Compliance Certification Services Inc.

FCC 47 CFR PART 15 SUBPART B

Report No: SZ120202B02-EF

For

TEST REPORT

900MHz Wireless Speaker
Model: SP4890
Brand: ARKON
Test Report Number:
SZ120202B02-EF

Issued for:

Uni-Art Precise Products Ltd 11-12/F, Yue Xiu Industrial Building, 87 Hung To Road, Kowloon, Hong Kong

Issued by:

Compliance Certification Services Inc.

Linkuo Laboratory

No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, Taiwan(R.O.C.) TEL: 886-3-324-0332

> FAX: 886-3-324-5235 E-Mail: service@ccsrf.com

Issued Date: April 23, 2012

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NIST or any government agencies. The test result of this report relate only to the tested sample identified in this report.

FCC ID: MVASP4892-001R Page 1 / 22

Revision History

Rev.	Issue No	Revisions	Effect Page	Revised By
00	SZ120202B02-EF	Initial Issue	ALL	Amay Tang

TABLE OF CONTENTS

TEST RESULT CERTIFICATION	4
EUT DESCRIPTION	5
TEST METHODOLOGY	6
DECISION OF FINAL TEST MODE	6
EUT SYSTEM OPERATION	6
SETUP OF EQUIPMENT UNDER TEST	7
DESCRIPTION OF SUPPORT UNITS	7
CONFIGURATION OF SYSTEM UNDER TEST	7
FACILITIES AND ACCREDITATIONS	8
FACILITIES	8
CONDUCTED EMISSION MEASUREMENT	9
LIMITS OF CONDUCTED EMISSION MEASUREMENT	9
	_
TEST RESULTS.	
	EUT DESCRIPTION TEST METHODOLOGY DECISION OF FINAL TEST MODE EUT SYSTEM OPERATION SETUP OF EQUIPMENT UNDER TEST DESCRIPTION OF SUPPORT UNITS CONFIGURATION OF SYSTEM UNDER TEST FACILITIES AND ACCREDITATIONS FACILITIES AND ACCREDITATIONS MEASUREMENT UNCERTAINTY CONDUCTED EMISSION MEASUREMENT LIMITS OF CONDUCTED EMISSION MEASUREMENT TEST INSTRUMENTS TEST PROCEDURES TEST SETUP DATA SAMPLE TEST RESULTS RADIATED EMISSION MEASUREMENT LIMITS OF RADIATED EMISSION MEASUREMENT TEST RESULTS RADIATED EMISSION MEASUREMENT LIMITS OF RADIATED EMISSION MEASUREMENT TEST RESULTS RADIATED EMISSION MEASUREMENT LIMITS OF RADIATED EMISSION MEASUREMENT TEST INSTRUMENTS TEST SETUP DATA SAMPLE

1 TEST RESULT CERTIFICATION

Product:	900MHz Wireless Speaker
Model:	SP4890
Brand:	ARKON
Applicant:	Uni-Art Precise Products Ltd 11-12/F, Yue Xiu Industrial Building, 87 Hung To Road, Kowloon, Hong Kong
Manufacturer:	Uni-Art Precise Products Ltd 11-12/F, Yue Xiu Industrial Building, 87 Hung To Road, Kowloon, Hong Kong
Tested:	February 2~ April 19, 2012
Test Voltage:	AC120V/60Hz

Report No: SZ120202B02-EF

EMISSION						
Standard Item Result Remarks						
FCC 47 CFR Part 15 Subpart B	Conducted (Power Port)	PASS	Meet Class B limit			
ANSI C63 4: 2009	Radiated	PASS	Meet Class B limit			

Note: 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

2. The information of measurement uncertainty is available upon the customer's request.

Deviation from Applicable Standard None

The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:	Reviewed by:
Tom Gas.	Aven thou
Tom Gan Supervisor of EMC Dept. Compliance Certification Service Inc.	Aven Zhou Supervisor of Report Dept. Compliance Certification Service Inc.

