

APPLICATION CERTIFICATION FCC Part 15C & RSS-210 On Behalf of Country Mate Technology Ltd.

5.8GHz Digital Wireless Headphone Model No.: NS-HAWHP2, NS-HAWHP2-C

FCC ID: MV3-HAWHP2 IC: 9029A-HAWHP2

Prepared for Address	:	Country Mate Technology Ltd. 5/F., Block E, Hing Yip Centre 31 Hing Yip St., Kwun Tong, Kln., H.K.
Prepared by Address	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
		Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number	:	ATE20181411
Date of Test	:	July 18-August 29, 2018
Date of Report	:	August 29, 2018

TABLE OF CONTENTS

Description

Page

Tes	st Report Certification	
1.	GENERAL INFORMATION	5
1.	.1. Description of Device (EUT)	5
1.	.2. Carrier Frequency of Channels	6
1.	.3. Special Accessory and Auxiliary Equipment	7
1.	.4. Description of Test Facility	7
1.	.5. Measurement Uncertainty	7
2.	MEASURING DEVICE AND TEST EQUIPMENT	8
3.	OPERATION OF EUT DURING TESTING	9
3.	3.1. Operating Mode	9
3.	3.2. Configuration and peripherals	9
4.	TEST PROCEDURES AND RESULTS	
5.	20DB BANDWIDTH MEASUREMENT	
5.	5.1. Block Diagram of Test Setup	
5.	5.2. The Requirement For Section 15.215(c)	
5.	5.3. Operating Condition of EUT	
5.	5.4. Test Procedure	11
5.	5.5. Test Result	
6.	99% OCCUPIED BANDWIDTH	14
6.	5.1. Block Diagram of Test Setup	14
6.	5.2. The Requirement for RSS-Gen Clause 6.7	14
6.	5.3. EUT Configuration on Measurement	14
6.	5.4. Operating Condition of EUT	14
6.	5.5. Test Procedure	
6.	5.6. Measurement Result	15
7.	BAND EDGE COMPLIANCE TEST	
7.	7.1. Block Diagram of Test Setup	
7.	7.2. The Requirement For Section 15.249	
7.	7.3. The Requirement For RSS-210 Section B.10	
7.	4. EUT Configuration on Measurement	
/. 7	7.5. Operating Condition of EU1	
7. 7	7.0. Test Floceaule	
Q /.	DADIATED SDIDIOUS EMISSION TEST	
0.	RADIATED STURIOUS ENHISSION TEST	43 25
ð. 9	5.1. Block Diagram of Test Setup	
0. 8	3.2. The Dequirement For RSS-210 Section B 10	
8	A Transmitter Emission Limit	
8	8.5 Restricted bands of operation	2.8
8.	3.6. Configuration of EUT on Measurement	
8.	3.7. Operating Condition of EUT	
8.	3.8. Test Procedure	
8.	8.9. Data Sample	
8.	3.10. The Field Strength of Radiation Emission Measurement Results	
9.	AC POWER LINE CONDUCTED EMISSION	59

Report No.: ATE20181411 Page 3 of 64

		-
9.1.	Block Diagram of Test Setup	
9.2.	Test System Setup	59
9.3.	Power Line Conducted Emission Measurement Limits	60
9.4.	Configuration of EUT on Measurement	60
9.5.	Operating Condition of EUT	60
9.6.	Test Procedure	60
9.7.	Data Sample	61
9.8.	Power Line Conducted Emission Measurement Results	61
10. AN	TENNA REQUIREMENT	64
10.1.	The Requirement	64
10.2.	Antenna Construction	64

Test Report Certification

Applicant	:	Country Mate Technology Ltd.
Manufacturer	:	Concord Electronic (Huizhou) Ltd
Product	:	5.8GHz Digital Wireless Headphone
Model No.	:	NS-HAWHP2, NS-HAWHP2-C

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.10: 2013 RSS-210 Issue 9 August 2016 RSS-Gen Issue 5 April 2018

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.249 and RSS-210 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC & IC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test :	July 18-August 29, 2018
Date of Report :	August 29, 2018
Prepared by :	(Star Yang Francer)
Approved & Authorized Signer :	emme

