Frequency	LTE Band 2 : Channel Bandwidth: 1.4MHz: 1850.7~1909.3 MHz Channel Bandwidth: 3MHz: 1851.5 MHz ~ 1908.5 MHz Channel Bandwidth: 5MHz: 1852.5 MHz ~ 1907.5 MHz Channel Bandwidth: 10MHz: $1855 \mathrm{MHz} \sim 1905 \mathrm{MHz}$ Channel Bandwidth: 15MHz: 1857.5 MHz ~ 1902.5 MHz Channel Bandwidth: 20MHz: 1860 MHz ~ 1900 MHz LTE Band 4: Channel Bandwidth: 1.4MHz: 1710.7~1754.3 Channel Bandwidth: 3MHz: 1711.5~1753.5 Channel Bandwidth: 5MHz: 1712.5~1752.5 Channel Bandwidth: 10MHz: 1715~1750 Channel Bandwidth: 15MHz: 1717.5~1747.5 Channel Bandwidth: 20MHz: 1720~1745
Modulaton Type	QPSK, 16QAM (Uplink)

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	12 Vdc from AC adapter

1.2 The Equipment List

Test Item	Radiated Emission				
Test Site	966 chamber1 / (03CH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R\&S	FSV40	101498	Dec. 04, 2017	Dec. 03, 2018
Receiver	R\&S	ESR3	101658	Nov. 20, 2017	Nov. 19, 2018
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 25, 2017	Jul. 24, 2018
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 20, 2017	Dec. 19, 2018
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 23, 2017	Nov. 22, 2018
Loop Antenna	R\&S	HFH2-Z2	100330	Nov. 13, 2017	Nov. 12, 2018
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 07, 2017	Dec. 06, 2018
Preamplifier	EMC	EMC02325	980225	Jul. 28, 2017	Jul. 27, 2018
Preamplifier	Agilent	83017A	MY39501308	Oct. 06, 2017	Oct. 05, 2018
Preamplifier	EMC	EMC184045B	980192	Aug. 22, 2017	Aug. 21, 2018
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	May 09, 2018	May 08, 2019
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 07, 2017	Dec. 06, 2018
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 07, 2017	Dec. 06, 2018
LF cable 1M	EMC	$\begin{aligned} & \text { EMCCFD400-NM-N } \\ & \text { M-1000 } \end{aligned}$	16052	Dec. 07, 2017	Dec. 06, 2018
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 07, 2017	Dec. 06, 2018
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 07, 2017	Dec. 06, 2018
Measurement Software	AUDIX	e3	6.120210 g	NA	NA

1.3 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.
47 CFR FCC Part 15.247
ANSI C63.10-2013
FCC KDB 558074 D01 DTS Meas Guidance v04
FCC KDB 662911 D01 Multiple Transmitter Output v02r01
47 CFR FCC Part 22 Subpart H
47 CFR FCC Part 24 Subpart E
47 CFR FCC Part 27 Subpart L
ANSI C63.4-2014
ANSI C63.26-2015
FCC KDB 971168 D01 Power Meas License Digital Systems v03r01
FCC KDB 971168 D02 Misc Rev Approv License Devices v02r01
FCC KDB 412172 D01 Determining ERP and EIRP v01r01
FCC KDB 442401 ERP/EIRP measurement procedures for licensed radio service devices

International
Certification
Corp.

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor ($k=2$)

Measurement Uncertainty	
	Parameters
Radiated emission $\leq 1 \mathrm{GHz}$	$\pm 3.66 \mathrm{~dB}$
Radiated emission $>1 \mathrm{GHz}$	$\pm 5.63 \mathrm{~dB}$

International
Certification
corp.

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	$03 \mathrm{CH} 01-\mathrm{WS}$	$22^{\circ} \mathrm{C} / 63 \%$	Vincent Yeh

$>$ FCC Designation No.: TW2732
$>$ FCC site registration No.: 181692
> IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Test mode
Radiated Emissions	$2.4 \mathrm{G} 11 \mathrm{~g} \mathrm{CH} 06+\mathrm{GSM} 850 \mathrm{CH} 190$
	$2.4 \mathrm{G} 11 \mathrm{~g} \mathrm{CH} 06+\mathrm{GSM} 1900 \mathrm{CH} 512$
	$2.4 \mathrm{G} 11 \mathrm{~g} \mathrm{CH} 06+$ LTE B4 5M CH20375
NOTE: The selected channel is the maximum power channel of each band.	

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	$48.5-13.8$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	$33.8-23$	30
$1.705 \sim 30.0$	30	29	30
$30 \sim 88$	100	40	3
$88 \sim 216$	150	43.5	3
$216 \sim 960$	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1 GHz except for $9-90 \mathrm{kHz}, 110-490 \mathrm{kHz}$ frequency band. Peak and average value are measured for frequency above 1 GHz . The limit on average radio frequency emission is as above table.
The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit
Note 2:
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz : $20 \mathrm{~dB} /$ decade Frequency below $30 \mathrm{MHz}: 40 \mathrm{~dB} / \mathrm{decade}$.

3.1.2 Test Procedures

1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz , the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz , the table height is 1.5 m .
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height ($1 \mathrm{~m} \sim 4 \mathrm{~m}$) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m .
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m , and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.
Note:
4. 120 kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1 GHz .
5. $R B W=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ and Peak detector is for peak measured value of radiated emission above 1 GHz .
6. $R B W=1 \mathrm{MHz}, \mathrm{VBW}=1 / \mathrm{T}$ and Peak detector is for average measured value of radiated emission above 1 GHz .

