

FCC Test Report

FCC ID	:	MXF-WLRGFM100	
Equipment	:	OT Femto Gateway	
Model No.	:	WLRGFM-100	
Brand Name	:	Gemtek	
Applicant	:	Gemtek Technology Co., Ltd.	
Address	:	No. 15-1 Zhonghua Road, Hsinchu Industria Park, Hukou, Hsinchu, Taiwan, 30352.	
Standard	:	47 CFR FCC Part 15.247	
Received Date	:	Apr. 10, 2017	
Tested Date	:	May 05 ~ May 16, 2017	

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Approved by:

ong Cher

Along Cherly/ Assistant Manager Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION	.10
2.1	Testing Condition	.10
2.2	The Worst Test Modes and Channel Details	.10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	6dB and Occupied Bandwidth	.16
3.3	RF Output Power	.19
3.4	Power Spectral Density	.21
3.5	Unwanted Emissions into Restricted Frequency Bands	
3.6	Emissions in Non-Restricted Frequency Bands	.41
4	TEST LABORATORY INFORMATION	.43

Release Record

Report No.	Version	Description	Issued Date
FR741001	Rev. 01	Initial issue	May 31, 2017

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.578MHz 35.22 (Margin -10.78dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 7420.00MHz	Pass
15.209		52.63 (Margin -1.37dB) - AV	
15.247(b)(3)	Maximum Output Power	Max Power [dBm]: 26.40	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Summary of Test Results

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)Ch. Freq. (MHz)Channel NumberData Rate (bit/sec)Spread FactorConstraints						
902 ~ 928	923.3 ~ 927.5	73 ~ 80 [8]	980 ~ 21900	12 ~ 7	500	
Note 1: RF output power specifies that Maximum Conducted (Average) Output Power. Note 2: The device uses CSS modulation.						

1.1.2 Antenna Details

Ant. No.	Туре	Connector	Gain (dBi)	Remark
1	Dipole	SMA	0.28	External antenna
2	Printed	I-PEX	-0.39	Internal antenna

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	5Vdc from adapter
-------------------	-------------------

1.1.4 Accessories

	Accessories			
No. Equipment Description				
1	AC adapter 1	Brand: PHIHONG Model: PSAF10A-050Q Power Rating: I/P: 100-240Vac, 50/60Hz, 0.28A O/P: 5Vdc, 2A MAX		
2	AC adapter 2	Brand: Tenbao Model: SO10WU0500200 Power Rating: /P: 100-240Vac, 50/60Hz, 0.4A D/P: 5Vdc, 2A MAX		
3	AC adapter 3	Brand: ChenYang Model: CC10-050200U Power Rating: I/P: 100-240Vac, 50/60Hz, 0.35A O/P: 5Vdc, 2A MAX		
4	USB cable (for charging use)	1.5m non-shielded without core		
5	RJ45 cable	0.95m non-shielded without core		

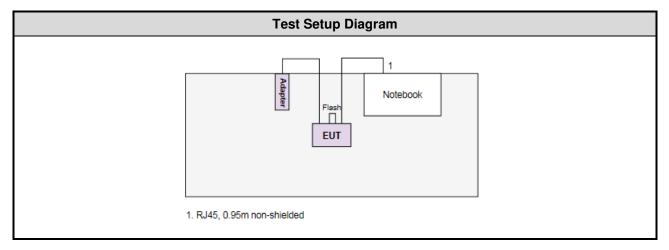
1.1.5 Channel List

Channel	Frequency(MHz)
73	923.3
74	923.9
75	924.5
76	925.1
77	925.7
78	926.3
79	926.9
80	927.5

1.1.6 Test Tool and Duty Cycle

Test Tool	Tera Term, version: 4.8		
Duty Cycle and Duty Easter	Duty Cycle (%)	Duty Factor (dB)	
Duty Cycle and Duty Factor	100%	0	

1.1.7 Power Setting


Modulation Mode	Test Frequency (MHz)		
	923.3	927.5	
CSS	dig 0mix 12pa 3	dig 0mix 13pa 3	

1.2 Local Support Equipment List

	Support Equipment List						
No.	Equipment	Brand	Model	FCC ID	Signal cable / Length (m)		
1	Notebook	DELL	Latitude E6430	DoC	RJ45, 0.95m non-shielded.		
2	USB 3.0 Flash	Kingston	DTSE9G2				

1.3 Test Setup Chart

The Equipment List 1.4

Test Item	Conducted Emission						
Test Site	Conduction room 1 /	Conduction room 1 / (CO01-WS)					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Receiver	R&S	ESR3	101657	Dec. 21, 2016	Dec. 20, 2017		
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 08, 2016	Nov. 07, 2017		
RF Cable-CON	EMC	EMCCFD300-BM-BM-6000	50821	Dec. 20, 2016	Dec. 19, 2017		
Measurement Software	AUDIX	e3	6.120210k	NA	NA		
Note: Calibration Inte	erval of instruments lis	ted above is one year.					

Test Item	Radiated Emission	Radiated Emission					
Test Site	966 chamber1 / (03CH01-WS)						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101498	Nov. 25, 2016	Nov. 24, 2017		
Receiver	R&S	ESR3	101658	Nov. 24, 2016	Nov. 23, 2017		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 04, 2016	Aug. 03, 2017		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 21, 2016	Dec. 20, 2017		
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 10, 2016	Nov. 09, 2017		
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 09, 2016	Dec. 08, 2017		
Preamplifier	EMC	EMC02325	980225	Aug. 05, 2016	Aug. 04, 2017		
Preamplifier	Agilent	83017A	MY39501308	Oct. 06, 2016	Oct. 05, 2017		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 09, 2016	Dec. 08, 2017		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 09, 2016	Dec. 08, 2017		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 09, 2016	Dec. 08, 2017		
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	16052	Dec. 09, 2016	Dec. 08, 2017		
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 09, 2016	Dec. 08, 2017		
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 09, 2016	Dec. 08, 2017		
Measurement Software	AUDIX	e3	6.120210g	NA	NA		

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Mar. 15, 2017	Mar. 14, 2018
Power Meter	Anritsu	ML2495A	1241002	Oct. 06, 2016	Oct. 05, 2017
Power Sensor	Anritsu	MA2411B	1207366	Oct. 06, 2016	Oct. 05, 2017
AC POWER SOURCE	APC	AFC-500W	F312060012	Oct. 28, 2016	Oct. 27, 2017
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 DTS Meas Guidance v04

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Parameters	Uncertainty			
Bandwidth	±34.134 Hz			
Conducted power	±0.808 dB			
Power density	±0.463 dB			
Conducted emission	±2.670 dB			
AC conducted emission	±2.90 dB			
Radiated emission ≤ 1GHz	±3.66 dB			
Radiated emission > 1GHz	±5.63 dB			

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	22°C / 60%	Alex Tsai
Radiated Emissions	03CH01-WS	24°C / 62%	Kevin Lee Vincent Yeh
RF Conducted	TH01-WS	22°C / 64%	Brad Wu

► FCC Designation No.: TW2732

➢ FCC site registration No.: 181692

➢ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Test Frequency (MHz)	Channel Bandwidth (kHz)	Modulation / SF	Test Configuration
Conducted Emissions Maximum Output Power 6dB Bandwidth Power Spectral Density	923.3 / 927.5	500	CSS / 12	1
Radiated Emissions ≤1GHz Radiated Emissions >1GHz	923.3 / 927.5	500	CSS / 12	1, 2

Note:

 Three adapters (PHIHONG, Tenbao and ChenYang) had been covered during the pre-test and found that PHIHONG adapter was the worst case for radiated emission and ChenYang adapter was the worst case for conducted emission test.

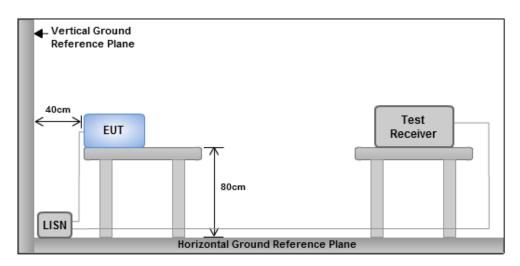
2. Two types antenna was selected to perform radiated emission test that listed as below configuration.