FCC ID: MVASP4892-001R Page 4 / 22

2 EUT DESCRIPTION

Product	900MHz Wireless Speaker
Model	SP4890
Brand	ARKON
Applicant	Uni-Art Precise Products Ltd
Housing material	Plastic
Identify Number	SZ120202B02-EF
EUT Power Rating	DC9V powered by the adapter or DC9V powered by the battery
Adapter Manufacturer / Model No.	SIL POWER SUPPLY / SSA-12W-09 US 090120F Input: AC100-240V, 50/60Hz, 0.5A Output: DC9.0V, 1.2A DC output cable: Unshielded, 1.7m
Received Date	February 2, 2012
EUT Type	☐ Engineering Sample, ☑ Product Sample,☐ Mass Product Sample.
EUT Max. Operating Frequency	913MHz

I/O Port EUT

I/O PORT TYPES	Q'TY	TESTED WITH
DC Power Port	2	2

3 TEST METHODOLOGY

3.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

Report No: SZ120202B02-EF

Pre-Test Mo	Pre-Test Mode					
Emission	Conducted Emission	Mode 1: Normal with Adapter (Left) Mode 2: Normal with Adapter (Right)				
EIIIISSIOII	Radiated Emission	Mode 1: Normal with Adapter Mode 2: Normal with Battery				

After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test Mode					
Emission	Conducted Emission	Mode 1			
EIIIISSIOII	Radiated Emission	Mode 1			

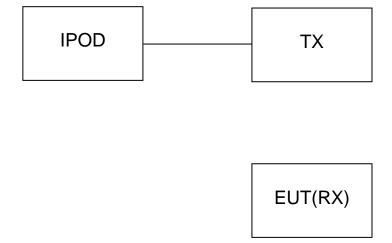
Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

3.2. EUT SYSTEM OPERATION

- 1. Set up EUT with the auxiliary equipment.
- 2. Power on the EUT and Play the music with IPOD.
- Keep the program running throughout the test and make sure the EUT work normally during the test.

4 SETUP OF EQUIPMENT UNDER TEST

4.1. DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No	Equipment	Model No.	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
1	IPOD	A1235	YM914GQHRO	N/A	APPLE	N/A	N/A
2	900MHz Wireless Speaker (Transmitter)	SP4890	N/A	MVASP4 091-001T	ARKON	Unshielded 1.10m	Unshielded 1.80m

Report No: SZ120202B02-EF

Note: Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.2. CONFIGURATION OF SYSTEM UNDER TEST

5 FACILITIES AND ACCREDITATIONS

5.1. FACILITIES

All measurement facilities used to collect the measurement data are located at No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, Taiwan(R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4, CISPR 16-1-5.

Report No: SZ120202B02-EF

5.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Taiwan TAF USA A2LA

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada Industry Canada
Norway Nemko
Japan VCCI
Taiwan BSMI
USA FCC

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions	9kHz~30MHz	+/- 3.18dB
	30MHz ~ 200MHz	+/- 3.79dB
Radiated emissions	200MHz ~1000MHz	+/- 3.62dB
	Above 1000MHz	+/- 5.04dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6 CONDUCTED EMISSION MEASUREMENT

6.1. LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY (MHz)	Class A	A (dBuV)	Class B (dBuV)		
FREQUENCT (MHZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Report No: SZ120202B02-EF

Page 9 / 22

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

6.2. TEST INSTRUMENTS

Conducted Emission Test Site									
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration				
ESCI EMI TEST RECEIVE.ESCI	ROHDE&SCHWARZ	ESCI	100783	03/19/2012	03/19/2013				
LISN	SCHAFFNER	NNB42	2001/001	05/26/2011	05/26/2012				
LISN	EMCO	3825/2	8901-1459	03/19/2012	03/19/2013				
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/31/2012	03/31/2013				
Test S/W	FARAD	EZ-EMC/ CCS-3A1-CE							

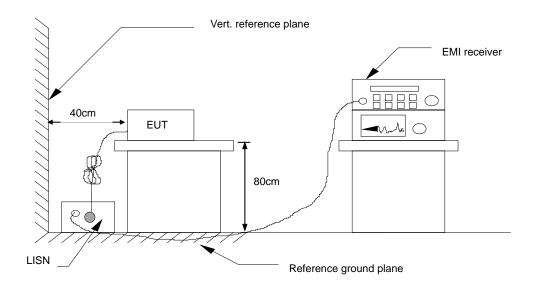
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