3.1.3 Test Setup

Radiated Emissions below 1 GHz

Radiated Emissions above 1 GHz

International
Certification
Corp.

3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level ($\mathrm{dBuV} / \mathrm{m}$) - Limit ($\mathrm{dBuV} / \mathrm{m}$).
Note 3: All spurious emissions below 30 MHz are more than 20 dB below the limit.

Mode	$2.4 \mathrm{G} 11 \mathrm{~g} \mathrm{CH} 06+$ GSM850 CH190
Polarization	Vertical

Note 1: Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin $(\mathrm{dB})=$ Emission level $(\mathrm{dBuV} / \mathrm{m})$ - Limit ($\mathrm{dBuV} / \mathrm{m}$).
Note 3: All spurious emissions below 30 MHz are more than 20 dB below the limit.

Mode	$2.4 \mathrm{G} 11 \mathrm{~g} \mathrm{CH} 06+$ GSM1900 CH512
Polarization	Horizontal

Note 1: Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin $(\mathrm{dB})=$ Emission level $(\mathrm{dBuV} / \mathrm{m})$ - Limit ($\mathrm{dBuV} / \mathrm{m}$).
Note 3: All spurious emissions below 30 MHz are more than 20 dB below the limit.

Mode	$2.4 \mathrm{G} \mathrm{11g} \mathrm{CH06} \mathrm{+} \mathrm{GSM1900} \mathrm{CH512}$
Polarization	Vertical

Note 1: Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level ($\mathrm{dBuV} / \mathrm{m}$) - Limit ($\mathrm{dBuV} / \mathrm{m}$).
Note 3: All spurious emissions below 30 MHz are more than 20 dB below the limit.

Mode	$2.4 \mathrm{G} 11 \mathrm{~g} \mathrm{CH06} \mathrm{+} \mathrm{LTE} \mathrm{B4} \mathrm{5M} \mathrm{CH20375}$
Polarization	Horizontal

Note 1: Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin $(\mathrm{dB})=$ Emission level $(\mathrm{dBuV} / \mathrm{m})$ - Limit ($\mathrm{dBuV} / \mathrm{m}$).
Note 3: All spurious emissions below 30 MHz are more than 20 dB below the limit.

Mode	$2.4 \mathrm{G} \mathrm{11g} \mathrm{CH06} \mathrm{+} \mathrm{LTE} \mathrm{B4} \mathrm{5M} \mathrm{CH20375}$
Polarization	Vertical

Note 1: Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin $(\mathrm{dB})=$ Emission level $(\mathrm{dBuV} / \mathrm{m})$ - Limit ($\mathrm{dBuV} / \mathrm{m}$).
Note 3: All spurious emissions below 30 MHz are more than 20 dB below the limit.

Corp.

3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Note 1: Emission Level ($\mathrm{dBuV} / \mathrm{m}$) $=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin $(\mathrm{dB})=$ Emission level $(\mathrm{dBuV} / \mathrm{m})$ - Limit $(\mathrm{dBuV} / \mathrm{m})$.

Mode	$2.4 \mathrm{G} 11 \mathrm{~g} \mathrm{CH} 06+$ GSM850 CH190
Polarization	Vertical

Note 1: Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin $(\mathrm{dB})=$ Emission level $(\mathrm{dBuV} / \mathrm{m})$ - Limit ($\mathrm{dBuV} / \mathrm{m}$).

Mode	$2.4 \mathrm{G} 11 \mathrm{~g} \mathrm{CH} 06+$ GSM1900 CH512
Polarization	Horizontal

Note 1: Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin $(\mathrm{dB})=$ Emission level $(\mathrm{dBuV} / \mathrm{m})$ - Limit ($\mathrm{dBuV} / \mathrm{m}$).

Mode	$2.4 \mathrm{G} 11 \mathrm{~g} \mathrm{CH} 06+$ GSM1900 CH512
Polarization	Vertical

Note 1: Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin $(\mathrm{dB})=$ Emission level $(\mathrm{dBuV} / \mathrm{m})$ - Limit ($\mathrm{dBuV} / \mathrm{m}$).

Mode	$2.4 \mathrm{G} \mathrm{11g} \mathrm{CH06} \mathrm{+} \mathrm{LTE} \mathrm{B4} \mathrm{5M} \mathrm{CH20375}$
Polarization	Horizontal

Note 1: Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin $(\mathrm{dB})=$ Emission level $(\mathrm{dBuV} / \mathrm{m})$ - Limit ($\mathrm{dBuV} / \mathrm{m}$).

Mode	$2.4 \mathrm{G} \mathrm{11g} \mathrm{CH06} \mathrm{+} \mathrm{LTE} \mathrm{B4} \mathrm{5M} \mathrm{CH20375}$
Polarization	Vertical

Note 1: Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ SA Reading $(\mathrm{dBuV} / \mathrm{m})+$ Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin $(\mathrm{dB})=$ Emission level $(\mathrm{dBuV} / \mathrm{m})$ - Limit ($\mathrm{dBuV} / \mathrm{m}$).

4 Test laboratory information

Established in 2012, ICC provides foremost EMC \& RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640
No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666
No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640
No. 14-1, Lane 19, Wen San 3rd
St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C..

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666
Fax: 886-3-318-0155
Email: ICC_Service@icertifi.com.tw

