

FCC TEST REPORT (PART 25)

REPORT NO.: RF981218L08-2 MODEL NO.: WIXFBR-103 (refer to item 3.1 for detail) RECEIVED: Dec. 18, 2009 TESTED: Feb. 22 ~ Mar. 12, 2010 ISSUED: Mar. 13, 2010

APPLICANT: Gemtek Technology Co., Ltd.

ADDRESS: No. 15-1, Zhonghua Rd, Hsinchu Industrial Park , Hsinchu County, Taiwan, R.O.C. 303

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 42 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1	CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
2.1		5
3		6
3.1		6
3.2	DESCRIPTION OF TEST MODES	8
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	8
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	11
3.4	DESCRIPTION OF SUPPORT UNITS	11
3.5	TESTINSTRUCMENTS	12
4	TEST TYPES AND RESULTS	. 13
4.1	PEAK EIRP MEASUREMENT	13
4.1.1	LIMITS OF PEAK EIRP MEASUREMENT	13
4.1.2	TEST PROCEDURES	13
4.1.3	TEST SETUP	14
4.1.4	EUT OPERATING CONDITIONS	14
4.1.5	TEST RESULTS	15
4.2	OUT OF CHANNAL EIRP MEASUREMENT	20
4.2.1	LIMITS OF OUT OF CHANNAL MEASUREMENT	20
4.2.2	TEST PROCEDURES	20
4.2.3	TEST SETUP	21
4.2.4	EUT OPERATING CONDITIONS	21
4.2.5	TEST RESULTS	22
4.3	FREQUENCY STABILITY MEASUREMENT	30
4.3.1	LIMITS OF FREQUENCY STABILIITY MEASUREMENT	30
4.3.2	TEST PROCEDURE	31
4.3.3	TEST SETUP	31
4.3.4	EUT OPERATING CONDITIONS	31
4.3.5	TEST RESULTS	32
4.4	EIRP DENSITY IN 1559-1610MHz BAND	33
4.4.1	LIMITS OF FIRP DENSITY MEASUREMENT	
4.4.2	TEST SETUP	
443	TEST PROCEDURES	33
444		33
445	TEST RESULTS	
4.5	OUT OF CHANNEL EMISISON IN 1610 6-1613 8MHz BAND	
4.5 4.5.1		
4.J.T		

Report Format Version 3.0.1

		1828
4.5.2	TEST PROCEDURE	<u>а рт</u>
4.5.3	TEST SETUP	38
4.5.4	EUT OPERATING CONDITIONS	38
4.5.5	TEST RESULTS	38
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	
6	INFORMATION ON THE TESTING LABORATORIES	

1 CERTIFICATION

PRODUCT: WiMAX Indoor CPE (refer to item 3.1 for detail) MODEL: WIXFBR-103 (refer to item 3.1 for detail) BRAND: Gemtek (refer to item 3.1 for detail) APPLICANT: Gemtek Technology Co., Ltd. TESTED: Feb. 22 ~ Mar. 12, 2010 TEST SAMPLE: ENGINEERING SAMPLE TEST STANDARDS: FCC Part 25 Subpart C

The above equipment (Model: WIXFBR-103) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	: <u>Pergy</u> Chen Peggy Chen / Specialist	, DATE : _	Mar. 13, 2010
TECHNICAL ACCEPTANCE Responsible for RF	Long Chen Long Cheb/ Senior Engineer	, DATE : _	Mar. 13, 2010
APPROVED BY	: Gary Chang / Assistant Manager	_ , DATE : _	Mar. 13, 2010

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK
FCC Part 25			
25 254 (b)(2)	Peak EIRP	DASS	Meet the requirement of limit
23.234 (b)(2)	Peak EIRP limit of 1.0 dBW in 1.25 MHz	FASS	
25 254 (b)(3)	Out of channel EIRP	DASS	Meet the requirement of limit
23.234 (b)(3)	Limit is -57.1 dBW/30 kHz	1,400	
	Out of channel emission in 1610.6 – 1613.8 MHz band		
25.254 (b)(1)	Meet the requirements to protect radio astronomy service (RAS) observations in the1610.6–1613.8 MHz band from un acceptable interference	PASS	Meet the requirement of limit.
	EIRP density in 1559 – 1610 MHz band		
FCC 08-254 (35)	EIRP density limit for wideband emissions of -90 dBW/MHz and an EIRP density limit of -100 dBW/kHz for narrowband emissions	PASS	Meet the requirement of limit.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	150kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	3.19 dB
Padiated emissions	200MHz ~1000MHz	3.21 dB
Radiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Report no.: RF981218L08-2