6.3. TEST PROCEDURES

(please refer to measurement standard or CCS SOP PA-031)

Report No: SZ120202B02-EF


Procedure of Preliminary Test

- The EUT and support equipment, if needed, were set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 12 mm non-conductive covering to insulate the EUT from the ground plane.
- All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- The test equipment EUT received DC power from adapter, and the adapter received AC120V/60Hz main power, through a Line Impedance Stabilization Network (LISN), which was supplied power source and was grounded to the ground plane.
- The test program of the EUT was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- The test data of the worst-case condition(s) was recorded.

6.4. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

6.5. DATA SAMPLE

Frequency (MHz)		Average Reading (dBuV)		QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Margin	Remark (Pass/Fail)
X.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor

Limit = Limit stated in standard Margin = Result (dBuV) – Limit (dBuV)

6.6. TEST RESULTS

		RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Leevin Li	Line	L1

Report No: SZ120202B02-EF

(The chart below shows the highest readings taken from the final data.)

Frequency		•			•	QuasiPeak	•		•	Remark
(MHz)	Reading (dBuV)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Result (dBuV)	Limit (dBuV)	Limit (dBuV)	Margin (dB)	Margin (dB)	(Pass/Fail)
0.1780	34.50	18.15	11.52	46.02	29.67	64.57	54.58	-18.55	-24.91	Pass
0.2180	31.49	13.96	11.52	43.01	25.48	62.89	52.89	-19.88	-27.41	Pass
0.3300	28.61	17.51	11.51	40.12	29.02	59.45	49.45	-19.33	-20.43	Pass
0.7860	25.09	7.91	11.52	36.61	19.43	56.00	46.00	-19.39	-26.57	Pass
1.3300	23.01	7.65	11.53	34.54	19.18	56.00	46.00	-21.46	-26.82	Pass
7.3940	17.84	6.08	11.82	29.66	17.90	60.00	50.00	-30.34	-32.10	Pass

REMARKS: L1 = Line One (Live Line)

		RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Leevin Li	Line	L2

Report No: SZ120202B02-EF

(The chart below shows the highest readings taken from the final data.)

Frequency		•				QuasiPeak	•		•	Remark
(MHz)	Reading (dBuV)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Result (dBuV)	Limit (dBuV)	Limit (dBuV)	Margin (dB)	Margin (dB)	(Pass/Fail)
0.1500	36.33	18.45	11.52	47.85	29.97	65.99	56.00	-18.14	-26.03	Pass
0.3020	30.02	26.31	11.53	41.55	37.84	60.19	50.19	-18.64	-12.35	Pass
1.1260	27.90	14.53	11.52	39.42	26.05	56.00	46.00	-16.58	-19.95	Pass
4.1979	24.19	10.88	11.64	35.83	22.52	56.00	46.00	-20.17	-23.48	Pass
15.0620	21.10	7.90	12.29	33.39	20.19	60.00	50.00	-26.61	-29.81	Pass
24.5380	17.43	2.04	12.77	30.20	14.81	60.00	50.00	-29.80	-35.19	Pass

REMARKS: L2 = Line Two (Neutral Line)

7 RADIATED EMISSION MEASUREMENT

7.1. LIMITS OF RADIATED EMISSION MEASUREMENT

Below 1GHz

FREQUENCY (MHz)	dBuV/m (At 10m)	dBuV/m (At 3m)
	Class A	Class B
30 ~ 88	39.00	40.00
88 ~ 216	43.50	43.50
216 ~ 960	46.00	46.00
960 ~ 1000	49.50	54.00

Report No: SZ120202B02-EF

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

Above 1GHz

Frequency	Class A (d	dBuV/m)	Class B (dBuV/m)		
(MHZ)	Average	Peak	Average	Peak	
Above 1000	60	80	54	74	

Notes: (1)The lower limit shall apply at the transition frequencies.

(2)Emission level (dBuV/m) = 20 log Emission level (uV/m).

