FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

2.4GHz Digital Wireless Headphone Model: DHP380A, DHP380N Brand: ARKON

Test Report Number: SZ110812B01-RP

Prepared for:

Uni-Art Precise Products Ltd

11-12/F, Yue Xiu Industrial Building, 87 Hung To Road, Kowloon, Hong Kong

Issued by:

COMPLIANCE CERTIFICATION SERVICES (SHENZHEN) INC.

No.10-1, Mingkeda Logistics Park, NO.18, Huanguan south Rd., Guan Lan Town, Baoan District, Shenzhen, China

TEL: 86-755-28055000 FAX: 86-755-28055221 E-Mail: service@ccsrf.com

Issued Date: September 23, 2011

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test result of this report relate only to the tested sample identified in this report.

Revision History

Rev.	Issue No.	Revisions	Effect Page	Revised By
00	SZ110812B01-RP	Initial Issue	ALL	Ruby Zhang

TABLE OF CONTENTS

1	TES	T RESULT CERTIFICATION	4
2	EUT	DESCRIPTION	2-5
3	TES	T METHODOLOGY	6
	3.1.	DESCRIPTION OF TEST MODES	6
4	FAC	ILITIES AND ACCREDITATIONS	7
	4.1.	FACILITIES	7
	4.2.	ACCREDITATIONS	7
	4.3.	MEASUREMENT UNCERTAINTY	7
5	SET	UP OF EQUIPMENT UNDER TEST	8
	5.1.	SETUP CONFIGURATION OF EUT	8
	5.2.	SUPPORT EQUIPMENT	8
6	FCC	PART 15.247 REQUIREMENTS	9
	6.1.	20DB BANDWIDTH	9
	6.2.	PEAK POWER	
	6.3.	PEAK POWER SPECTRAL DENSITY	
	6.4.	BAND EDGES MEASUREMENT	
	6.5.	FREQUENCY SEPARATION	
	6.6. 6.7.	NUMBER OF HOPPING FREQUENCY TIME OF OCCUPANCY (DWELL TIME)	
	6.7. 6.8.	SPURIOUS EMISSIONS	
	6.9.	POWER LINE CODUCTED EMISSIONS	
	5.5.		

1 TEST RESULT CERTIFICATION

Product:	2.4GHz Digital Wireless Headphone
Model:	DHP380A, DHP380N
Brand:	ARKON
Tested:	August 12~September 23, 2011
Applicant:	Uni-Art Precise Products Ltd 11-12/F, Yue Xiu Industrial Building, 87 Hung To Road, Kowloon, Hong Kong
Manufacturer:	Uni-Art Precise Products Ltd 11-12/F, Yue Xiu Industrial Building, 87 Hung To Road, Kowloon, Hong Kong

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 15 Subpart C	No non-compliance noted			

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.207, 15.209 and 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Tom Gan

Supervisor of EMC Dept.

Compliance Certification Service Inc.

Reviewed by:

Aven Zhou

Supervisor of Report Dept.

Compliance Certification Service Inc.

2 EUT DESCRIPTION

Product	2.4GHz Digital Wireless Headphone
Model Number	DHP380A, DHP380N
Trade Name	ARKON
Model Discrepancy	The same product with the different model names for the marketing purpose.
Identify Number	SZ110812B01-RP
Power Supply	DC 5V Supplied by the adapter Adapter Manufacturer/ Model No. STANDARD SUCCESS / SUV-005-050-055-A2 Input: 100-240V~50/60Hz 150mA Output: 5.0V, 550mA DC output cable: Unshielded, 1.85m
Audio Cable	Unshielded, 1.95m
Received Date	August 12, 2011
Frequency Range	2406 ~ 2472 MHz
Transmit Power	11.63dBm
Modulation Technique	FHSS(GFSK)
Number of Channels	31 Channels
Antenna Specification	Plane Antenna Gain: 2.0dBi (Max)
Temperature Range	0°C ~ +25°C

Note: This submittal(s) (test report) is intended for FCC ID: <u>MVADHP381A-001T</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3 TEST METHODOLOGY

3.1. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

The following test mode(s) were scanned during the preliminary test below 1G:

Test Item	Test mode	Worse mode
Conducted Emission	Mode 1: Normal	•
Radiated Emission	Mode 1: Normal	

Above 1G, Channel Low (2406MHz) \(\) Mid (2440MHz) and High (2472MHz) were chosen for full testing for GFSK.