Test Configuration 1: with external antenna

Test Configuration 2: with internal antenna

3 Transmitter Test Results

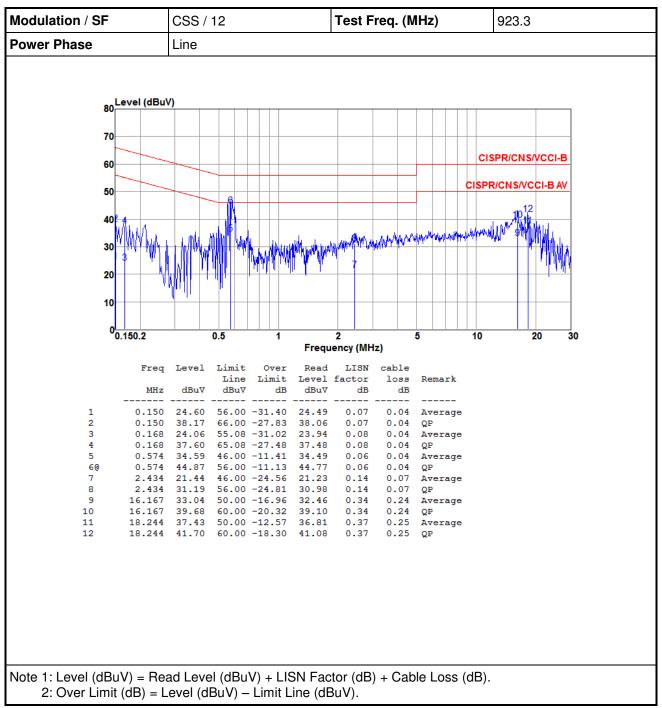
3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

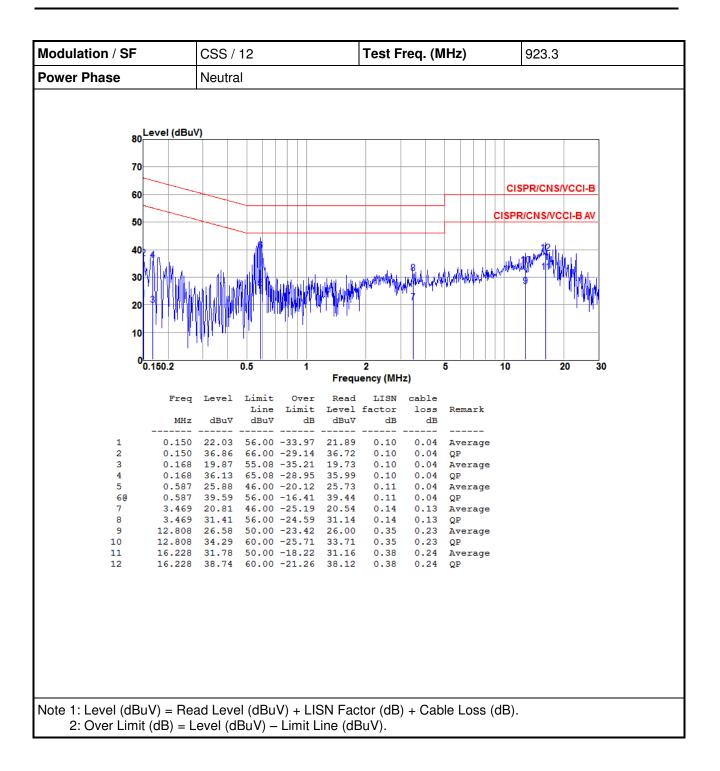
Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarith	im of the frequency.					

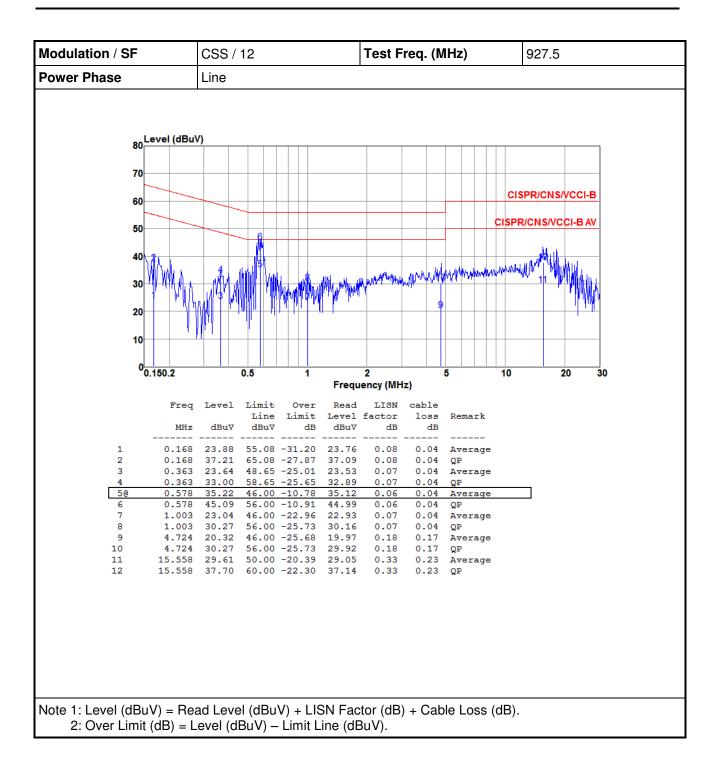
3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