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	WiMAX Indoor CPE (refer to note for detail)
MODEL NO.	WIXFBR-103 (refer to note for detail)
FCC ID	MXF-WIXFBR-103
POWER SUPPLY	12Vdc
MODULATION TYPE	QPSK, 16QAM, 64QAM (refer to NOTE for more details)
CODING RATE	1/2, 2/3, 3/4, 5/6 (refer to NOTE for more details)
MODULATION TECHNOLOGY	OFDMA
DUPLEX METHOD	TDD
OPERATING RANGE	2487.5MHz ~ 2492.5MHz
CHANNEL BANDWIDTH	5MHz, 10MHz
MAX. E.I.R.P. POWER	33.54dBm (2.259W)
ANTENNA TYPE	Refer to NOTE 4 as below
OPERATION TEMPERATURE RANGE	0°C ~ 45°C
DATA CABLE	NA
I/O PORTS	RJ45, RJ11
ACCESSORY DEVICES	AC Adapter

NOTE:

1. The EUT is a WiMAX Indoor CPE. The functions of EUT listed as below:

TEST STANDARD		REFERENCE REPORT
WLAN 802.11b/g FCC Part 15, Subpart C (Section 15.247)		RF981218L08
WiMAX (2496~2690MHz)	FCC Part 27, Subpart C & M	RF981218L08-1
WiMAX (2483.5~2495MHz)	FCC Part 25	RF981218L08-2

2. All models are electrically identical, different model names are for marketing purpose.

BRAND	MODEL	PRODUCT NAME	REMARK
Gemtek	WIXFBR-103	WiMAX Indoor CPE	-
Alvarion	4M-CPE4000-Si-2D-2V-WiFi-2.5	CPE4000-Si	For marketing different

3. The EUT was powered by the following adapter:

BRAND:	DVE
MODEL:	DSA-26PFA-15 FUS 120200
INPUT:	100-240Vac, 50/60Hz, 0.8A
OUTPUT:	12Vdc, 2A
POWER LINE:	1.5 m non-shielded cable without core

4. The EUT used two antennas listed as below:

ANTENNA ITEM	ANTENNA TYPE	ANTENNA CONNECTER	ANTENNA GAIN (dBi)
MAIN ANTENNA	Dipole Antenna (omni-directional)	IPEX-PLUG	7
AUX. ANTENNA	Dipole Antenna (omni-directional)	IPEX-PLUG	7

**For final tested, Aux. antenna was chosen for tested and presented in the test report.

5. For the EUT with modulation type and coding rate. After pre-testing in test items of output power and spurious emissions, 16QAM was found to be worst case and was selected for the final test configuration.

DOWN LINK		UP	LINK
MODULATION	CODING RATE	MODULATION	CODING RATE
OPSK	1/2	OPSK	1/2
QFON	3/4	QFOR	3/4
16QAM	1/2	1600M	1/2
	3/4		3/4
	1/2		
6400M	2/3		
	3/4		-
	5/6		

6. The EUT can supports different UL / DL ratio, max transmit ratio is up to 18 (UL): 29 (DL). After pretesting of output power and spurious emission, 18 (UL): 29 (DL) was found to be worst case and was selected for the final test configuration.

7. The above EUT information was declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Three channels had been tested for each channel bandwidth.

CHANNEL BANDWIDTH: 5MHz	CHANNEL BANDWIDTH: 10MHz
Low channel (L): 2487.5MHz.	Channel: 2490.0MHz.
High channel (H): 2492.5MHz.	

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

	EUT		APPLICABLE TO						
	MODE	OP	FS	ОВ	CE	CSE	RE<1G	RE≥1G	DESCRIPTION
	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
1									

Where **OP:** Output power **OB:** Occupied bandwidth **FS:** Frequency stability **CE:** Channel edge

RE<1G: Radiated emission below 1GHz

CSE: Conducted spurious emissions

RE≥1G: Radiated emission above 1GHz

OUTPUT POWER MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate and antenna ports (if EUT with antenna diversity architecture).

TESTED FREQUENCY (MHZ)	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
2487.5 & 2492.5	OFDMA	5MHz	16QAM	1/2
2490	OFDMA	10MHz	16QAM	1/2

Following channel(s) was (were) selected for the final test as listed below.