4 FACILITIES AND ACCREDITATIONS

4.1. FACILITIES

All measurement facilities used to collect the measurement data are located at No.10-1, Mingkeda Logistics Park, NO.18, Huanguan south Rd., Guan Lan Town, Baoan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.4:2003, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

4.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA A2LA China CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA FCC
Japan VCCI (C-3478, R-3135, T-625)
Canada INDUSTRY CANADA
Taiwan BSMI
Norway Nemko

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions	9kHz~30MHz	+/- 3.18dB
	30MHz ~ 200MHz	+/- 3.79dB
Radiated emissions	200MHz ~1000MHz	+/- 3.62dB
	Above 1000MHz	+/- 5.04dB
Band Edges	+/-0.182 dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

5 SETUP OF EQUIPMENT UNDER TEST

5.1. SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

5.2. SUPPORT EQUIPMENT

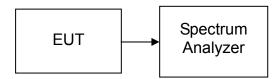
No.	Equipment	Model No.	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
1	IPOD	A1238	JQ8070LBYMV	FCC DoC	APPLE	N/A	N/A
2	2.4GHz Digital Wireless Headphone (RX)	DHP380A	N/A	MVADHP382 A-001R	ARKON	N/A	N/A
3	NOTEBOOK	2672	992FVG	N/A	DELL	N/A	N/A

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

6 FCC PART 15.247 REQUIREMENTS

6.1. 20DB BANDWIDTH


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

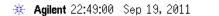
MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012

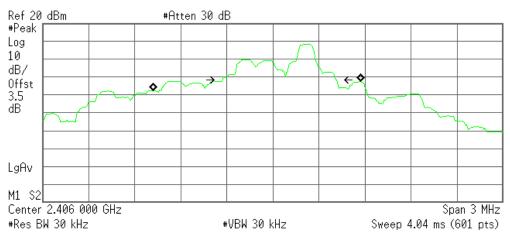
Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE


- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT, then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=30kHz, VBW=30kHz, Span=3MHz, Sweep = auto.
- 4. Mark the peak frequency and 20dB (upper and lower) frequency.
- 5. Repeat until all the test channels are investigated.

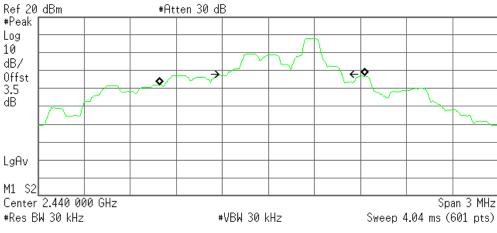
TEST RESULTS


No non-compliance noted

Test plot

20dB Bandwidth (CH Low)

R T

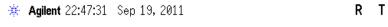

Occupied Bandwidth 1.3534 MHz Occ BW % Pwr 99.00 % **x dB** -20.00 dB

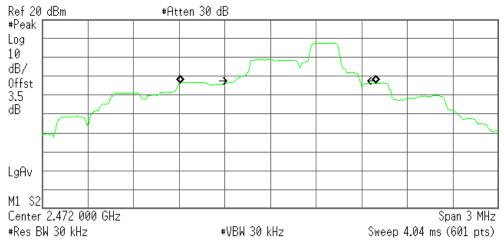
Transmit Freg Error -105.777 kHz x dB Bandwidth 742.638 kHz

20dB Bandwidth (CH Mid)

* Agilent 22:48:20 Sep 19, 2011

Т R




Occupied Bandwidth 1.3432 MHz Occ BW % Pwr 99.00 % **x dB** -20.00 dB

Transmit Freq Error -39.643 kHz x dB Bandwidth 748.684 kHz

20dB Bandwidth (CH High)

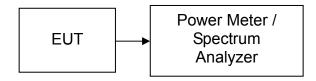
Occupied Bandwidth 1.2876 MHz Occ BW % Pwr **x dB** -20.00 dB

Transmit Freq Error 53.579 kHz x dB Bandwidth 822.013 kHz

6.2. PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:


- 1. For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.
- 3. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Power Meter	Anritsu	ML2487A	6K00001491	03/19/2011	03/19/2012
Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

TEST RESULTS

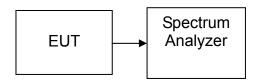
No non-compliance noted

Test Data

Channel	Frequency (MHz)	Reading Power (dBm)	Factor (dB)	Output Powei (dBm)	Output Power (W)	Limit (mW)	
Low	2406	8.13	3.50	11.63	0.01455		Pass
Mid	2440	7.69	3.50	11.19	0.01315	125	Pass
High	2472	7.23	3.50	10.73	0.01183		Pass

6.3. PEAK POWER SPECTRAL DENSITY

LIMIT


- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

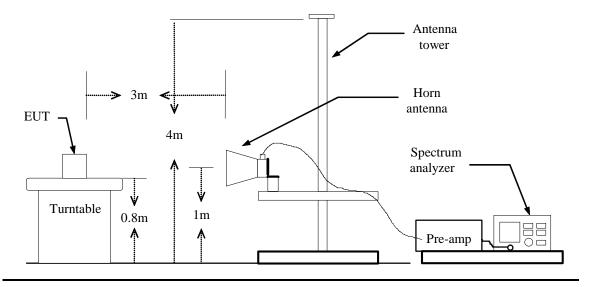
TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 4. Record the max. reading.
- 5. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

Not applicable. Since EUT is the FHSS device.