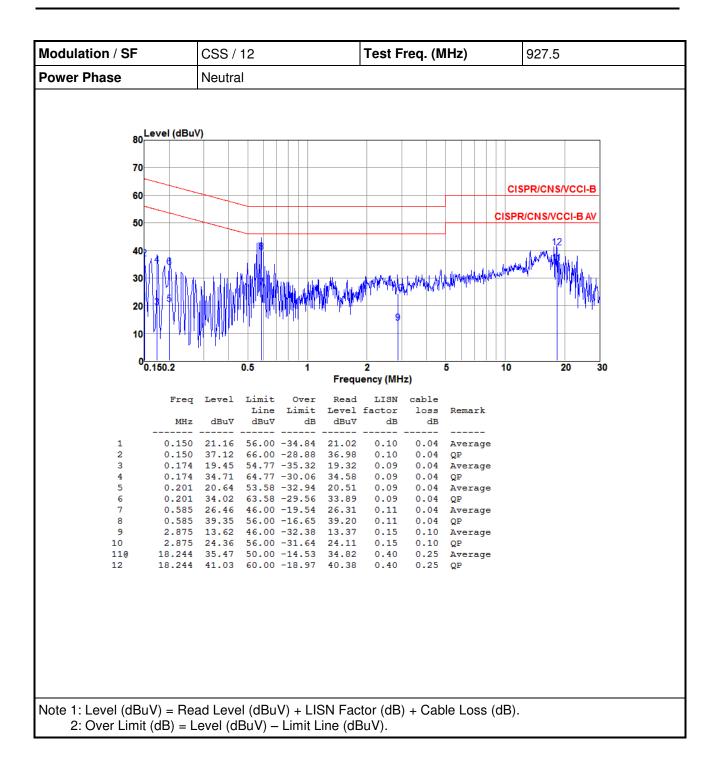

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes



3.1.4 Test Result of Conducted Emissions

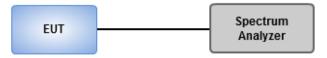


3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

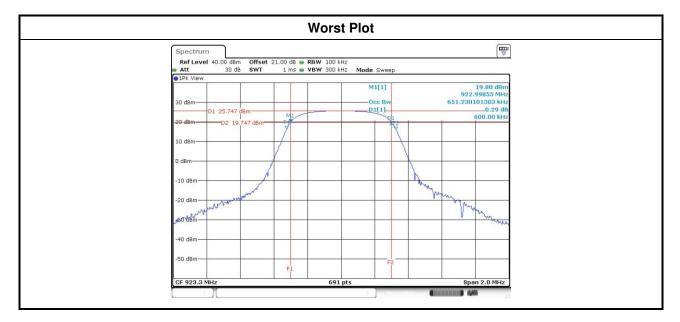
3.2.2 Test Procedures

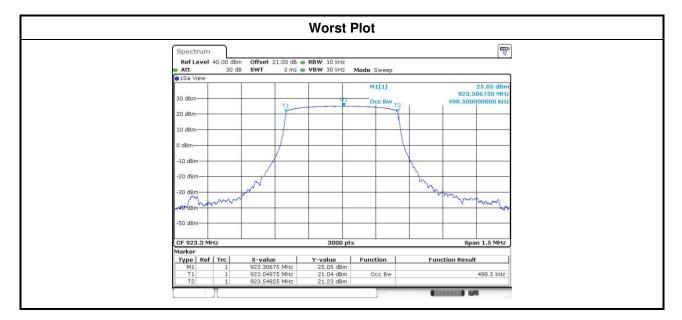

6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set resolution bandwidth (RBW) = 10kHz, Video bandwidth = 30kHz.
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.


3.2.3 Test Setup


3.2.4 Test Result of 6dB and Occupied Bandwidth

Modulation / SF	Freq. (MHz)	6dB Bandwidth (MHz)	Limit (MHz)
CSS / 12	923.3	0.600	0.5
CSS / 12	927.5	0.609	0.5

Modulation / SF	Freq. (MHz)	99% Occupied Bandwidth (MHz)
CSS / 12	923.3	0.499
CSS / 12	927.5	0.497

3.3 **RF Output Power**

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

- Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.
- Antenna gain > 6dBi

Transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

3.3.2 Test Procedures

Maximum Peak Conducted Output Power

Spectrum analyzer

- 1. Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.
- 2. Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.
- 3. Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.

Power meter

- 1. A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.
- Maximum Conducted Output Power

Power meter

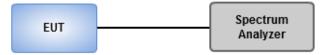
1. A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

3.3.4 Test Result of Maximum Output Power

Modulation / SF	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (dBm)
CSS / 12	923.3	411.1497	26.14	30
CSS / 12	927.5	436.5158	26.40	30

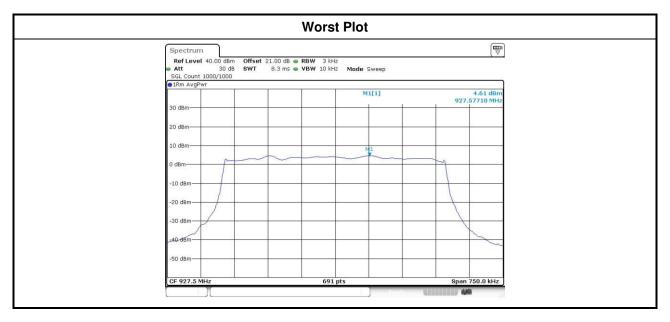
3.4 Power Spectral Density


3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 3kHz, VBW = 10kHz.
 - 2. Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 3kHz, VBW = 10 kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Employ trace averaging (RMS) mode over a minimum of 100 traces
 - 4. Use the peak marker function to determine the maximum amplitude level.


3.4.3 Test Setup

3.4.4 Test Result of Power Spectral Density

Modulation / SF	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
CSS / 12	923.3	4.23	8.00
CSS / 12	927.5	4.61	8.00

3.5 Unwanted Emissions into Restricted Frequency Bands

3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

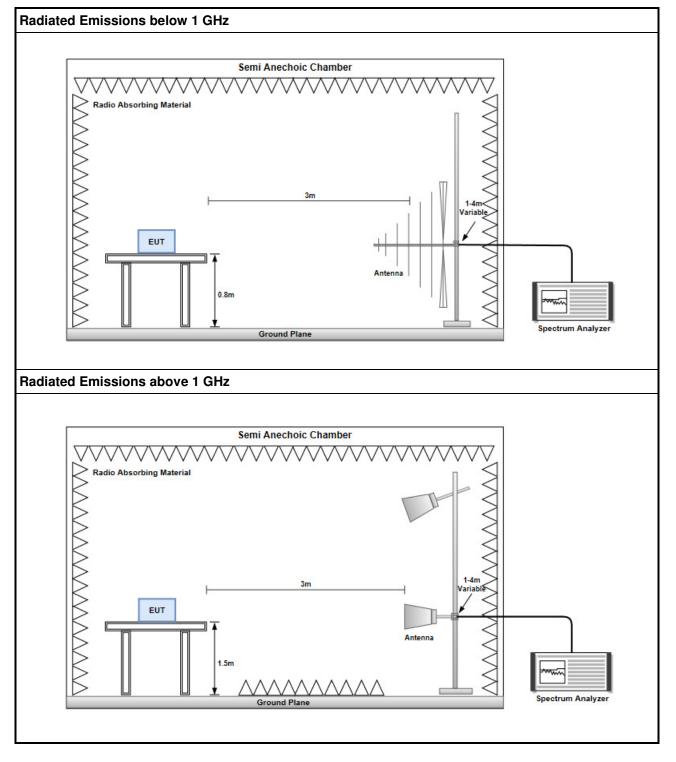
Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

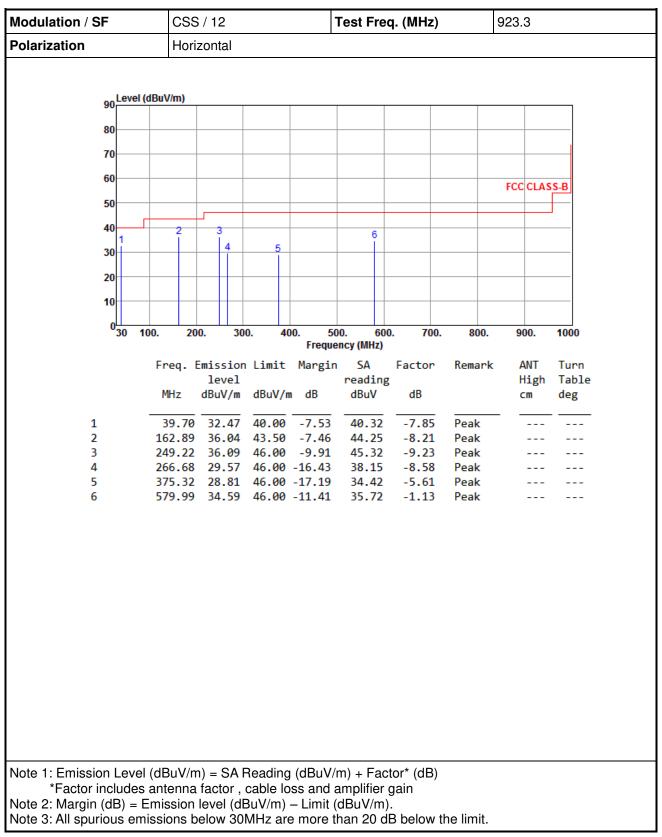
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