FREQUENCY STABILITY MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate, and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED FREQUENCY (MHZ)	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
2492.5	OFDMA	5MHz	16QAM	1/2
2490	OFDMA	10MHz	16QAM	1/2

EMISSION BANDWIDTH MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED FREQUENCY (MHZ)	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
2487.5 & 2492.5	OFDMA	5MHz	16QAM	1/2
2490	OFDMA	10MHz	16QAM	1/2

CHANNEL EDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate, and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed belo						
	TESTED					

FREQUENCY (MHZ)	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
2487.5 & 2492.5	OFDMA	5MHz	16QAM	1/2
2490	OFDMA	10MHz	16QAM	1/2

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate, and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED FREQUENCY (MHZ)	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
2487.5 & 2492.5	OFDMA	5MHz	16QAM	1/2
2490	OFDMA	10MHz	16QAM	1/2

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

TESTED FREQUENCY (MHZ)	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
2492.5	OFDMA	5MHz	16QAM	1/2
2490	OFDMA	10MHz	16QAM	1/2

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED FREQUENCY (MHZ)	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
2487.5 & 2492.5	OFDMA	5MHz	16QAM	1/2
2490	OFDMA	10MHz	16QAM	1/2

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2

FCC 47 CFR Part 25

ANSI/TIA/EIA-603-C-2004

FCC KDB 273109 D01 Equip Auth Guide Part 25 TXReceiver v02

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	TELEPHONE	WONDER	WD-303	5C17DA09835	NA
2	TELEPHONE	WONDER	WD-303	5C17DA09279	NA
3	NOTEBOOK COMPUTER	DELL	PP05L	12130898320	E2K24CLNS
4	NOTEBOOK COMPUTER	DELL	D531	CN-0XM006-4864 3-81U-2973	QDS-BRCM1020

NO.	. SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS				
1	1.8m UTP RJ11 cable.				
2	1.8m UTP RJ11 cable.				
3	10m UTP RJ45 cable.				
4	10m UTP RJ45 cable.				

NOTE: 1. All power cords of the above support units are non shielded (1.8m). 2. Item 3, 4 acted as communication partners to transfer data.

3.5 TESTINSTRUCMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESI7	838496/016	Dec. 29, 2009	Dec. 28, 2010
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100041	May 13, 2009	May 12, 2010
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Apr. 29, 2009	Apr. 28, 2010
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-209	Jul. 01, 2009	Jun. 30, 2010
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170242	Dec. 25, 2009	Dec. 24, 2010
Preamplifier Agilent	8449B	3008A01961	Nov. 04, 2009	Nov. 03, 2010
Preamplifier Agilent	8447D	2944A10738	Nov. 04, 2009	Nov. 03, 2010
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	274041/4	Aug. 28, 2009	Aug. 27, 2010
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	283397/4	Aug. 28, 2009	Aug. 27, 2010
Software ADT.	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA	NA
Antenna Tower Controller inn-co GmbH	CO2000	019303	NA	NA
Turn Table ADT.	TT100.	TT93021704	NA	NA
Turn Table Controller ADT.	SC100.	SC93021704	NA	NA
* WIT Standard Temperature & Humidity Chamber	TH-4S-C	W981030	Jun. 26, 2008	Jun. 25, 2009

- NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The test was performed in HwaYa Chamber 4.
 - 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

 - 4. The FCC Site Registration No. is 988962.5. The IC Site Registration No. is IC7450F-4.

4 TEST TYPES AND RESULTS

4.1 PEAK EIRP MEASUREMENT

4.1.1 LIMITS OF PEAK EIRP MEASUREMENT

Per FCC Part 25.254(b)(2) and FCC KDB 273109 D01 Equip Auth Guide Part 25 TXReceiver v02, the limit is as below table.

Phone type and Mode	Power Available (dBW)	Antenna Gain (dBic or dBi)	EIRP (dBW)	Density (dBW/1.25MHz)	Density (dBW/4kHz)
Handheld ATC	-7	2	-5	-5	-29.9
Fixed ATC	-2	12	10	1	-23.9

Note : 1dBW/1.25MHz = 31dBm/1.25MHz -23.9dBW/4kHz= 6.1dBm/4kHz

4.1.2 TEST PROCEDURES

MAX EIRP MEASUREMENT

- a. The transmitter output was connected to the spectrum analyzer through an attenuator.
- b. Using channel power function to measure the conducted power
- c. EIRP= Measured power of Step2 +Antenna gain

MAX EIRP DENSITY MEASUREMENT

- a. The transmitter output was connected to the spectrum analyzer through an attenuator.
- b. Using channel power function to measure the conducted power density
- c. EIRP DENSITY= Measured power of Step2 +Antenna gain

4.1.3 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.4 EUT OPERATING CONDITIONS

- a. Placed the EUT on a testing table.
- b. Prepared a notebook computer and placed it outside of testing area to act as communication partner for EUT.
- c. The EUT ran a test program (provided by manufacturer) to enable all functions under transmission condition continuously at specific channel frequency.