6.4. BAND EDGES MEASUREMENT


LIMIT

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

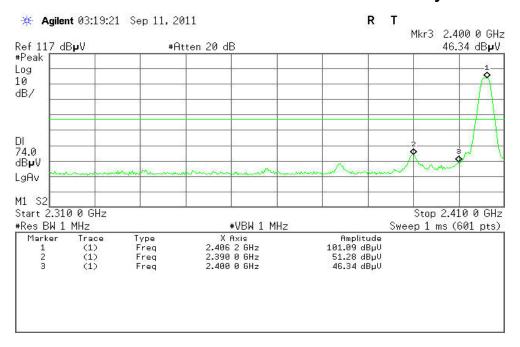
MEASUREMENT EQUIPMENT USED

	Radiated Emission Test Site 966 (2)										
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration						
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012						
Amplifier	MITEQ	AM-1604-3000	1411843	03/18/2011	03/18/2012						
Turn Table	EMCO	2081-1.21	N/A	N.C.R	N.C.R						
Controller	CT	N/A	N/A	N.C.R	N.C.R						
High Noise Amplifier	Agilent	8449B	8449B 3008A01838		03/18/2012						
Bilog Antenna	SCHAFFNER	CBL6143	5082	06/03/2011	06/03/2012						
Horn Antenna	SCHWARZBECK	BBHA9120D	D286	03/19/2011	03/19/2012						
Loop Antenna	A R A	PLA-1030/B	1029	03/19/2011	03/19/2012						
Temp. / Humidity Meter	Temp. / Humidity Meter VICTOR		N/A	03/31/2011	03/31/2012						
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R						
Test S/W	FARAD	LZ-RF / CCS-SZ-3A2									

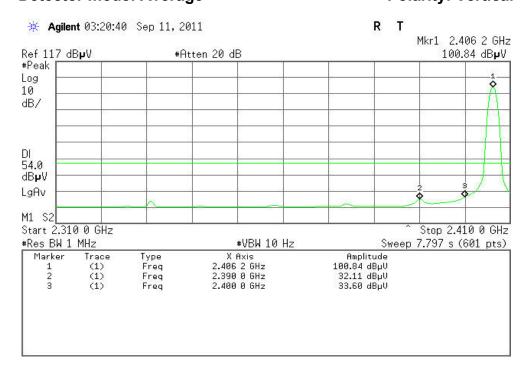
Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.


TEST RESULTS

Refer to attach spectrum analyzer data chart.

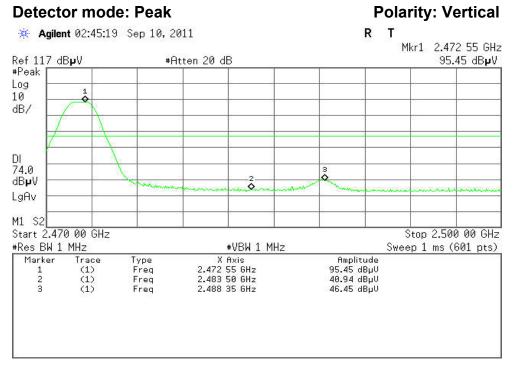

Test Data

Band Edges (CH-Low)

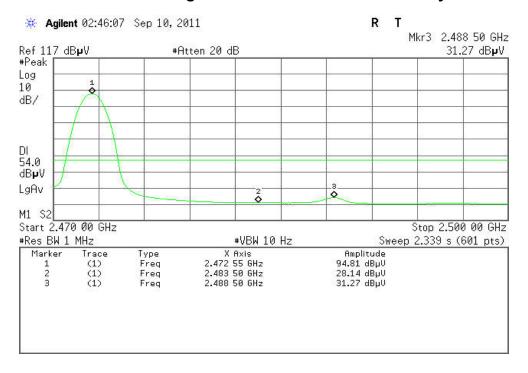
Detector mode: Peak Polarity: Vertical

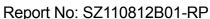
Detector mode: Average Polarity: Vertical

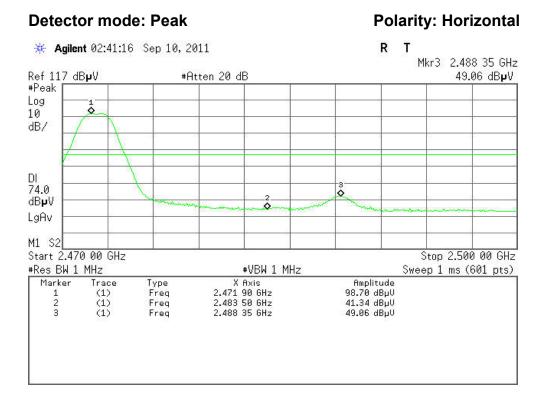
Polarity: Horizontal


Detector mode: Peak Polarity: Horizontal * Agilent 03:24:05 Sep 11, 2011 R T Mkr1 2.406 2 GHz Ref 117 dBpV #Atten 20 dB 94.72 dBpV #Peak Log 10 dB/ DI 74.0 dB**µ**V LgAv M1 S2 Start 2.310 0 GHz Stop 2.410 0 GHz #Res BW 1 MHz VBW 1 MHz Sweep 1 ms (601 pts) Marker X Axis Amplitude Trace Туре 2.406 2 GHz 2.390 0 GHz 94.72 dBµV 46.36 dBµV (1) (1) (1) Frea 41.86 dBµV Freq 2.400 0 GHz