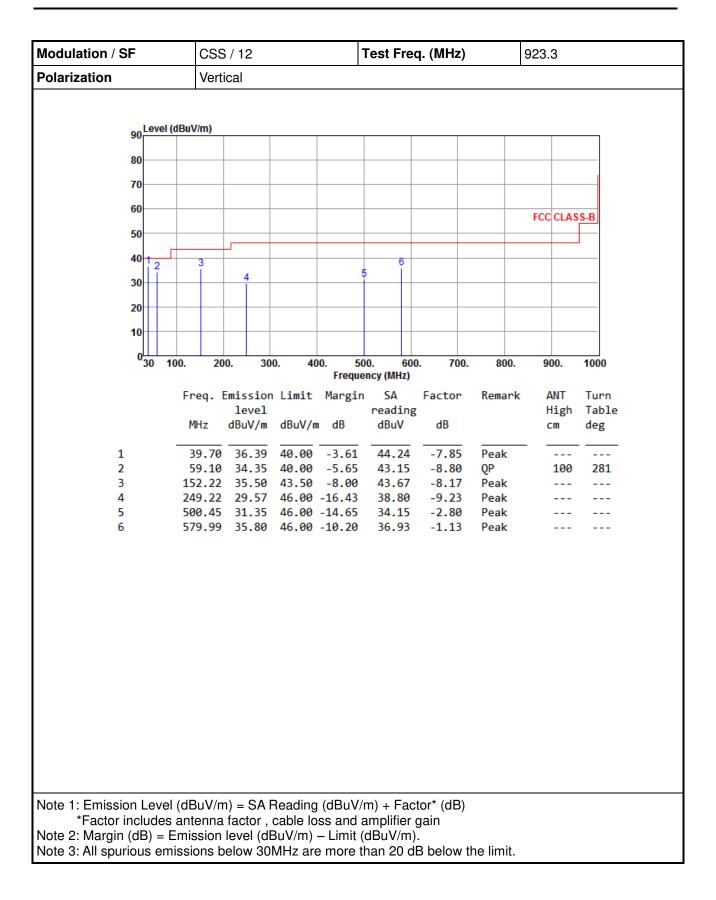
3.5.2 Test Procedures


- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

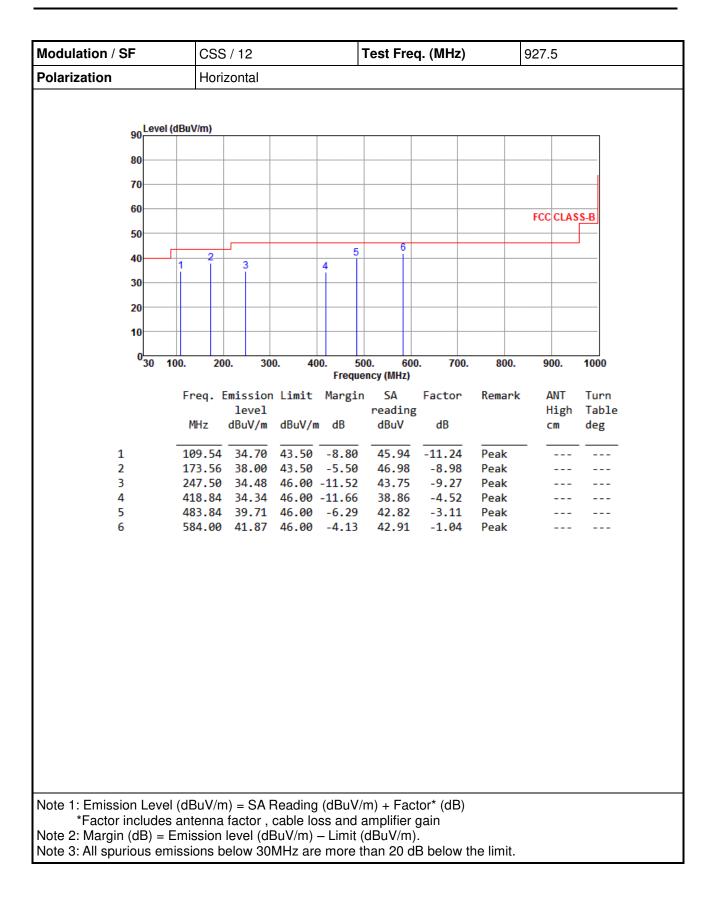
Note:

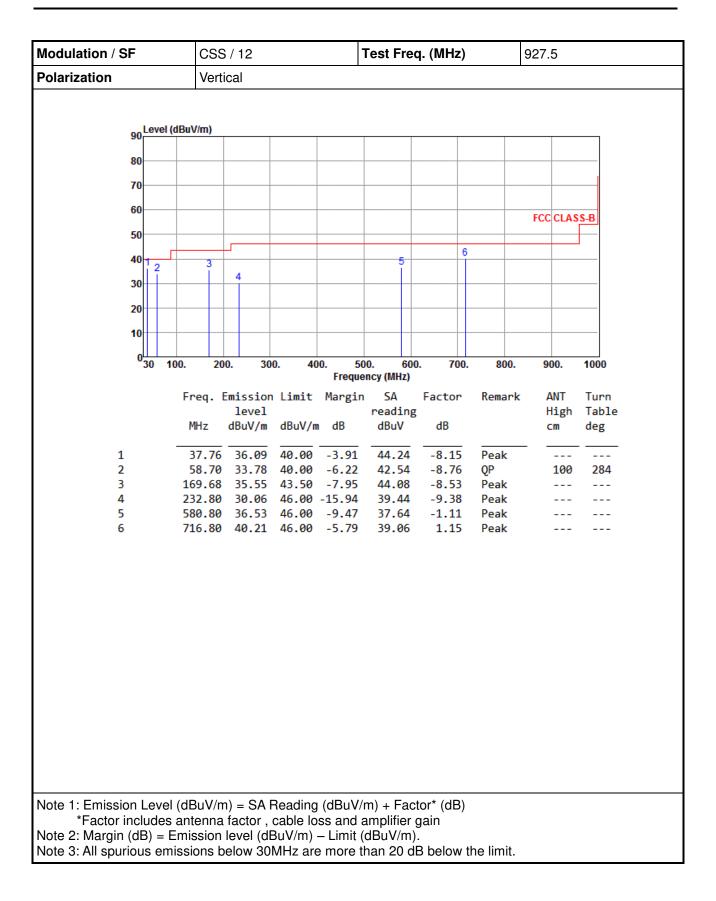
- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