(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

Product	:	5.8GHz Digital Wireless Headphone(The headphone part is just the receiving end, powered by DC3.7V lithium batteries)
Model No.	:	NS-HAWHP2, NS-HAWHP2-C (Note: Above series are identical in schematic, structure and critical components, Only the model name is different from the market requirement, NS-HAWHP2 For the FCC reports, NS-HAWHP2-C For the IC reports.)
Operating Frequency Band	:	5725MHz ~ 5825MHz
Operating Frequency	:	5729MHz ~ 5820MHz
Number Frequency	:	47
Modulation Type	:	FSK
Type of Antenna	:	PCB Layout Antenna
Max Antenna Gain	:	1.57dBi
HVIN	:	HAWHP2T
Rating	:	DC 5V=== 500mA (Powered by adapter)
AC Adapter	:	Model: XH-UL0505-A1 Input: 100-240V~50/60Hz 0.3A Max Output: 5V===0.5A
Trade Name	:	INSIGNIA
Applicant Address	:	Country Mate Technology Ltd. 5/F., Block E, Hing Yip Centre 31 Hing Yip St., Kwun Tong, Kln., H.K.
Manufacturer Address	:	Concord Electronic (Huizhou) Ltd 21 Ping An Rd Shuikou Hui Cheng District Huizhou, Guangdong

1.2. Carrier Frequency of Channels

Channel	RF Channel	Channel	RF Channel
1	5729	25	5777
2	5731	26	5779
3	5733	27	5781
4	5735	28	5783
5	5737	29	5785
6	5739	30	5787
7	5741	31	5789
8	5743	32	5791
9	5745	33	5793
10	5747	34	5795
11	5749	35	5797
12	5751	36	5799
13	5753	37	5801
14	5755	38	5803
15	5757	39	5805
16	5759	40	5807
17	5761	41	5809
18	5763	42	5811
19	5765	43	5813
20	5767	44	5815
21	5769	45	5817
22	5771	46	5819
23	5773	47	5820
24	5775		

1.3.Special Accessory and Auxiliary Equipment N/A

1.4.Description of Test Facility

EMC Lab	:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358
		Listed by Innovation, Science and Economic Development Canada (ISEDC)
		The Registration Number is 5077A-2
		Accredited by China National Accreditation Service for Conformity Assessment (CNAS)
		The Registration Number is CNAS L3193
		Accredited by American Association for Laboratory Accreditation (A2LA)
		The Certificate Number is 4297.01
Name of Firm	:	Shenzhen Accurate Technology Co., Ltd.
Site Location	:	1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 06, 2018	Jan. 05, 2019
EMI Test Receiver	Rohde& Schwarz	ESR	101817	Jan. 06, 2018	Jan. 05, 2019
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 06, 2018	Jan. 05, 2019
Pre-Amplifier	Agilent	8447D	294A10619	Jan. 06, 2018	Jan. 05, 2019
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 06, 2018	Jan. 05, 2019
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 06, 2018	Jan. 05, 2019
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 06, 2018	Jan. 05, 2019
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 06, 2018	Jan. 05, 2019
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 06, 2018	Jan. 05, 2019
Open Switch and Control Unit	Rohde&Schwarz	OSP120 + OSP-B157	101244 + 100866	Jan. 06, 2018	Jan. 05, 2019
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 06, 2018	Jan. 05, 2019
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 06, 2018	Jan. 05, 2019
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 06, 2018	Jan. 05, 2019
Conducted Emission Measurement Software: ES-K1 V1.71					
Radiated Emission Measurement Software: EZ_EMC V1.1.4.2					

3. OPERATION OF EUT DURING TESTING

- 3.1.Operating Mode
 - The mode is used: **Transmitting mode**

Low Channel: 5729MHz Middle Channel: 5775MHz High Channel: 5820MHz

3.2. Configuration and peripherals

	EUT
Figure 1 S	Setup: Transmitting mode

4. TEST PROCEDURES AND RESULTS

FCC & IC Rules	Description of Test	Result
Section 15.215(c)	20dB Bandwidth	Compliant
RSS-Gen Section 6.7	99% Occupied Bandwidth	Compliant
Section 15.205(a)	Band Edge Compliance Test	Compliant
Section 15.209(a)		
Section 15.249(d)		
RSS-210 Section B.10		
Section 15.209(a)	Radiated Spurious Emission Test	Compliant
Section 15.249		
Section 15.35		
RSS-210 Section B.10		
RSS-Gen Section 6.13		
RSS-Gen Section 8.9		
Section 15.207	AC Power Line Conducted Emission Test	Compliant
RSS-Gen Section 8.8		
Section 15.203	Antenna Requirement	Compliant
RSS-Gen Section 6.8		

5. 20DB BANDWIDTH MEASUREMENT

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.215(c)

The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system RF bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The hopset shall be such that the near-term distribution of frequencies appears random, with sequential hops randomly distributed in both direction and magnitude of change in the hopset while the long-term distribution appears evenly distributed.