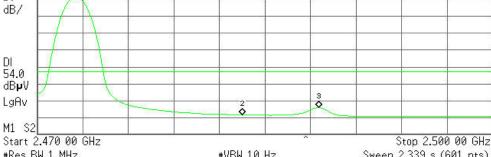
Detector mode: Average


* Agilent 03:24:46 Sep 11, 2011 R Mkr1 2.406 2 GHz Ref 117 dBpV #Atten 20 dB 94.49 dBpV #Peak Log 10 dB/ 54.0 dB₽V LgAv M1 S2 Start 2.310 0 GHz Stop 2.410 0 GHz #Res BW 1 MHz #VBW 10 Hz Sweep 7.797 s (601 pts) Marker X Axis Amplitude Trace Туре 2.406 2 GHz 2.390 0 GHz 94.49 dBμV 29.98 dBμV (1) (1) Frea 3 Freq




Band Edges (CH-High)

Detector mode: Average Polarity: Vertical



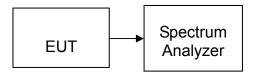
R T * Agilent 02:42:16 Sep 10, 2011 Mkr3 2.488 55 GHz Ref 117 dBµV #Atten 20 dB 32.89 dBpV #Peak Log 10 dB/

Polarity: Horizontal

Detector mode: Average

6.5. FREQUENCY SEPARATION

LIMIT


According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration	
Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012	

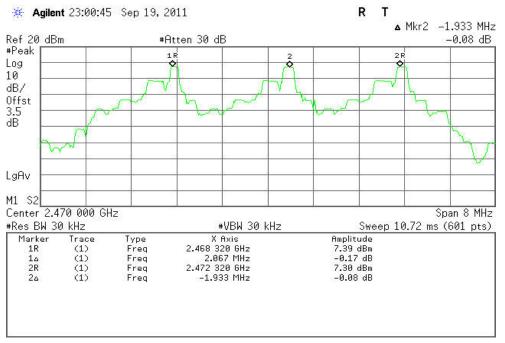
Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

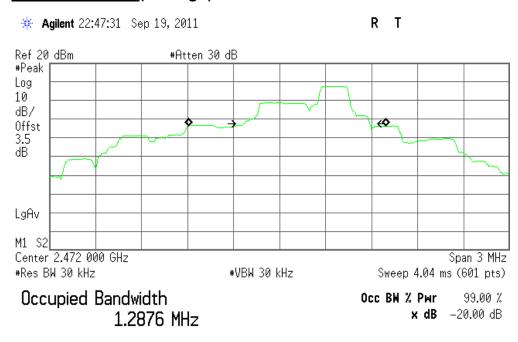
TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW=30kHz, VBW=30kHz, Adjust Span to 8 MHz, Sweep = auto.
- 5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

TEST RESULTS


No non-compliance noted

Test Data


Channel Separation (MHz)	Two-thirds of the 20 dB Bandwidth (kHz)	Channel Separation Limit	Result
1.000	548.009	> Two-thirds of the 20 dB Bandwidth	Pass

Test Plot

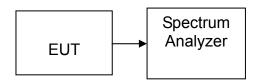
Measurement of Channel Separation

20 dB bandwidth(CH High)

Transmit Freq Error 53.579 kHz x dB Bandwidth 822.013 kHz

6.6. NUMBER OF HOPPING FREQUENCY

LIMIT


According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

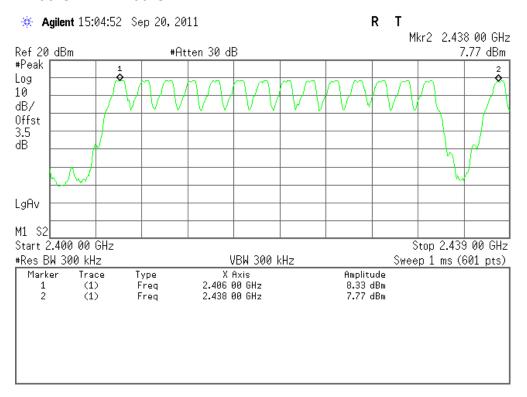
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2439MHz, Sweep = 1ms and Start=2439MHz, Stop = 2483.5MHz, Sweep = 1ms.
- 4. Set the spectrum analyzer as RBW, VBW=300kHz,
- 5. Max hold, view and count how many channel in the band.

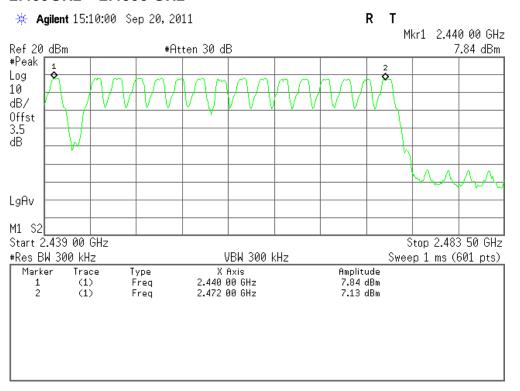
TEST RESULTS

No non-compliance noted

Test Data

GFSK


Result (No. of CH)	Limit (No. of CH)	Result		
31	>15	PASS		


Test Plot

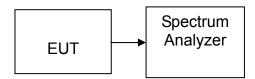
Channel Number

2.400 GHz - 2.439 GHz

2.439GHz - 2.4835 GHz

6.7. TIME OF OCCUPANCY (DWELL TIME)

LIMIT


According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

No non-compliance noted

Test Data

The average time of occupancy in the specified 6 second period (15 channel *0.4s) is equal to 6*(# of pulse in 1.2s/1.2)* pulse width.