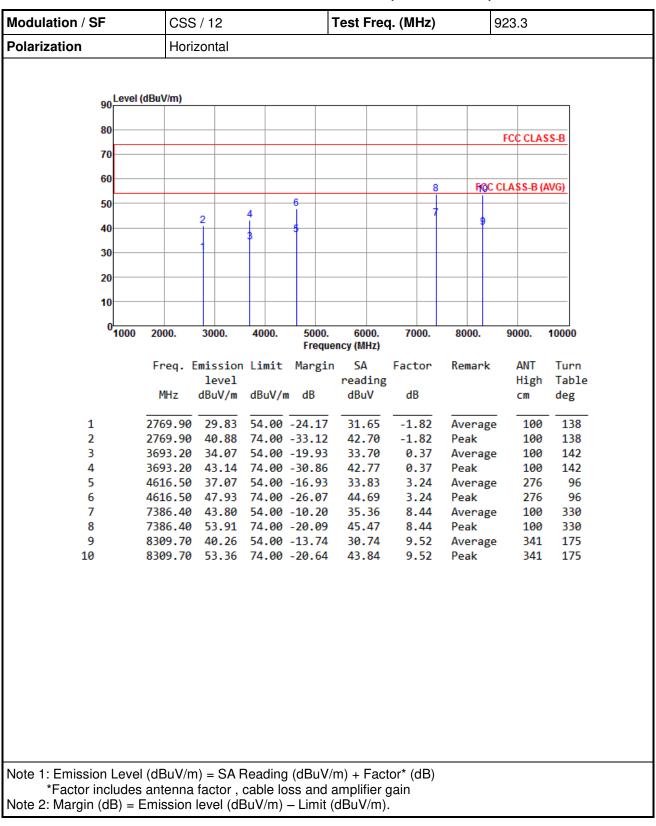

3.5.3 Test Setup

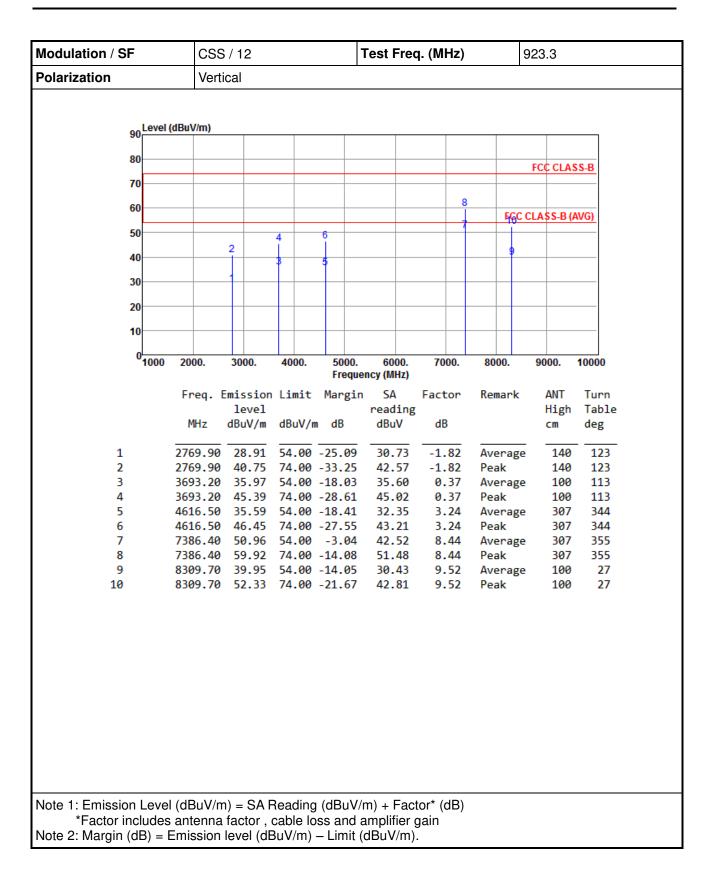


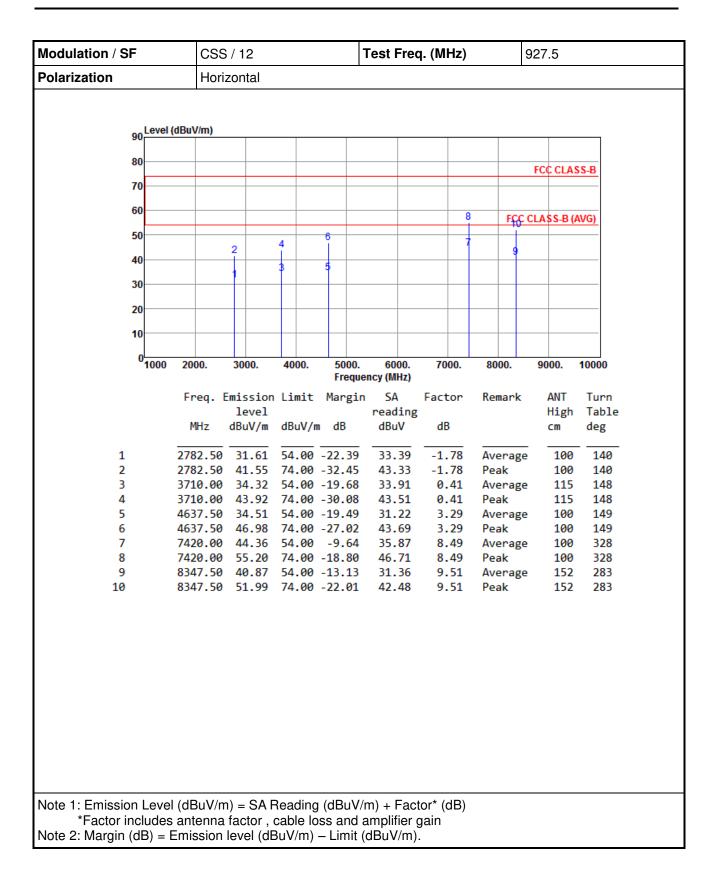
Configuration 1: with external antenna


3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

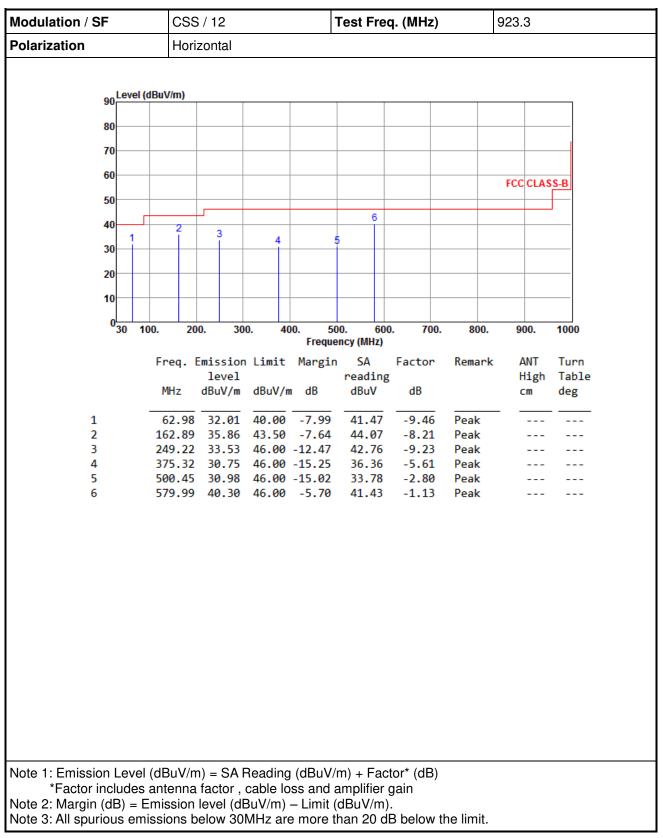




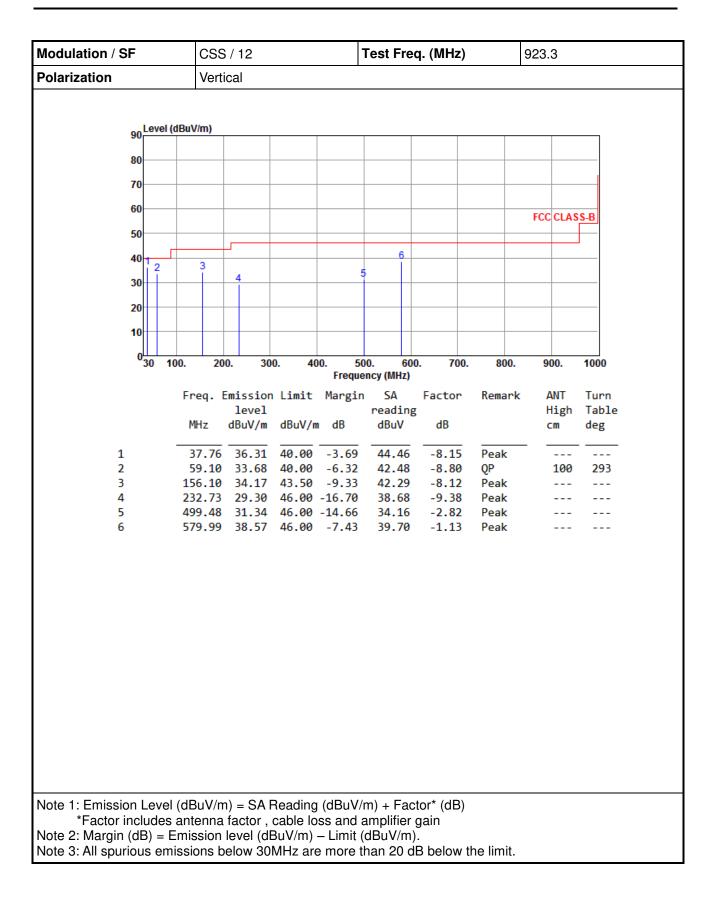




3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

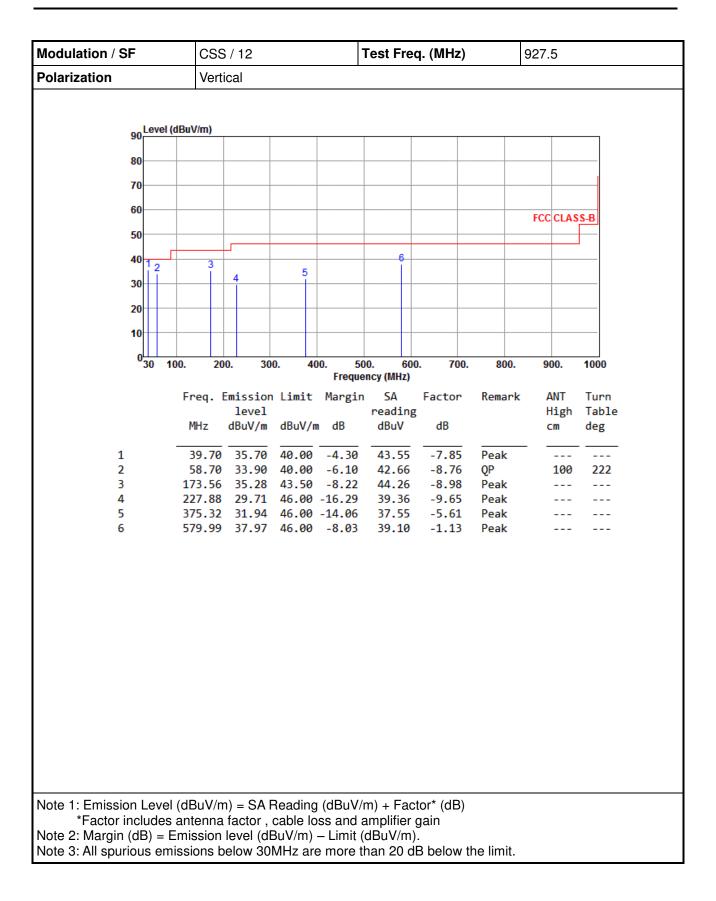


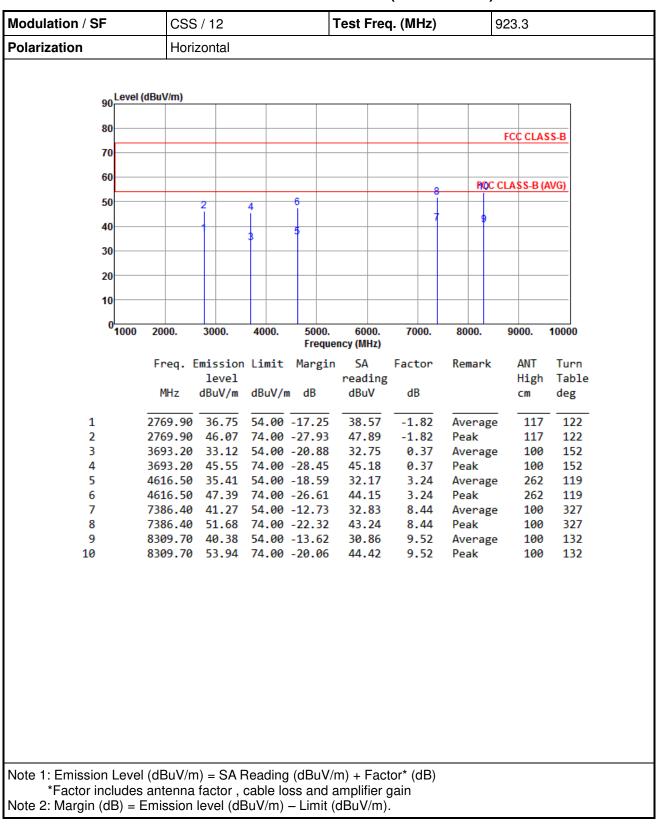
PolarizationVertical $00 \frac{1000}{100} $	Modulation / SF	ulation / SF CSS / 12					Test Freq. (MHz) 927.5				
90 1000 9000 10000 10000 10000 10000 10000 10000 10000 10000	Polarization	Vertio	cal								
90 1000 9000 10											
Top FCC CLASS.B 0 8 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 10 2 4 10 2 4 10 2 4 10 2 4 10 2 4 10 2 4 10 2 4 10 2 2 10 2 2 10 2 2 10 2 2 100 2000. 3000. 1000 2000. 3000. 1000 2000. 3000. 1000 2000. 3000. 1000 2000. 3000. 1000 <td>90 Level</td> <td>(dBuV/m)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	90 Level	(dBuV/m)									
70 8 60 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 4 6 70 2 3 7 70 3000. 4000. 5000. 6000. Frequency (MHz) 7000. 8000. 9000. 10000 10 100 2000. 3000. 4000. 5000. 6000. 10 121 121 121 121 121 10 2782.50 42.11 74.00 74.00	80								FCC CL	100 D	
60 2 4 6 7 FCC CLASS-B (AVG) 40 2 4 6 9 9 9 40 2 4 6 9 9 9 30 20 3 5 9 9 9 10 0 2000. 3000. 4000. 5000. 6000. 7000. 8000. 9000. 10000 10	70									133-D	
50 2 4 6 7 FCC CLASS B (AVG) 40 2 4 6 9 9 1 30 2 4 6 9 1 9 1 10 1 3 5 1 1 9 1 1 10 1	60						8				
40 2 4							7	FCC	CLASS-B	(AVG)	
30 1	50		2	4	6						
20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1000 2000. 3000. 4000. 5000. 6000. 7000. 8000. 9000. 10000 Freq. Emission Limit Margin SA reading SA reading Factor Remark ANT Turn MHz dBuV/m dBuV/m dB dBuV dB cm deg 1 2782.50 32.14 54.00 -21.86 33.92 -1.78 Average 100 121 2 2782.50 42.11 74.00 -31.89 43.89 -1.78 Peak 100 121 3 3710.00 35.41 54.00 -18.59 35.00 0.41 Average 100 111 4 3710.00 43.55 74.00 -30.45 43.14 0.41 Peak 100 111 5 4637.50 35.76 54.00 -18.24 32.47 3.29 Peak 100 128 6	40			3	5						
10 10 100 2000. 3000. 4000. 5000. 6000. 7000. 8000. 9000. 10000 Freq. Emission Limit Margin SA reading MHz dBuV/m dBuV/m dB dBuV dB cm deg 1 2782.50 32.14 54.00 -21.86 33.92 -1.78 Average 100 121 2 2782.50 42.11 74.00 -31.89 43.89 -1.78 Peak 100 121 3 3710.00 35.41 54.00 -18.59 35.00 0.41 Average 100 111 4 3710.00 43.55 74.00 -30.45 43.14 0.41 Peak 100 121 5 4637.50 35.76 54.00 -18.24 32.47 3.29 Average 100 128 6 4637.50 46.41 74.00 -27.59 43.12 3.29 Peak 100 128 7 7420.00 52.63 54.00 -1.37 44.14 8.49 Avera	30										