5.3. Operating Condition of EUT

5.3.1.Setup the EUT and simulator as shown as Section 5.1.

- 5.3.2.Turn on the power of all equipment.
- 5.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 5729-5820 MHz. We select 5729MHz, 5775MHz, and 5820MHz TX frequency to transmit.

5.4.Test Procedure

- 5.4.1.Place the EUT on the table and set it in transmitting mode.
- 5.4.2.Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 5.4.3.Set RBW of spectrum analyzer to 100 kHz and VBW to300 kHz, Detector function=peak, Trace=max hold, Sweep=auto.
- 5.4.4.Set the measured low, middle and high frequency and test 20dB bandwidth with spectrum analyzer.

5.5.Test Result

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
Low	5729	4.006
Middle	5775	3.832
High	5820	4.052

The spectrum analyzer plots are attached as below.

					Low cha	nnel					
Specti	rum										
Ref Le	evel	10.00 dBm	1	R	BW 100 kHz						
Att		20 dB	SWT 19	us 👄 V	'BW 300 kHz	Mode	Auto FFT				
😑 1Pk Ma	эх										
							D3[1]				-21.04 dB
o										1	.8640 MHz
U aBM—							M1[1]			-	10.68 dBm
10 dBee						M1				5.72	91160 GHz
-10 ubii						\sim	~~				
-20 dBm					~ ^ Y		m				
-20 001	'			\sim				n			
-30 dBm		1 00 600	d Dec D2	V				ns			
00 001	70	1 -30,080							10		
-40 dBm	<u> </u>		~~						~	~	
10 401		an								\sim	
-50 d8m		~~									
\sim ·											
-60 dBm											
-70 dBm											
-80 dBm											
CE 5.72	29 GH	17			691	nts				Sna	n 8.0 MHz
Marker											
Type	Ref		X-value	. 1	Y-value	1	Function		Funct	ion Result	1
M1		1	5.7291	16 GHz	-10.68 d	3m					
D2	M1	1	-2.14	12 MHz	-21.56	dB					
D3	M1	1	1.86	54 MHz	-21.04	dB					
)[]					Measuring.			1,70	29.08.2018

Date: 29.AUG.2018 08:58:51

Middle channel ₩ Spectrum RBW 100 kHz Ref Level 10.00 dBm Att 20 dB **SWT** 19 μs VBW 300 kHz Mode Auto FFT . 😑 1Pk Max D3[1] 20.79 dB 1.6790 MHz 0 dBm M1[1] -11.80 dBm 5.7751620 GHz **M1** -10 dBm -20 dBm -30 dBm-D1 -31.800 dBm Ã, Δ. -40 dBm -50 dBm--60 dBm -70 dBm--80 dBm-CF 5.775 GHz 691 pts Span 8.0 MHz Marker Y-value -11.80 dBm -21.05 dB Type Ref Trc X-value Function Function Result 5.775162 GHz -2.153 MHz M1 D2 М1 DЗ M1 1.679 MHz -20.79 dB

Date: 29.AUG.2018 08:57:00

Date: 29.AUG.2018 08:55:09

6. 99% OCCUPIED BANDWIDTH

6.1.Block Diagram of Test Setup

6.2. The Requirement for RSS-Gen Clause 6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

6.3.EUT Configuration on Measurement

The following equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

6.4.1.Setup the EUT and simulator as shown as Section 6.1.

- 6.4.2.Turn on the power of all equipment.
- 6.4.3. Let the EUT work in TX modes measure it. The transmit frequency are 5729-5820 MHz. We select 5729MHz, 5775MHz, and 5820MHz TX frequency to transmit.