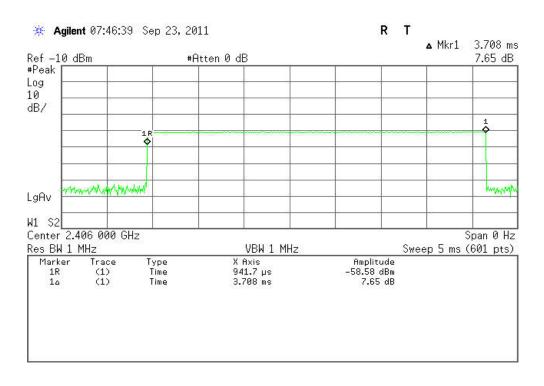
Pulse width=3.708

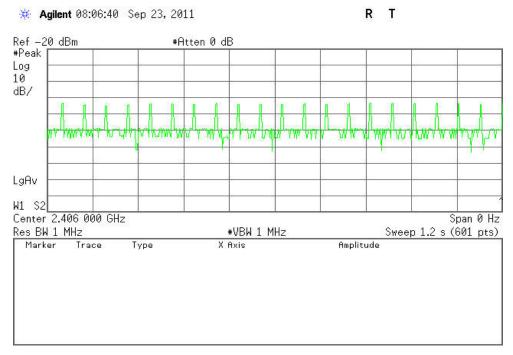
#pulse in 1.2s=21

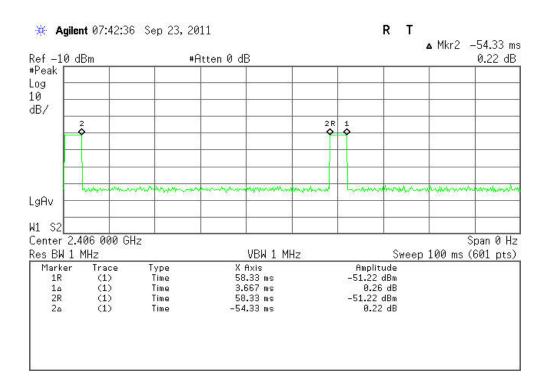
Time of occupancy= $6* (21/1.2)* 3.708=389.34 \text{ms} \le 400 \text{ms}$

Note:

Pseudorandom Frequency Hopping Sequence


This module is controlled by microchip (IA2 embedded uP) to generate Pseudorandom Frequency Hopping Sequence. IA2 module RF normal operation mode support 15 hopping channel/Per Sequence.


There are four hopping sequences list as below:

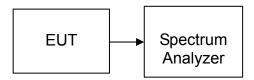

- Sequence 1: 2406, 2420, 2422, 2424, 2426, 2428, 2444, 2446, 2448, 2450, 2452, 2456, 2468, 2470, 2472 MHz
- Sequence 2: 2406, 2408, 2410, 2412, 2414, 2416, 2418, 2420, 2422, 2424, 2426, 2428, 2430, 2438, 2446 MHz
- Sequence 3: 2432, 2440, 2448, 2450, 2452, 2454, 2458, 2460, 2462, 2464, 2466, 2462, 2468, 2470, 2472 MHz
- Sequence 4: 2406, 2408, 2410, 2412, 2414, 2416, 2418, 2426, 2454, 2462, 2464, 2466, 2468, 2470, 2472 MHz

Test Plot

6.8. SPURIOUS EMISSIONS

6.8.1. Conducted Measurement

LIMIT


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c).

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

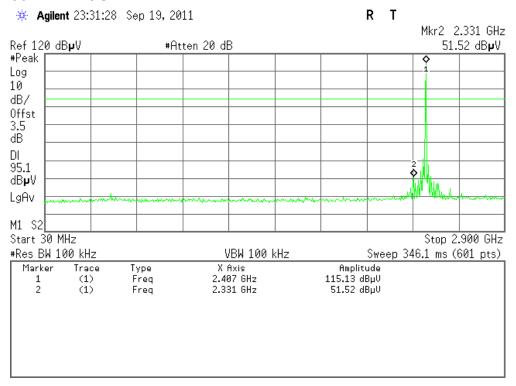
TEST PROCEDURE

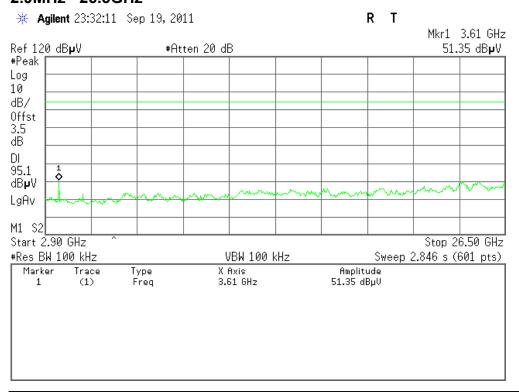
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 100 KHz.