0 1000 2000. 3000. 4000. 5000. 6000. 7000. 8000. 9000. 10000 Frequency (MHz) Freq. Emission Limit Margin SA Factor reading MHz dBuV/m dBuV/m dB dBuV dB 1 2782.50 32.14 54.00 -21.86 33.92 -1.78 Average 100 121 2 2782.50 42.11 74.00 -31.89 43.89 -1.78 Peak 100 121 3 3710.00 35.41 54.00 -18.59 35.00 0.41 Average 100 111 4 3710.00 43.55 74.00 -30.45 43.14 0.41 Peak 100 111 5 4637.50 35.76 54.00 -18.24 32.47 3.29 Average 100 128 6 4637.50 46.41 74.00 -27.59 43.12 3.29 Peak 100 128 7 7420.00 52.63 54.00 -1.37 44.14 8.49 Average 283 359 8 7420.00 61.55 74.00 -12.45 53.06 8.49 Peak 283 359 9 8347.50 40.25 54.00 -13.75 30.74 9.51 Average 100 112	20										
0 1000 2000. 3000. 4000. 5000. 6000. 7000. 8000. 9000. 10000 Frequency (MHz) Freq. Emission Limit Margin SA Factor reading MHz dBuV/m dBuV/m dB dBuV dB 1 2782.50 32.14 54.00 -21.86 33.92 -1.78 Average 100 121 2 2782.50 42.11 74.00 -31.89 43.89 -1.78 Peak 100 121 3 3710.00 35.41 54.00 -18.59 35.00 0.41 Average 100 111 4 3710.00 43.55 74.00 -30.45 43.14 0.41 Peak 100 111 5 4637.50 35.76 54.00 -18.24 32.47 3.29 Average 100 128 6 4637.50 46.41 74.00 -27.59 43.12 3.29 Peak 100 128 7 7420.00 52.63 54.00 -1.37 44.14 8.49 Average 283 359 8 7420.00 61.55 74.00 -12.45 53.06 8.49 Peak 283 359 9 8347.50 40.25 54.00 -13.75 30.74 9.51 Average 100 112	10										
Frequency (MHz) Freq. Emission Limit Margin SA reading Livel Factor Remark ANT Turn High Table reading Cm MHz dBuV/m dBuV/m dB dBuV dB Cm Table deg 1 2782.50 32.14 54.00 -21.86 33.92 -1.78 Average 100 121 2 2782.50 42.11 74.00 -31.89 43.89 -1.78 Peak 100 121 3 3710.00 35.41 54.00 -18.59 35.00 0.41 Average 100 111 4 3710.00 43.55 74.00 -30.45 43.14 0.41 Peak 100 121 5 4637.50 35.76 54.00 -18.24 32.47 3.29 Average 100 128 6 4637.50 46.41 74.00 -27.59 43.12 3.29 Peak 100 128 7 7420.00 52.63 54.00 -1.37 44.14 8.49 Average 283 359 8 7420.00 61	0										
level reading High Table MHz dBuV/m dBuV/m dBuV dB cm deg 1 2782.50 32.14 54.00 -21.86 33.92 -1.78 Average 100 121 2 2782.50 42.11 74.00 -31.89 43.89 -1.78 Peak 100 121 3 3710.00 35.41 54.00 -18.59 35.00 0.41 Average 100 111 4 3710.00 43.55 74.00 -30.45 43.14 0.41 Peak 100 111 5 4637.50 35.76 54.00 -18.24 32.47 3.29 Average 100 128 6 4637.50 46.41 74.00 -27.59 43.12 3.29 Peak 100 128 7 7420.00 52.63 54.00 -1.37 44.14 8.49 Average 283 359 8 7420.00	°1000	2000.	3000.	4000.			7000.	8000.	9000.	10000	