4.1.5 TEST RESULTS

INPUT POWER	120Vac, 60Hz	CHANNEL BANDWIDTH	5MHz
ENVIRONMENTAL CONDITIONS	22deg [°] C, 60%RH 991hPa	TESTED BY	Dean Wang

PEAK EIRP							
FREQUENCY (MHz)CONDUCTED POWER (dBm)ANTENNA GAIN (dBi)EIRP (dBm)				EIRP (W)	LIMIT (W)		
2487.5	23.51	7	30.51	1.125	10		
2492.5	23.58	7	30.58	1.143	10		

PEAK EIRP DENSITY PER 1.25MHz							
FREQUENCY (MHz)CONDUCTED POWER (dBm)ANTENN GAIN (dBi)			EIRP DENSITY (dBm)	LIMIT (dBm)			
2487.5	18.74	7	25.74	31			
2492.5	18.67	7	25.67	31			

PEAK EIRP DENSITY PER 4KHz							
FREQUENCY (MHz) CONDUCTED ANTENNA POWER GAIN (dBm) (dBi) EIF			EIRP DENSITY (dBm)	LIMIT (dBm)			
2487.5	-10.08	7	-3.08	6.1			
2492.5	-9.91	7	-2.91	6.1			

Conducted power

Frequency: 2487.5MHz

Frequency: 2492.5MHz

Conducted power density per 1.25MHz

Conducted power density per 4kHz

Frequency: 2487.5MHz

Frequency: 2492.5MHz

Agilent Spectrum Analyzer - Ch	annel Power				III Agilent Spectrum	n Analyzer - Channe	Power			
Center Freq 2.487500	0000 GHz t: RF //IFGain:Low	Center Freq: 2.4875 Trig: Free Run #Atten: 30 dB	ALIGNAUTO 00000 GHz Avg Hold>10/10 Ext Gain: -21.00 dB	04:30:17 PM Mar 12, 2010 Radio Std: None Radio Device: BTS	Center Freq	2.49250000 Input: RF	0 GHz /IFGain:Low	Center Freq: 2.492 Trig: Free Run #Atten: 30 dB	500000 GHz Avg[Hold>10/10 Ext Gain: -21.00 dB	04:39:03 PM Mar 12, 201 Radio Std: None Radio Device: BTS
10 dB/div Ref 17 dE	3m				10 dB/div	Ref 17 dBm				
7					7					
-13					-13					
-33					-33					
-43					-43					
-73					-63 -73					
Center 2.488 GHz #Res BW 30 kHz		#VBW 3001	ĸHz	Span 8 kHz Sweep 1 ms	Center 2.493 #Res BW 30	GHz kHz		#VBW 300	kHz	Span 8 kH Sweep 1 m
Channel Power		Powe	r Spectral Dens	sity	Channel	Power		Pow	er Spectral Den	sity
-10.08	dBm/ 4 kHz		-46.10 dB	m/Hz		-9.91 di	Bm/ 4 kHz		-45.93 de	3m/Hz

INPUT POWER	120Vac, 60Hz	CHANNEL BANDWIDTH	10MHz
ENVIRONMENTAL CONDITIONS	22deg°C, 60%RH 991hPa	TESTED BY	Dean Wang

PEAK EIRP							
FREQUENCY (MHz)	CONDUCTED POWER (dBm)	ANTENNA GAIN (dBi)	EIRP (dBm)	EIRP (W)	LIMIT (W)		
2490	26.54	7	33.54	2.259	10		

PEAK EIRP DENSITY PER 1.25MHz						
FREQUENCY (MHz) CONDUCTED POWER (dBm)		ANTENNA GAIN (dBi)	EIRP DENSITY (dBm)	LIMIT (dBm)		
2490	18.75	7	25.75	31		

PEAK EIRP DENSITY PER 4KHz						
FREQUENCY (MHz) CONDUCTED A POWER (dBm)		ANTENNA GAIN (dBi)	ANTENNA GAIN (dBi)			
2490	-9.03	7	-2.03	6.1		

Conducted power

Frequency: 2490MHz

Conducted power density per 1.25MHz

Conducted power density per 4kHz

4.2 OUT OF CHANNAL EIRP MEASUREMENT

4.2.1 LIMITS OF OUT OF CHANNAL MEASUREMENT

Per FCC PART 25.254(b)(3),out-of-channel EIRP limit of -57.1 dBW/30 kHz at the edge of the licensed MSS frequency assignment.