Measurements are made over the 30MHz to 26GHzrange with the transmitter set to the lowest, middle, and highest channels.

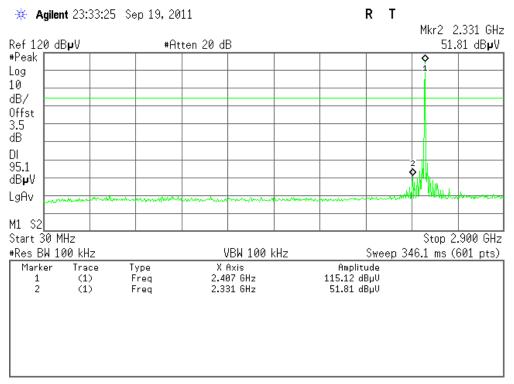
TEST RESULTS

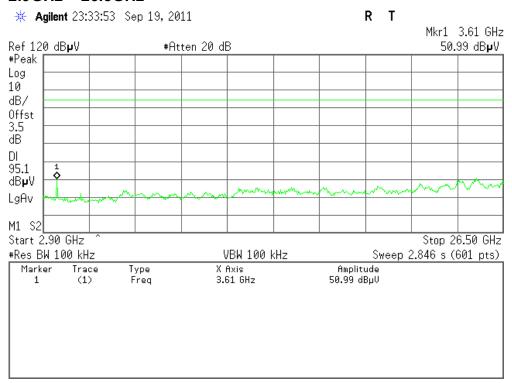

No non-compliance noted


Test Plot

CH Low

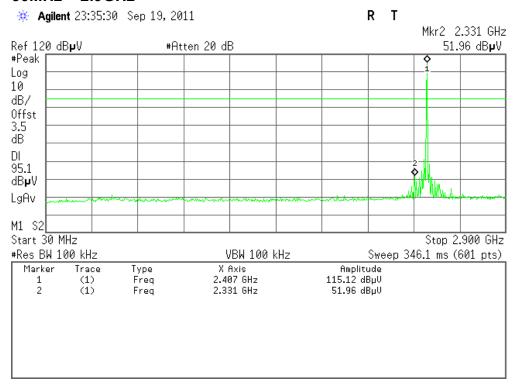
30MHz ~2.9GHz


2.9MHz ~26.5GHz

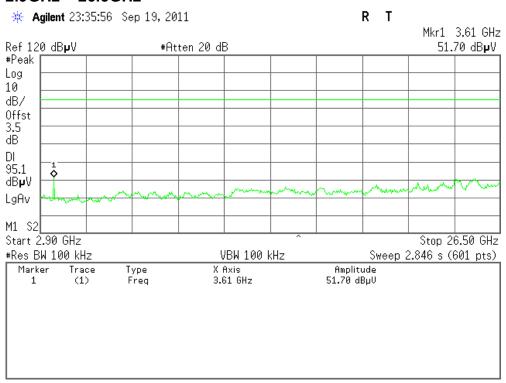


CH Mid

30MHz ~ 2.9GHz



2.9GHz ~ 26.5GHz



CH High

30MHz ~ 2.9GHz

2.9GHz ~ 26.5GHz

6.8.2. Radiated Emissions

LIMIT

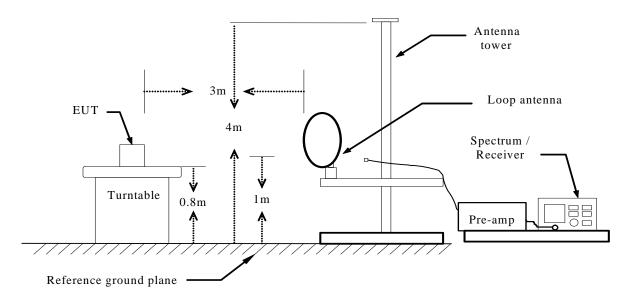
1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

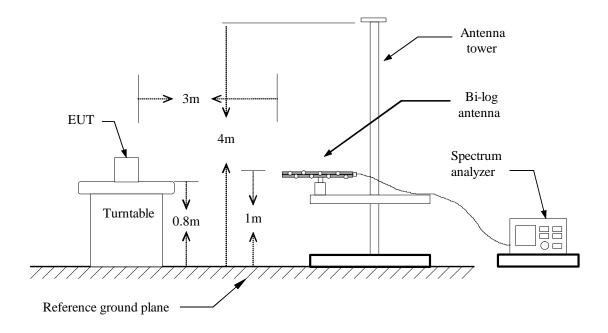
Note: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the above emission table, the tighter limit applies at the band edges.