6.5.Test Procedure

- 6.5.1.The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2. The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- 6.5.3.The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- 6.5.4. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5729	3.242
Middle	5775	3.346
High	5820	3.253

6.6.Measurement Result

The spectrum analyzer plots are attached as below.

Date: 29.AUG.2018 08:51:00

Date: 29.AUG.2018 08:53:05

High channel Spectrum Ref Level 10.00 dBm Att 20 dB RBW 100 kHz SWT 19 µs ● VBW 300 kHz Mode Auto FFT Att ●1Pk Max -10.96 dBm 5.8201270 GHz 3.253256151 MHz M1[1] Occ Bw 0 dBm--10 dBm--20 dBm--30 dBm--40 dBm--50 dBmm -60 dBm--70 dBm--80 dBm-Span 8.0 MHz CF 5.82 GHz 691 pts LXI

Date: 29.AUG.2018 08:54:18

7. BAND EDGE COMPLIANCE TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.249

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

7.3. The Requirement For RSS-210 Section B.10

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent

7.4.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.5. Operating Condition of EUT

- 7.5.1.Setup the EUT and simulator as shown as Section 7.1.
- 7.5.2.Turn on the power of all equipment.
- 7.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 5729-5820 MHz. We select 5729MHz, 5820MHz TX frequency to transmit.

7.6.Test Procedure

Radiate Band Edge:

- 7.6.1. The EUT is placed on a turntable, which is 1.5m above the ground plane and worked at highest radiated power.
- 7.6.2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 7.6.3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 7.6.4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

RBW=1MHz, VBW=1MHz

7.6.5.The band edges was measured and recorded.

7.7.Test Result

Pass.

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows: Result = Reading + Corrected Factor

3. Display the measurement of peak values.

4. The average measurement was not performed when peak measured data under the limit of average detection.

The spectral diagrams are attached as below.

8. RADIATED SPURIOUS EMISSION TEST

8.1.Block Diagram of Test Setup

8.1.1.Block diagram of connection between the EUT and peripherals

(EUT: 5.8GHz Digital Wireless Headphone)

8.1.2. Semi-Anechoic Chamber Test Setup Diagram

(A)Radiated Emission Test Set-Up, Frequency below 30MHz

(B)Radiated Emission Test Set-Up, Frequency 30-1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

8.2. The Limit For Section 15.249

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph A8.4(4), the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a).

8.3. The Requirement For RSS-210 Section B.10

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent

8.4. Transmitter Emission Limit

Radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Frequency (MHz)	Field strength (µV/m at 3 m)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

Table 5 - General field strength limits at frequencies above 30 MHz

Table 6 -	General	field	strength	limits at	t freq	uencies	below	30 MHz
							~	

Frequency	Magnetic field strength (H- Field) (µA/m)	Measurement distance (m)
9 - 490 kHz ¹	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

8.5.Restricted bands of operation

8.5.1.FCC Part 15.205 Restricted bands of operation

perm	inted in any of the freque	ncy dands listed below:	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
$^{1}0.495$ -0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^{2})$
13.36-13.41			

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

²Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

8.5.2.RSS-Gen 8.10 Restricted bands of operation

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

(a)The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, *Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).*

(b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.

(c) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.

MHz	MHz
0.090 - 0.110	149.9 - 150.05
0.495 - 0.505	156.52475 - 156.52525
2.1735 - 2.1905	156.7 - 156.9
3.020 - 3.026	162.0125 - 167.17
4.125 - 4.128	167.72 - 173.2
4.17725 - 4.17775	240 - 285
4.20725 - 4.20775	322 - 335.4
5.677 - 5.683	399.9 - 410
6.215 - 6.218	608 - 614
6.26775 - 6.26825	960 - 1427
6.31175 - 6.31225	1435 - 1626.5
8.291 - 8.294	1645.5 - 1646.5
8.362 - 8.366	1660 - 1710
8.37625 - 8.38675	1718.8 - 1722.2
8.41425 - 8.41475	2200 - 2300
12.29 - 12.293	2310 - 2390
12.51975 - 12.52025	2483.5 - 2500
12.57675 - 12.57725	2655 - 2900
13.36 - 13.41	3260 - 3267
16.42 - 16.423	3332 - 3339
16.69475 - 16.69525	3345.8 - 3358
16.80425 - 16.80475	3500 - 4400
25.5 - 25.67	4500 - 5150
37.5 - 38.25	5350 - 5460
73 - 74.6	7250 - 7750
74.8 - 75.2	8025 - 8500
108 - 138	