4.2.2 TEST PROCEDURES

RADIATED MEASUREMENT

- a. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels (low, middle and high channel of operational frequency range.)
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable . Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value " of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution antenna.
- NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 30kHz/100kHz

CONDUCTED MEASRUEMENT

- a. The transmitter output was connected to the spectrum analyzer through an attenuator.
- b. Measure the emission of EUT and record the test plot.

4.2.3 TEST SETUP

RADIATED MEASUREMENT

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

CONDUCTED MEASUREMENT

Same as 4.1.3

4.2.4 EUT OPERATING CONDITIONS

Same as 4.1.4

4.2.5 TEST RESULTS

RADIATED EMISSIONS

BELOW 1000MHz

CHANNEL BANDWIDTH	5MHz	FREQUENCY RANGE	Below 1000MHz
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 63%RH 991hPa
TEST FREQUENCY	2492.5MHz	TESTED BY	Dean Wang

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	133.03	44.6	-27.1	-42.0	-7.7	-49.7		
2	164.13	36.2	-27.1	-50.7	-7.7	-58.4		
3	238.00	37.2	-27.1	-49.4	-7.7	-57.1		
4	401.28	28.6	-27.1	-57.7	-7.8	-65.5		
5	650.10	27.3	-27.1	-60.0	-7.8	-67.8		
6	961.12	33.5	-27.1	-52.6	-7.9	-60.5		
	AN	TENNA POLAR	ITY & TEST DI	STANCE: VER	FICAL AT 3m			
NO.	NO. FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBm) S.G POWER VALUE (dBm) FACTOR (dB) (dBr					POWER VALUE (dBm)		
1	59.16	41.4	-27.1	-45.1	-7.7	-52.8		
2	133.03	36.6	-27.1	-50.0	-7.7	-57.7		
3	179.68	37.9	-27.1	-48.5	-7.7	-56.2		
4	341.02	29.6	-27.1	-56.7	-7.8	-64.5		
5	634.55	27.6	-27.1	-58.8	-7.8	-66.6		
0			- ·			00 7		

NOTE 1: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

NOTE 2: Correction Factor = Antenna gain of substitution antenna- tx cable loss

CHANNEL BANDWIDTH	10MHz	FREQUENCY RANGE	Below 1000MHz
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 63%RH 991hPa
TEST FREQUENCY	2490MHz	TESTED BY	Dean Wang

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	133.03	44.7	-27.1	-41.7	-7.7	-49.4		
2	179.68	34.5	-27.1	-52.1	-7.7	-59.8		
3	239.94	36.2	-27.1	-51.2	-7.7	-58.9		
4	399.34	28.5	-27.1	-57.8	-7.8	-65.6		
5	790.06	30.8	-27.1	-55.7	-7.9	-63.6		
6	961.12	34.5	-27.1	-52.8	-7.9	-60.7		
	AN	TENNA POLAR	ITY & TEST DI	STANCE: VER	FICAL AT 3m			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	59.16	42.2	-27.1	-44.8	-7.7	-52.5		
2	131.08	36.9	-27.1	-50.3	-7.7	-58.0		
3	179.68	37.1	-27.1	-49.2	-7.7	-56.9		
4	337.13	30.5	-27.1	-55.7	-7.8	-63.5		
5	799.78	28.9	-27.1	-58.1	-7.9	-66.0		
6	959.14	35.7	-27.1	-50.4	-7.9	-58.3		

NOTE 1: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

NOTE 2: Correction Factor = Antenna gain of substitution antenna- tx cable loss

ABOVE 1000MHz

CHANNEL BANDWIDTH	5MHz	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 63%RH 991hPa
TEST FREQUENCY	2487.5MHz	TESTED BY	Dean Wang

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)			
1	2485	64.7	-27.1	-39.3	8.4	-30.9			
2	2490	64.5	-27.1	-39.5	8.4	-31.1			
3	4975	40.9	-27.1	-63.1	9.5	-53.6			
4	7462.5	48.9	-27.1	-53.6	7.8	-45.8			
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3m								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)			
1	2485	67.9	-27.1	-36.0	8.4	-27.6			
2	2490	67.8	-27.1	-36.1	8.4	-27.7			
3	4975	43.9	-27.1	-60.2	9.5	-50.7			
4	7462.5	51.9	-27.1	-50.2	7.8	-42.4			