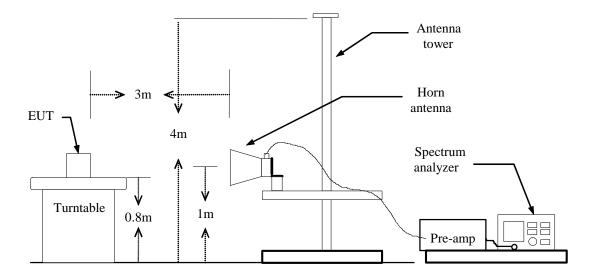
Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54


MEASUREMENT EQUIPMENT USED

	Radiated Emission Test Site 966 (2)									
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration					
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012					
Amplifier	MITEQ	AM-1604-3000	1411843	03/18/2011	03/18/2012					
Turn Table	EMCO	2081-1.21	N/A	N.C.R	N.C.R					
Controller	CT	N/A	N/A	N.C.R	N.C.R					
High Noise Amplifier	Agilent	8449B 3008A01838		03/18/2011	03/18/2012					
Bilog Antenna	SCHAFFNER	CBL6143 5082		06/03/2011	06/03/2012					
Horn Antenna	SCHWARZBECK	BBHA9120D	D286	03/19/2011	03/19/2012					
Loop Antenna	A \setminus A	PLA-1030/B	1029	03/19/2011	03/19/2012					
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/31/2011	03/31/2012					
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R					
Test S/W	FARAD									


Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration


Below 30MHz

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Test Date: September 21, 2011

Temperature: 24°C **Tested by:** Sunday Hu **Humidity:** 52% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
110.8333	48.81	-20.92	27.89	43.50	-15.61	V	QP
257.9500	39.08	-19.90	19.18	46.00	-26.82	V	QP
384.0500	37.39	-16.13	21.26	46.00	-24.74	V	QP
432.5500	39.46	-15.07	24.39	46.00	-21.61	V	QP
448.7167	38.92	-14.85	24.07	46.00	-21.93	V	QP
768.8167	38.35	-10.64	27.71	46.00	-18.29	V	QP
127.0000	48.68	-20.39	28.29	43.50	-15.21	Н	QP
257.9500	46.53	-19.90	26.63	46.00	-19.37	Н	QP
367.8833	43.45	-16.54	26.91	46.00	-19.09	Н	QP
432.5500	42.21	-15.07	27.14	46.00	-18.86	Н	QP
576.4333	37.63	-12.48	25.15	46.00	-20.85	Н	QP
768.8167	46.89	-10.64	36.25	46.00	-9.75	Н	QP

^{**}Remark: No emission found between lowest internal used/generated frequency to 30MHz. **Notes:**

- 1. Measuring frequencies from 9kHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

5. Frequency (MHz). = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Receiver reading

Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

Limit ($dB\mu V/m$) = Limit stated in standard

Margin (dB) = Measured (dB μ V/m) – Limits (dB μ V/m)

Antenna Pol e(H/V) = Current carrying line of reading

Above 1 GHz

Operation Mode: TX(CH Low) Test Date: September 10, 2011

Temperature: 24°C **Tested by:** Sunday Hu **Humidity:** 52% RH **Polarity:** Ver. / Hor.

Remark Result Limit Antenna Frequency Reading Correction Margin **Factor** (dBµV/m) (dBµV/m) **Pole** (MHz) (dBµV) (dB) (dB/m) (V/H) 2800.0000 47.93 -7.32 40.61 74.00 -33.39 V Peak -32.57 3265.0000 46.78 -5.35 41.43 74.00 V Peak ٧ 74.00 4813.0000 50.36 -0.61 49.75 -24.25 Peak ٧ 5485.0000 46.71 1.22 47.93 74.00 -26.07 Peak 5755.0000 45.75 2.34 48.09 74.00 -25.91 V Peak V 4.37 74.00 6940.0000 45.33 49.70 -24.30Peak 2185.0000 48.23 -9.40 38.83 74.00 -35.17 Н Peak 3805.0000 46.56 -3.87 42.69 74.00 -31.31 Н Peak 74.00 Н 4813.0000 55.61 -0.6155.00 -19.00Peak 4813.0000 52.50 54.00 -1.50 53.11 -0.61 Н **AVG** 6025.0000 44.15 3.04 47.19 74.00 -26.81 Н Peak 6820.0000 49.39 74.00 Н 45.08 4.31 -24.61 Peak 8305.0000 44.98 7.14 52.12 74.00 -21.88 Н Peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading
AV. = Average Reading

Remark = Mark Peak Reading or Average Reading

Operation Mode: TX(CH Mid) **Test Date:** September 10, 2011

Temperature: 24°C Tested by: Sunday Hu

Humidity: 52% RH Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
2845.0000	46.55	-7.01	39.54	74.00	-34.46	V	Peak
3670.0000	45.76	-3.83	41.93	74.00	-32.07	V	Peak
4881.0000	54.80	-0.38	54.42	74.00	-19.58	V	Peak
4881.0000	52.73	-0.38	52.35	54.00	-1.65	V	AVG
6160.0000	44.44	3.64	48.08	74.00	-25.92	V	Peak
7525.0000	44.04	5.68	49.72	74.00	-24.28	V	Peak
8215.0000	44.54	7.24	51.78	74.00	-22.22	V	Peak
							•
2140.0000	49.29	-9.32	39.97	74.00	-34.03	Н	Peak
3625.0000	46.85	-3.81	43.04	74.00	-30.96	Н	Peak
4881.0000	54.49	-0.39	54.10	74.00	-19.90	Н	Peak
4881.0000	53.00	-0.39	52.61	54.00	-1.39	Н	AVG
6175.0000	45.77	3.71	49.48	74.00	-24.52	Н	Peak
6895.0000	45.98	4.35	50.33	74.00	-23.67	Н	Peak
8050.0000	45.19	7.38	52.57	74.00	-21.43	Н	Peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading
AV. = Average Reading