(3)All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

According to FCC Part 15.33 (b), for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or in which the device operated or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.75	30
1.75-108	1000
108-500	2000
500-1000	5000
Above 1000	5 th harmonic of the highest frequency or 40GHz, whichever is lower

7.2. TEST INSTRUMENTS

Below 1GHz

Radiated Emission Test Site 966(1)									
Name of Equipment Manufacturer Model Number Serial Last Calibration Ca									
Amplifier	Mini-Circuits	ZFL-1000LN	SF696200343	03/18/2012	03/18/2013				
Antenna	EMCO	3142B	9910-11436	03/19/2012	03/19/2013				
Turn Table	EMCO	2081-1.21	N/A	N.C.R	N.C.R				
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	N/A	08/02/2011	08/02/2012				
Test S/W	FARAD	EZ-EMC/ CCS-03A1							

Report No: SZ120202B02-EF

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

Above 1GHz

	Radiated Emission Test Site 966(2)									
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration					
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2012	03/19/2013					
Amplifier	MITEQ	AM-1604-3000	1411843	03/18/2012	03/18/2013					
Turn Table	EMCO	2081-1.21	N/A	N.C.R	N.C.R					
Controller	СТ	N/A	N/A	N.C.R	N.C.R					
High Noise Amplifier	Agilent	8449B	3008A01838	03/18/2012	03/18/2013					
Horn Antenna	SCHWARZBECK	BBHA9120D	D286	03/19/2012	03/19/2013					
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/31/2012	03/31/2013					
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R					
Test S/W	FARAD	LZ-RF / CCS-SZ-3A2								

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

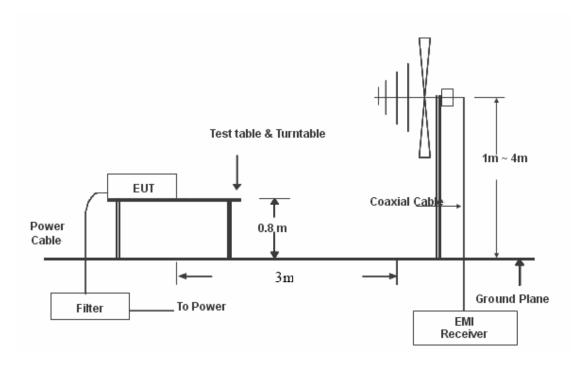
7.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-031)

Procedure of Preliminary Test

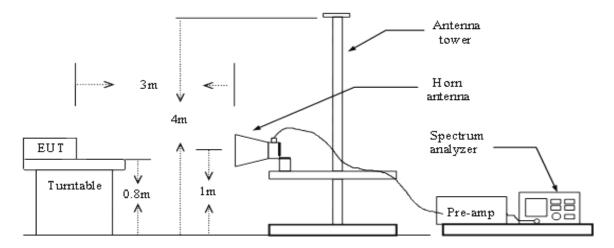
• The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a non-conductive covering to insulate the EUT from the ground plane.

Report No: SZ120202B02-EF

- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical usage as per ANSI C63.4.
- The test equipment EUT received DC power from Batteries or adapter, and the adapter received AC120V/60Hz power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 3 meter away from the EUT as stated in ANSI C63.4.
 The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 40GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters (For Below 1GHz) or 1 meter (For Above 1GHz) above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.


Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 40GHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 or 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recording at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. (For Below 1GHz) or Peak/Average (For Above 1GHz) reading is presented.
- The test data of the worst-case condition(s) was recorded.


Report No: SZ120202B02-EF

7.4. TEST SETUP

Below 1 GHz

Above 1 GHz

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.5. DATA SAMPLE

Below 1GHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
XXX.XXXX	53.54	-18.84	34.70	40.00	-5.30	QP

Frequency (MHz) = Emission frequency in MHz

Reading (dBuV) = Uncorrected Analyzer / Receiver reading Correct Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain Result (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)

Q.P. = Quasi-peak Reading

Above 1GHz

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
XXXX.XXXX	62.09	-11.42	50.67	74.00	-23.33	Peak
XXXX.XXXX	49.78	-11.42	38.36	54.00	-15.64	AVG

Frequency (MHz) = Emission frequency in MHz

Reading (dBuV) = Uncorrected Analyzer / Receiver reading Correction Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain Result (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)

Peak = Peak Reading AVG = Average Reading

Calculation Formula

Margin (dB) = Result (dBuV/m) – Limits (dBuV/m)

Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)

7.6. TEST RESULTS

Below 1GHz

Model No.	SP4890	Test Mode	Mode 1
Environmental Conditions	26°C, 60% RH	RBW,VBW	120 kHz
Antenna Pole	Vertical	Antenna Distance	3m
Detector Function:	Quasi-peak	Tested by	Leevin Li

Report No: SZ120202B02-EF

(The chart below shows the highest readings taken from the final data.)