NOTE 1: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB). **NOTE 2:** Correction Factor = Antenna gain of substitution antenna- tx cable loss

CHANNEL BANDWIDTH	5MHz	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg [°] C, 63%RH 991hPa
TEST FREQUENCY	2492.5MHz	TESTED BY	Dean Wang

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	2490	65.1	-27.1	-38.8	8.4	-30.4		
2	2495	64.1	-27.1	-39.9	8.4	-31.5		
3	4985	41.2	-27.1	-63.4	9.7	-53.7		
4	7477.5	48.6	-27.1	-53.5	7.8	-45.7		
	AN	TENNA POLAR	ITY & TEST DI	STANCE: VER	FICAL AT 3m			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	2490	67.7	-27.1	-36.3	8.4	-27.9		
2	2495	67.9	-27.1	-36.0	8.4	-27.6		
3	4985	44.2	-27.1	-59.9	9.7	-50.2		
4	7477.5	51.7	-27.1	-51.0	7.8	-43.2		

NOTE 1: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB). **NOTE 2:** Correction Factor = Antenna gain of substitution antenna- tx cable loss

CHANNEL BANDWIDTH	10MHz	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 63%RH 991hPa
TEST FREQUENCY	2490MHz	TESTED BY	Dean Wang

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	2485	63.6	-27.1	-40.8	8.4	-32.4		
2	2495	63.6	-27.1	-40.3	8.4	-31.9		
3	4980	40.4	-27.1	-63.4	9.5	-53.9		
4	7470	48.2	-27.1	-54.1	7.8	-46.3		
	AN	TENNA POLAR	ITY & TEST DI	STANCE: VER	FICAL AT 3m			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	2485	67.9	-27.1	-36.1	8.4	-27.7		
2	2495	67.9	-27.1	-36.2	8.4	-27.8		
3	4980	42.7	-27.1	-60.8	9.5	-51.3		
4	7470	51.3	-27.1	-50.3	7.8	-42.5		

NOTE 1: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB). **NOTE 2:** Correction Factor = Antenna gain of substitution antenna- tx cable loss

CONDUCTED EMISSION

Emission limit for out of channel is EIRP-27.1dBm/30kHz.When measuring the conducted emission, antenna gain should be applied to the limit. Limit of conducted emissions is -27.1-7=-34.1dBm / 30kHz

For 5MHz bandwidth

Frequency 2487.5MHz

Agilent Sp	ectrum Analy.	er - Swept SA		16 600	S-INCE	AL 1001 AL 07	
enter F	Freq 2.41 Gate: L0	87500000 Input: RF	PN0: >30k G	Trig: Free F #Atten: 16 d	Run A IB E	vg Hold: >100/100 xt Gain: -21.0 dB	TRACE 12 TYPE A W
) dB/div	Ref 23.	00 dBm				M	r4 2.492 12 -38.281 c
3.0							
			And Aller	ر براہ ایتا	Aller	Advala	
00			Maked and	olad Ala Maka	, 166 M M	Madu M	
				1.11		1.	
.0			<u>['</u>	I			
	L	1.1.4.1					
• 44	ummun.	JUN IN	(www.alatinii.chu
.o - -	And .						of Multiple 1
nter 2 les BW	.487500 G / 30 kHz	Hz	#VB	N 100 kHz		Sweep	Span 10.00 52.7 ms (100
R MODE 1	TRC SCL	×		Y	FUNCTIO	N FUNCTION WID	TH FUNCTION VAL
N	1 1	2.4	85 00 GHz	-47.616 dBr	n		
N		2.4	90 00 GHz 83 73 GHz	-48.132 dBr -34 724 dBr	n		
N	1 1	2.4	92 12 GHz	-38.281 dBr	n		

For 5MHz bandwidth

Frequency 2492.5MHz

Gate: L0 Gate: L0	Input: RF PNO: >30k IFGain:Low	Trig: Free Run Atten: 12 dB	Avgji Ext G	Hold: > 100/100 Sain: -21.7 dB	1 2.495 -43.9	27 GH
130 300 -700	fritti ^t '	t iyiyini		MM		
27.0 37.9 -7.0 57.0	uh (k. B.)			A24	all the state	-suge Mitthy
Center 2.492500 Gł #Res BW 30 kHz	lz #VE	3W 100 kHz		Sweep :	Span 1 52.7 ms (0.00 MH 1001 pt
MKR MODE TRC SCL	2,490 00 GHz 2,495 00 GHz 2,495 00 GHz 2,498 74 GHz	Y 40.080 dBm 42.207 dBm 35.496 dBm	FUNCTION	FUNCTION WIDTH	FUNCTI	DN VIALUE