Table 7 – Restricted frequency bands*

1000	
GHz	
9.0 - 9.2	
9.3 - 9.5	
10.6 - 12.7	
13.25 - 13.4	
14.47 - 14.5	
15.35 - 16.2	
17.7 - 21.4	
22.01 - 23.12	
23.6 - 24.0	
31.2 - 31.8	
36.43 - 36.5	
Above 38.6	

* Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licenceexempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

8.6.Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.7. Operating Condition of EUT

- 8.7.1.Setup the EUT and simulator as shown as Section 8.1.
- 8.7.2.Turn on the power of all equipment.
- 8.7.3.Let the EUT work in TX modes measure it. The transmit frequency are 5729-5820 MHz. We select 5729MHz, 5775MHz, and 5820MHz TX frequency to transmit.

8.8.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz Peak detector above 1GHz RBW(1MHz), VBW(3MHZ) for Spurious Emission measurement RBW(5MHz), VBW(5MHZ) for Fundamental Emission measurement

8.9.Data Sample

Frequency(Reading	Factor	Result	Limit	Margin	Remark
MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	30.21	-17.87	12.34	40.00	-27.66	QP

$$\label{eq:requency} \begin{split} & \text{Frequency}(\text{MHz}) = \text{Emission frequency in MHz} \\ & \text{Reading}(dB\mu\nu) = \text{Uncorrected Analyzer/Receiver reading} \\ & \text{Factor}(dB/m) = \text{Antenna factor} + \text{Cable Loss} - \text{Amplifier gain} \\ & \text{Result}(dB\mu\nu/m) = \text{Reading}(dB\mu\nu) + \text{Factor}(dB/m) \\ & \text{Limit}(dB\mu\nu/m) = \text{Limit stated in standard} \\ & \text{Margin}(dB) = \text{Result}(dB\mu\nu/m) - \text{Limit}(dB\mu\nu/m) \\ & \text{QP} = \text{Quasi-peak Reading} \end{split}$$

Calculation Formula: Margin(dB) = Result (dB μ V/m)–Limit(dB μ V/m) Result(dB μ V/m)= Reading(dB μ V)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

8.10.The Field Strength of Radiation Emission Measurement Results

Pass.

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

3. The EUT is tested radiation emission at Low, Middle, High channel in three axes. The worst emissions are reported in all channels.

From 9KHz to 30MHz:

ACCURATE TECHNOLOGY CO., LTD

FCC PART 15C 3M Radiated

EUT:	5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2
Manufacturer:	Country Mate Technology Ltd
Operating Condition:	TX 5729MHz
Test Site:	2# Chamber
Operator:	WADE
Test Specification:	AC 120V/60Hz
Comment:	X
Start of Test:	2018-7-25 /

Short Desci	ription:		SUB STD VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	1516M
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	1516M

EUT:	5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2
Manufacturer:	Country Mate Technology Ltd
Operating Condition:	TX 5729MHz
Test Site:	2# Chamber
Operator:	WADE
Test Specification:	AC 120V/60Hz
Comment:	Y
Start of Test:	2018-7-25 /

Start Frequency 9.0 kHz 150.0 kHz	Stop Frequency 150.0 kHz 30.0 MHz	Step Width 100.0 Hz 5.0 kHz	Detector QuasiPea QuasiPea	Meas. Time k 1.0 s k 1.0 s	IF Bandw. 200 Hz 9 kHz	Transduo 1516M 1516M	cer
Level [dBµV/m]							
40 20 0 20 9k 20k	30k 40k 60k	100k 20	00k 300k 500k Frequency	700k 1M (Hz)	2M 3M 4M	A 6M 10	M 3

FCC PART 15C 3M Radiated

EUT:	5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2
Manufacturer:	Country Mate Technology Ltd
Operating Condition:	TX 5729MHz
Test Site:	2# Chamber
Operator:	WADE
Test Specification:	AC 120V/60Hz
Comment:	Z
Start of Test:	2018-7-25 /

Short Desc	ription:	122	SUB STD VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	1516M
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	1516M