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
306.4500	39.36	-18.60	20.76	46.00	-25.24	QP
384.0500	39.39	-16.13	23.26	46.00	-22.74	QP
437.4000	38.85	-14.96	23.89	46.00	-22.11	QP
715.4664	34.13	-11.47	22.66	46.00	-23.34	QP
768.8165	35.35	-10.64	24.71	46.00	-21.29	QP
962.8165	34.18	-8.63	25.55	54.00	-28.45	QP

REMARKS: 1. QP= Quasi-peak Reading

2. The other emission levels were very low against the limit.

Model No.	SP4890	Test Mode	Mode 1
Environmental Conditions	26°C, 60% RH	RBW,VBW	120 kHz
Antenna Pole	Horizontal	Antenna Distance	3m
Detector Function:	Quasi-peak	Tested by	Leevin Li

(The chart below shows the highest readings taken from the final data.)

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
91.4333	51.53	-24.62	26.91	43.50	-16.59	QP
110.8332	46.68	-20.92	25.76	43.50	-17.74	QP
257.9500	42.73	-19.90	22.83	46.00	-23.17	QP
432.5500	41.43	-15.07	26.36	46.00	-19.64	QP
768.8165	37.62	-10.64	26.98	46.00	-19.02	QP
891.6833	34.09	-9.27	24.82	46.00	-21.18	QP

REMARKS: 1. QP= Quasi-peak Reading

2. The other emission levels were very low against the limit.

Compliance Certification Services Inc.

Report No: SZ120202B02-EF

Above 1GHz

Model No.	SP4890	Test Mode	Mode 1
Environmental Conditions	24°C, 52% RH	RBW,VBW	1MHz, 1MHz
Antenna Pole	Vertical	Antenna Distance	3m
Detector Function:	Peak/AVG	Tested by	Leevin Li

(The chart below shows the highest readings taken from the final data.)

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1821.6667	48.65	-10.07	38.58	74.00	-35.42	peak
3351.6667	46.13	-5.17	40.96	74.00	-33.04	peak
4796.6667	44.28	-0.67	43.61	74.00	-30.39	peak
5816.6667	44.49	2.62	47.11	74.00	-26.89	peak
6751.6667	44.55	4.27	48.82	74.00	-25.18	peak
7941.6667	44.78	7.02	51.80	74.00	-22.20	peak

REMARKS:

- 1. The other emission levels were very low against the limit.
- 2. "--", means the average measurement was not performed when the measured peak data under the limit of average detection.
- 3. Peak= Peak Reading; AVG= Average Reading.

Compliance Certification Services Inc.

Report No: SZ120202B02-EF

Model No.	SP4890	Test Mode	Mode 1
Environmental Conditions	24°C, 52% RH	RBW,VBW	1MHz, 1MHz
Antenna Pole	Horizontal	Antenna Distance	3m
Detector Function:	Peak/AVG	Tested by	Leevin Li

(The chart below shows the highest readings taken from the final data.)

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1453.3333	47.90	-10.28	37.62	74.00	-36.38	peak
3096.6667	45.53	-5.73	39.80	74.00	-34.20	peak
3663.3333	46.56	-3.83	42.73	74.00	-31.27	peak
4881.6667	44.83	-0.39	44.44	74.00	-29.56	peak
6156.6667	44.67	3.63	48.30	74.00	-25.70	peak
6553.3333	45.55	4.07	49.62	74.00	-24.38	peak

REMARKS:

- 1. The other emission levels were very low against the limit.
- 2. "--", means the average measurement was not performed when the measured peak data under the limit of average detection.
- 3. Peak= Peak Reading; AVG= Average Reading.