Remark = Mark Peak Reading or Average Reading

Operation Mode: TX(CH High) Test Date: September 10, 2011

Temperature:24 °CTested by:Sunday HuHumidity:52% RHPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
4195.0000	45.99	-2.95	43.04	74.00	-30.96	V	Peak
4945.0000	49.56	-0.19	49.37	74.00	-24.63	V	Peak
6265.0000	44.67	3.77	48.44	74.00	-25.56	V	Peak
6835.0000	45.33	4.32	49.65	74.00	-24.35	V	Peak
7720.0000	45.58	5.95	51.53	74.00	-22.47	V	Peak
8080.0000	44.27	7.35	51.62	74.00	-22.38	V	Peak
2140.0000	48.48	-9.32	39.16	74.00	-34.84	Н	Peak
2800.0000	47.83	-7.32	40.51	74.00	-33.49	Н	Peak
3775.0000	46.53	-3.87	42.66	74.00	-31.34	Н	Peak
4450.0000	45.70	-2.13	43.57	74.00	-30.43	Н	Peak
4945.0000	52.52	-0.19	52.33	74.00	-21.67	Н	Peak
6250.0000	45.15	3.79	48.94	74.00	-25.06	Н	Peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading (dBµV/m) = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading
AV. = Average Reading

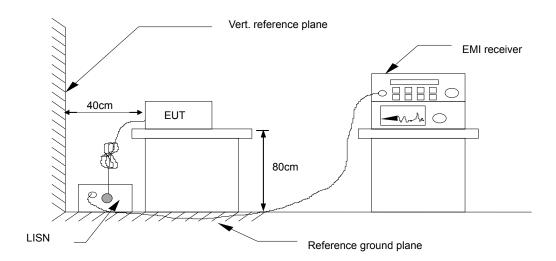
Remark = Mark Peak Reading or Average Reading

6.9. POWER LINE CODUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Fraguency Pango (MUz)	Limits (dBμV)				
Frequency Range (MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			


Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Conducted Emission Test Site								
Name of Equipment	Manufacturer	Model Number Serial Number		Last Calibration	Due Calibration			
ESCI EMI TEST RECEIVE.ESCI	ROHDE&SCHWARZ	ESCI	100783	03/19/2011	03/19/2012			
LISN	SCHAFFNER	NNB42	2001/001	05/26/2011	05/26/2012			
LISN	EMCO	3825/2	8901-1459	03/19/2011	03/19/2012			
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/31/2011	03/31/2012			
Test S/W	FARAD		EZ-EMC/ CCS-3A	1-CE				

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data

		RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Sunday Hu		

(The chart below shows the highest readings taken from the final data.)

Frequency Range Investigated (150 kHz to 30 MHz)										
Frequency (MHz)	QuasiPeak Reading (dBµV)	Average Reading (dBµV)	Correction Factor (dB)	QuasiPeak Result (dBµV)	Average Result (dBµV)	QuasiPeak Limit (dBµV)	Average Limit (dBµV)	QuasiPeak Margin (dB)	Average Margin (dB)	Line (L1/L2)
0.1980	43.47	20.10	11.52	54.99	31.62	63.69	53.69	-8.70	-22.07	L1
0.2660	35.26	11.57	11.52	46.78	23.09	61.24	51.24	-14.46	-28.15	L1
0.3620	30.99	7.19	11.51	42.50	18.70	58.68	48.68	-16.18	-29.98	L1
0.4780	29.43	9.81	11.51	40.94	21.32	56.37	46.37	-15.43	-25.05	L1
5.5500	30.03	11.86	11.70	41.73	23.56	60.00	50.00	-18.27	-26.44	L1
19.1060	24.16	1.42	12.37	36.53	13.79	60.00	50.00	-23.47	-36.21	L1
0.1819	42.88	20.23	11.52	54.40	31.75	64.39	54.40	-9.99	-22.65	L2
0.2940	35.84	12.35	11.53	47.37	23.88	60.41	50.41	-13.04	-26.53	L2
0.3780	31.32	12.15	11.53	42.85	23.68	58.32	48.32	-15.47	-24.64	L2
0.4860	28.25	8.94	11.54	39.79	20.48	56.24	46.24	-16.45	-25.76	L2
0.7539	27.25	5.42	11.52	38.77	16.94	56.00	46.00	-17.23	-29.06	L2
5.6900	34.61	15.89	11.71	46.32	27.60	60.00	50.00	-13.68	-22.40	L2

NOTE: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

^{2.} Those frequencies only show peak emission level because that was below the Average limit, so no need to check average anymore.