Report no.: RF981218L08-2

For 10MHz bandwidth

Frequency 2490MHz

Center Freq 2.490	000000 GH	Z D: Fast 😱	Trig: Free Ru	Avg n Avg Ext	Type: Log-Pwr Hold: > 100/100 Bain: -21.0 dB	TRACE 1 2 1 TYPE A MAR
10 dB/div Ref 23.00	dBm	III.LUW			Mkr3	2.484 915 G -36.146 dB
13 0 2 00 7 00 17 0	WHW	Yiny?	ninini	MANN	inini ha	
	y					2 340
enter 2.490000 GH Res BW 30 kHz	2	#VBW	100 kHz		Sweep	Span 15.00 M 50.1 ms (1001 p
KR MODE TAC SCL	× 2,485,000 2,495,000	GHz GHz	Y 48.740 dBm 42.744 dBm 26.146 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE

4.3 FREQUENCY STABILITY MEASUREMENT

4.3.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT

According to the FCC part 2.1055 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with specification of EUT 0° C ~ 45° C.

4.3.2 TEST PROCEDURE

- a. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the AC input power. The various Volts from the minimum 93.5 Volts to 126.5 Volts. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing.
- d. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

4.3.3 TEST SETUP

4.3.4 EUT OPERATING CONDITIONS

The EUT connected to the notebook. Use software to control the EUT channel and transmit a single tone.

4.3.5 TEST RESULTS

MODE	Low channel	INPUT POWER	120Vac, 60Hz
ENVIRONMENTAL CONDITIONS	25deg [°] C, 63%RH 991hPa	TESTED BY	Dean Wang

AFC FREQUENCY ERROR VS. VOLTAGE					
	CHANNEL BAN	DWIDTH : 5MHz	CHANNEL BANDWIDTH : 10MH		
VOLTAGE (Volts)	FREQUENCY (MHz)	FREQUENCY (MHz) FREQUENCY ERROR (ppm)		FREQUENCY ERROR (ppm)	
126.5	2492.498066	-0.776	2489.998823	-0.473	
110.0	2492.495431	-1.833	2489.995903	-1.645	
93.5	2492.495218	-1.919	2489.995307	-1.885	

AFC FREQUENCY ERROR VS. TEMP.					
	CHANNEL BAN	DWIDTH : 5MHz	CHANNEL BANDWIDTH : 10MHz		
ТЕМР. (℃)	FREQUENCY (MHz)	FREQUENCY ERROR (ppm)	FREQUENCY (MHz)	FREQUENCY ERROR (ppm)	
45	2492.482131	-7.169	2489.982582	-6.995	
40	2492.487887	-4.860	2489.988222	-4.730	
30	2492.498057	-0.780	2489.998377	-0.652	
20	2492.495431	-1.833	2489.995903	-1.645	
10	2492.494598	-2.167	2489.994878	-2.057	
0	2492.494603	-2.165	2489.994433	-2.236	

4.4 EIRP DENSITY IN 1559-1610MHz BAND

4.4.1 LIMITS OF EIRP DENSITY MEASUREMENT

Per FCC PART 25.254(b) and FCC KDB 273109 D01 Equip Auth Guide Part 25 TXReceiver v02, the limit is as below table

FREQUENCY BAND	WIDE BAND EMISSION	NARROW BAND EMISSION	
1559 ~ 1610MHz	-90dBW/MHz	-100dBW/MHz	

4.4.2 TEST SETUP

Same as Item 4.2.3

4.4.3 TEST PROCEDURES

Same as Item 4.2.2

4.4.4 EUT OPERATING CONDITION

Same as 4.1.4

4.4.5 TEST RESULTS

CONDUCTED MEASUREMENT

For 5MHz Frequency: 2487.5MHz

Frequency	Narrow band EIRP	Wide band EIRP	Limit
(MHz)	(dBm)	(dBm)	(dBm)
1591.538	-93.118	-	-70
1590.059	-	-63.908	-60

Frequency: 2492.5MHz

Frequency	Narrow band EIRP	Wide band EIRP	Limit
(MHz)	(dBm)	(dBm)	(dBm)
1605.002	-93.051	-	-70
1583.327	-	-63.799	-60