FCC PART 15C 3M Radiated

EUT:	5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2
Manufacturer:	Country Mate Technology Ltd
Operating Condition:	TX 5775MHz
Test Site:	2# Chamber
Operator:	WADE
Test Specification:	AC 120V/60Hz
Comment:	Х
Start of Test:	2018-7-25 /

Short Desc	ription:		SUB STD VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	1516M
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	1516M

FCC PART 15C 3M Radiated

EUT:	5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2
Manufacturer:	Country Mate Technology Ltd
Operating Condition:	TX 5775MHz
Test Site:	2# Chamber
Operator:	WADE
Test Specification:	AC 120V/60Hz
Comment:	Y
Start of Test:	2018-7-25 /

Short Desc	ription:		SUB STD VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	1516M
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	1516M

FCC PART 15C 3M Radiated

5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2
Country Mate Technology Ltd
TX 5775MHz
2# Chamber
WADE
AC 120V/60Hz
Z
2018-7-25 /

Short Desc	ription:		SUB STD VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	1516M
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	1516M

EUT:	5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2
Manufacturer:	Country Mate Technology Ltd
Operating Condition:	TX 5820MHz
Test Site:	2# Chamber
Operator:	WADE
Test Specification:	AC 120V/60Hz
Comment:	Х
Start of Test:	2018-7-25 /

tart requency .0 kHz	Stop Frequency 150.0 kHz	Step Width 100.0 Hz	Detector QuasiPeak	Meas. Time 1.0 s	IF Bandw. 200 Hz	Transducer 1516M
50.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	1516M
.evel [dBµV/m]						
month			man			
9k 20k	30k 40k 60k	100k 20	00k 300k 500k 70 Frequency [ł	lok 1M Hz]	2M 3M 4N	1 6M 10M

EUT:	5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2
Manufacturer:	Country Mate Technology Ltd
Operating Condition:	TX 5820MHz
Test Site:	2# Chamber
Operator:	WADE
Test Specification:	AC 120V/60Hz
Comment:	У
Start of Test:	2018-7-25 /

tart requency .0 kHz 50.0 kHz	Stop Frequency 150.0 kHz 30.0 MHz	Step Width 100.0 Hz 5.0 kHz	Detector QuasiPeak QuasiPeak	Meas. Time 1.0 s 1.0 s	IF Bandw. 200 Hz 9 kHz	Transducer 1516M 1516M
evel [dBµV/m]						
, 						+++++
manyour	-	-	manner			
) 9k 20k	30k 40k 60k	100k 20	DOK 300K 500K 70	00k 1M	2M 3M 4M	A 6M 10M
		o vezri de	Frequency [Hz]		2 (200) A 197

EUT:	5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2
Manufacturer:	Country Mate Technology Ltd
Operating Condition:	TX 5820MHz
Test Site:	2# Chamber
Operator:	WADE
Test Specification:	AC 120V/60Hz
Comment:	Z
Start of Test:	2018-7-25 /

Start Frequency 9.0 kHz 150.0 kHz	Stop Frequency 150.0 kHz 30.0 MHz	Step Width 100.0 Hz 5.0 kHz	Detector QuasiPeak QuasiPeak	Meas. Time 1.0 s 1.0 s	IF Bandw. 200 Hz 9 kHz	Transducer 1516M 1516M	
Level [dBµV/m]							
30					1 1 1		-
00							-
80							
60							
20			1				
0 month and a	and the second s	-					-
9k 20	x 30k 40k 60k	100k 20	0k 300k 500k 70 Frequency [H	0k 1M Iz]	2M 3M 4N	1 6M 10M	3

From 30MHz to 1GHz:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20181411 Page 43 of 64

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

3

38.23

689.5643

-1.24

36.99

46.00

-9.01

QP

ATC®

From 1GHz to 18GHz:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.Chin Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