MHz dBuV/m dBuV/m dB dBuV dB cm deg 1 2782.50 32.14 54.00 -21.86 33.92 -1.78 Average 100 121 2 2782.50 42.11 74.00 -31.89 43.89 -1.78 Peak 100 121 3 3710.00 35.41 54.00 -18.59 35.00 0.41 Average 100 111 4 3710.00 43.55 74.00 -30.45 43.14 0.41 Peak 100 111 5 4637.50 35.76 54.00 -18.24 32.47 3.29 Average 100 128 6 4637.50 46.41 74.00 -27.59 43.12 3.29 Peak 100 128 7 7420.00 52.63 54.00 -1.37 44.14 8.49 Average 283 359 8 7420.00 61.55 74.00 -12.45 53.06		Freq. E		Limit	Margin			Remark			
1 2782.50 32.14 54.00 -21.86 33.92 -1.78 Average 100 121 2 2782.50 42.11 74.00 -31.89 43.89 -1.78 Peak 100 121 3 3710.00 35.41 54.00 -18.59 35.00 0.41 Average 100 111 4 3710.00 43.55 74.00 -30.45 43.14 0.41 Peak 100 111 5 4637.50 35.76 54.00 -18.24 32.47 3.29 Average 100 128 6 4637.50 46.41 74.00 -27.59 43.12 3.29 Peak 100 128 7 7420.00 52.63 54.00 -1.37 44.14 8.49 Average 283 359 8 7420.00 61.55 74.00 -12.45 53.06 8.49 Peak 283 359 9 8347.50 40.25 54.00 -13.75 30.74 9.51 Average 100 112		MHz		dBuV/r	n dB				_		
2 2782.50 42.11 74.00 -31.89 43.89 -1.78 Peak 100 121 3 3710.00 35.41 54.00 -18.59 35.00 0.41 Average 100 111 4 3710.00 43.55 74.00 -30.45 43.14 0.41 Peak 100 111 5 4637.50 35.76 54.00 -18.24 32.47 3.29 Average 100 128 6 4637.50 46.41 74.00 -27.59 43.12 3.29 Peak 100 128 7 7420.00 52.63 54.00 -1.37 44.14 8.49 Average 283 359 8 7420.00 61.55 74.00 -12.45 53.06 8.49 Peak 283 359 9 8347.50 40.25 54.00 -13.75 30.74 9.51 Average 100 112											
3 3710.00 35.41 54.00 -18.59 35.00 0.41 Average 100 111 4 3710.00 43.55 74.00 -30.45 43.14 0.41 Peak 100 111 5 4637.50 35.76 54.00 -18.24 32.47 3.29 Average 100 128 6 4637.50 46.41 74.00 -27.59 43.12 3.29 Peak 100 128 7 7420.00 52.63 54.00 -1.37 44.14 8.49 Average 283 359 8 7420.00 61.55 74.00 -12.45 53.06 8.49 Peak 283 359 9 8347.50 40.25 54.00 -13.75 30.74 9.51 Average 100 112								_			
5 4637.50 35.76 54.00 -18.24 32.47 3.29 Average 100 128 6 4637.50 46.41 74.00 -27.59 43.12 3.29 Peak 100 128 7 7420.00 52.63 54.00 -1.37 44.14 8.49 Average 283 359 8 7420.00 61.55 74.00 -12.45 53.06 8.49 Peak 283 359 9 8347.50 40.25 54.00 -13.75 30.74 9.51 Average 100 112											
64637.5046.4174.00-27.5943.123.29Peak10012877420.0052.6354.00-1.3744.148.49Average28335987420.0061.5574.00-12.4553.068.49Peak28335998347.5040.2554.00-13.7530.749.51Average100112											
77420.0052.6354.00-1.3744.148.49Average28335987420.0061.5574.00-12.4553.068.49Peak28335998347.5040.2554.00-13.7530.749.51Average100112											
9 8347.50 40.25 54.00 -13.75 30.74 9.51 Average 100 112	7	7420.00	52.63	54.00	-1.37	44.14	8.49	Average	e 283	3 359	
• • • • • • • • • • • • • • • • • • •											
								_			
	Note d. Emission I			a a clim		<u>м) . Г</u>					
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain	Note 2: Margin (dB) =										