For 10MHz Frequency: 2490MHz

Frequency	Narrow band EIRP	Wide band EIRP	Limit
(MHz)	(dBm)	(dBm)	(dBm)
1579.859	-93.091	-	-70
1589.600	-	-63.684	-60

For 5MHz Frequency: 2487.5MHz Narrow band EIRP

Start Freq 1.5590000	t: RF PNO: Fast -+ IFGain:Low	Trig: Free Run #Atten: 6 dB	#Avg Type Avg Hold Ext Gain:	: Pwr(RMS) 1/100 21.00 dB	TRACE D 2 4 TYPE M 2 14 DET A P C DET
o dB/div Ref -20.00 d	Bm			Mkr1 1	591 538 GH -93.118 dBr
20.0					
io <i>n</i>					
70 D					
0.0					
00			.1		
100	unditrinera.	, May June - Aran (1939 - 48 - 4	n soon lobours	tour and a reader	ang the second second
10					
tart 1.55900 GHz Res BW 1.0 kHz	#VBW	(3.0 kHz		Sweep	top 1.61000 Gi

Wideband EIRP

Frequency: 2492.5MHz Narrow band EIRP

Start Freq 1.5	59000000 Input: RF	PNO: Fast C	Trig: Free Run #Atten: 6 dB	#Avg Type: Pwr(RMS) Avg[Hold: 4/100 Ext Gain: -21.00 dB	THACE D 2 34 TYPE D 34 OCT A P S NT
OdB/div Ref	-20.00 dBm			Mkr1 1	.605 002 GH -93.051 dB
30.0					
40.0					
50.0					
60.0					
70.0					
00.0					
90.0	*****	191-112-112-1-1120-1-11			1
-100					
-110					

For 10MHz Frequency: 2490MHz

Report no.: RF981218L08-2

Report Format Version 3.0.1

RADIATED MEASUREMENT

For this test item , test distance is 1 m

For 5MHz

Frequency: 2487.5MHz

Frequency	Narrow band EIRP	Wide band EIRP	Limit
(MHz)	(dBuV/ dBm)	(dBuV/ dBm)	(dBm)
1588.427	12.415 / -92.385	-	-70
1591.742	-	38.153 / -66.647	-60

Frequency: 2492.5MHz

Frequency	Narrow band EIRP	Wide band EIRP	Limit
(MHz)	(dBuV/ dBm)	(dBuV/ dBm)	(dBm)
1581.338	12.33 / -92.47	-	-70
1602.248	-	38.381 / -66.419	-60

For 10MHz Frequency: 2490MHz

Frequency	Narrow band EIRP	Wide band EIRP	Limit
(MHz)	(dBuV/ dBm)	(dBuV/ dBm)	(dBm)
1572.923	12.496 / -92.304	-	-70
1608.419	-	38.119 / -66.681	-60

For 5MHz Frequency: 2487.5MHz Narrow band EIRP

Report no.: RF981218L08-2

Report Format Version 3.0.1

4.5 OUT OF CHANNEL EMISISON IN 1610.6-1613.8MHz BAND

4.5.1 LIMITS OF OUT OF CHANNEL EMISISON MEASUREMENT

Per FCC PART 25.254(b)(1) ,meet the requirements to protect radio astronomy service (RAS) observations in the1610.6–1613.8 MHz band from un acceptable interference.

4.5.2 TEST PROCEDURE

Same as Item 4.2.2

4.5.3 TEST SETUP

Same as Item 4.2.3

4.5.4 EUT OPERATING CONDITIONS

Same as 4.1.4

4.5.5 TEST RESULTS

No any emissions from EUT are higher than the SA Noise floor -89dBm / kHz for narrow band emission and -63dBm/MHz for wide band emission

CONDUCTED MEASUREMENT

For 5MHz

Frequency: 2487.5MHz

Report no.: RF981218L08-2

Report Format Version 3.0.1

RADIATED MEASUREMENT

For 5MHz

Frequency: 2487.5MHz

Market Sperific Andress Market Sperifi

Wideband EIRP

Frequency: 2492.5MHz Narrow band EIRP

For 10MHz

art Freq 1.610600000 GHz

Ref 50.00 dBµV

Frequency: 2490MHz Narrow band EIRP

Trig: Free Run

Avg Type: Log-Pwr Avg|Hold: 100/100

#VBW 3.0 kHz

tart 1.610600 GHz Res BW 3.0 kHz

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

<u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Web Site: <u>www.adt.com.tw</u> Tel: 886-3-3183232 Fax: 886-3-3185050

The address and road map of all our labs can be found in our web site also.

---END----