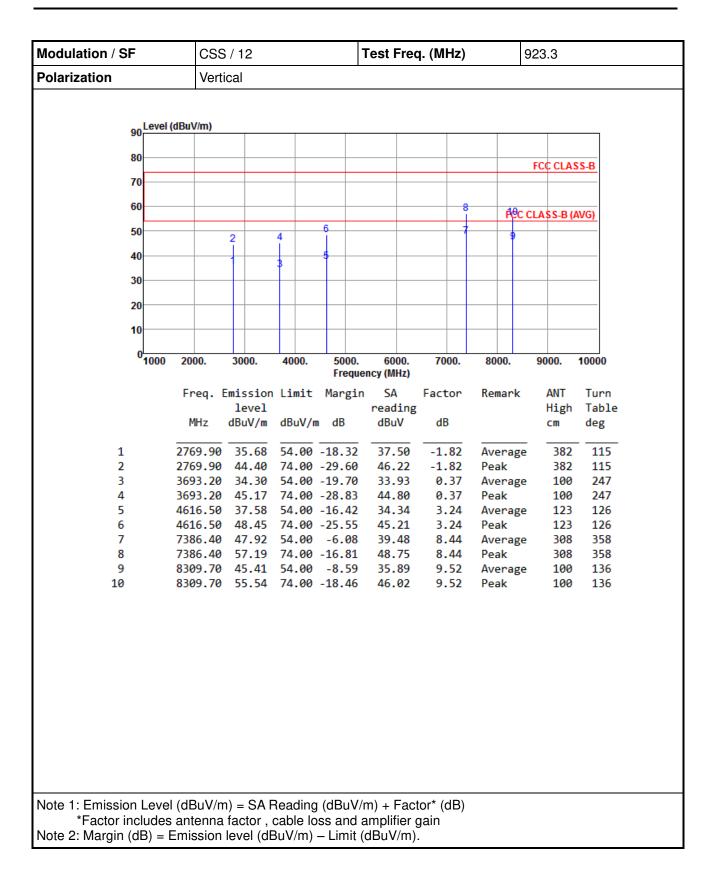
Configuration 2: with internal antenna

3.5.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

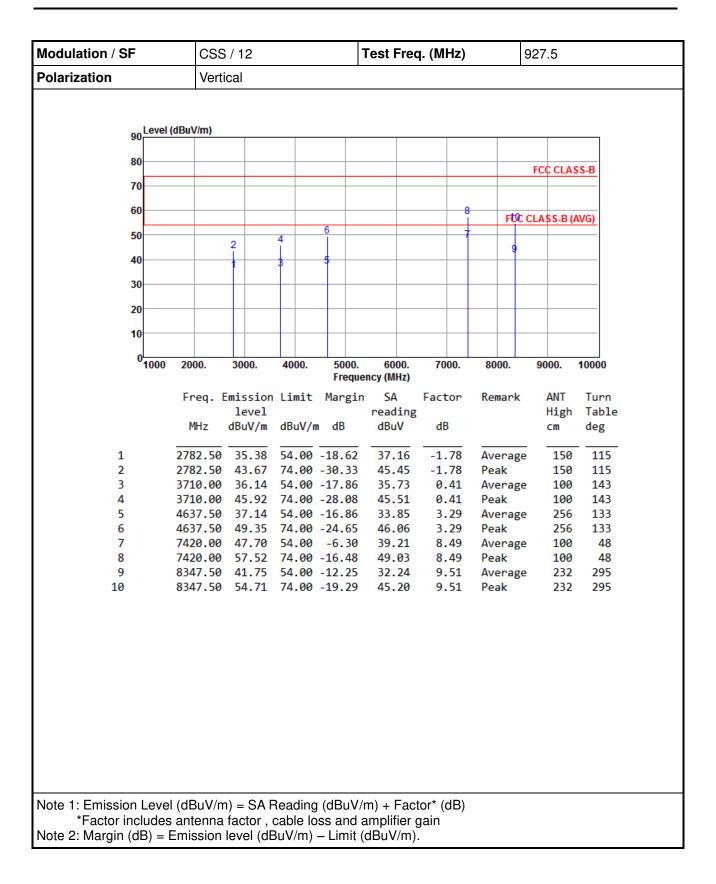




Modulation / SF	CSS / 12 Test Freq. (MHz) 927.5								
Polarization	Hori	zontal							
امىرم ا	(dBuV/m)								
90	(ubuv/iii)								
80									
70									
60									
00								FCC CLA	SS-B
50									<u></u>
40	2	3			6				
30			4		·				
20									
10									
0	100. 20	0. 30	0. 40)0. 50	0. 60	0. 700.	800.	900.	1000
50			. 40		ncy (MHz)				
	Freq. I		n Limit	Margin		Factor	Remark		Turn
	MHz	level dBuV/m	dBuV/n	a dB	reading dBuV	g dB		High cm	Table deg
									ucg
1	106.63				46.21		Peak		
2 3	173.56 249.22		43.50 46.00		47.03 44.67	-8.98 -9.23	Peak Peak		
4		30.45			36.06		Peak		
5				-12.88	35.92		Peak		
6	579.99	35.65	46.00	-10.35	36.78	-1.13	Peak		
Note 1: Emission Leve	l (dBuV/m	ו <u>אפן = (</u> ו	Reading	ı (dBuV/i	n) + Fac	tor* (dR)			
*Factor includes									
Note 2: Margin (dB) =	Emission	level (dl	BuV/m)	– Limit (dBuV/m).			
Note 3: All spurious en	nissions b	elow 30	MHz are	e more t	nan 20 d	B below t	the limit.		



3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)



Modulation / SF	CSS	CSS / 12 Test Freq. (MHz) 927.5								
Polarization	Horiz	zontal								
90 Leve	l (dBuV/m)									
80										
70								FCC CLA	SS-B	
60						8	FCC	CLASS-B	(AVG)	
50		2	4	6						
40				5			9			
30			ľ							
20										
10										
0 ^L 1000	2000.	3000.	4000.	5000. Frequer	6000. icy (MHz)	7000.	8000.	9000.	10000	
	Freq. E		Limit	Margin		Factor	Remark	ANT	Turn	
	MHz	level dBuV/m	dBuV/r	a dB	reading dBuV	dB		High cm	Table deg	
	PIITZ		ubuv/i		ubuv	ub		CIII	ueg	
1	2782.50			-19.14	36.64	-1.78	Average			
2 3	2782.50 3710.00			-29.25 -19.94	46.53 33.65	-1.78 0.41	Peak Average	100 105		
4		44.09			43.68	0.41	Peak	105		
5	4637.50				32.57	3.29	Average			
6 7	4637.50 7420.00				44.94 34.22	3.29 8.49	Peak Average	377 100		
8	7420.00				45.01	8.49	Peak	100	325	
9	8347.50				30.36	9.51	Average			
10	8347.50	51.60	74.00	-22.40	42.09	9.51	Peak	100	128	
Noto 1: Emission Lov	al (dBu)//~		oadina			tor* (dP)				
Note 1: Emission Leve Factor include*										
Note 2: Margin (dB) =										

3.6 Emissions in Non-Restricted Frequency Bands

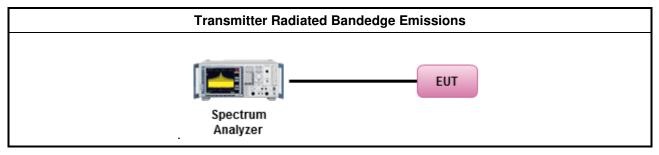
3.6.1 Emissions in Non-Restricted Frequency Bands Limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz

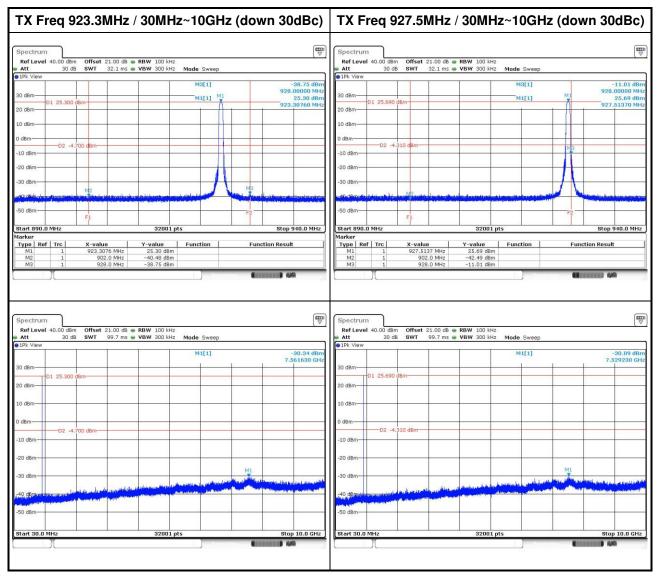
3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures


Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz , Detector = Peak, Sweep time = Auto
- 2. Trace = max hold , Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level


Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz , Detector = Peak, Sweep time = Auto
- 2. Trace = max hold , Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 10GHz
- 4. Use the peak marker function to determine the maximum amplitude level

3.6.4 Test Setup

3.6.5 Unwanted Emissions into Non-Restricted Frequency Bands

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—