		Sc	ience & In	dustry Park,	Nanshan Sh	nenzhen	,P.R.Chi	na	гах	.+00-0755-20505590			
Job No	.: LGW2018	#1800		F	Polarizati	ion: H	orizonta	al					
Standa	rd: FCC PAF	RT 15C 3M	Radiated			F	Power Sc	ource: /	AC 120V	//60Hz			
Test ite	em: Radiatio	n Test				C	Date: 18/	07/18/					
Temp.	C)/Hum.(%) 23 C/4	18 %			1	Time:						
EUT:	5.8GHz Dig	ital Wireless	s Headpho	ne		E	Engineer Signature: WADE						
Mode:	TX 5729M	Hz	— ·			0	Distance:	3m					
Model:	NS-HAW	HP2											
Manufa	acturer: Coun	trv Mate Te	chnology L	td									
Note:		.,											
Note.													
110	0 dBuild/m												
				1		1			limit1:	-			
100													
100		1											
90					ļ	2							
						Ť							
80													
70										0377203770			
		1				1							
60								harber					
	1							-	3				
50			********	(1	in the second	×				
40		1			and marked A	minum	-	permitted	9				
40		I we make here here	moundurer	www.mallinger.	HUWWWW								
30	reduction and white	Man and						hale					
								140					
20.0	000.000	2	000	3000	5000	6000	7000 8000 9	9000	_	18000.0 MHz			
-	-				1				-				
No.	⊢req. (MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	Height (cm)	(deg.)	Remark			
1	5729.000	78.63	10.18	88.81	114.00	-25.19	peak						
2	5729.000	77.13	10.18	87.31	94.00	-6.69	AVG						
3	11458.000	30.49	19.85	50.34	74.00	-23.66	peak						
4	11458.000	22.40	19.85	42.25	54.00	-11.75	AVG						

Report No.: ATE20181411 Page 48 of 64

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.Chin Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

-		SC	ience & Ind	dustry Park,	vansnan Sr	nenznen	P.R.Chi	na	I an	.100-0700-2000000			
Job No	.: LGW2018	#1801				F	Polarizati	ion: \	/ertical				
Standa	ard: FCC PAR	T 15C 3M	Radiated			F	ower So	ource: /	AC 120V	//60Hz			
Test ite	em: Radiatio	n Test				0	Date: 18/	07/18/					
Temp.	(C)/Hum.(%) 23 C/4	18 %			Т	Time:						
EUT:	5.8GHz Dia	ital Wireless	s Headpho	ne		E	Engineer Signature: WADE						
Mode:	TX 5729M	Hz				C	Distance:	3m					
Model:	NS-HAW	HP2											
Manufa	acturer: Coun	try Mate Te	chnology L	td									
Note:			3,										
Holo.													
110	.0 dBuV/m												
	-	1		1				1	limit1:				
100													
90			*****			*							
-													
80								1		*****			
70					[]								
		1											
60									********	******			
50									3				
50								an an Aus	and a superior	an sound an and an			
40			h a	- Land	bortowerk which whe	Minum	in a second s			******			
	and an an and	wholesterentry	when which have	the of the particular									
30	Proventin destinant		hanaha		prompre				*******	*****			
20.	1	1								100			
	000.000	20	000	3000	5000	6000 7	7000 8000	9000		18000.0 MHz			
No.	Freq.	Reading	Factor (dB)	Result	Limit	Margin	Detector	Height (cm)	Degree (deg.)	Remark			
1	5729.000	80.52	10.18	90.70	114.00	-23.30	peak						
2	5729.000	79.02	10.18	89.20	94.00	-4.80	AVG						
3	11458.000	30.99	19.85	50.84	74.00	-23.16	peak						
4	11458.000	22.83	19.85	42.68	54.00	-11.32	AVG						

Α	TC								R	eport No.: ATE201814 Page 50 of
A	TC [®]	AC F1 Sc	,Bldg,A,C	TE TECH hangyuan N dustry Park,	INOLOG ew Material Nanshan Sh	Port Ke	yuan Rd). , na	Tel: Fax	Site: 2# Chamber +86-0755-26503290 ::+86-0755-2650339
Job No.	.: LGW2018	#1805				F	Polarizat	ion: \	/ertical	
Standa	rd: FCC PAR	T 15C 3M I	Radiated			F	Power So	ource: /	AC 120	//60Hz
est ite	m: Radiatio	n Test				0	Date: 18/	07/18/		
emp.(C)/Hum.(%) 23 C/4	8 %			1	Time:			
UT:	5.8GHz Dig	ital Wireless	Headpho	ne		E	Engineer	Signat	ure: M	/ADE
/lode:	TX 5775M	Hz				C	Distance	3m		
Nodel:	NS-HAWH	HP2								
Manufa	cturer: Count	try Mate Tee	chnology L	.td						
lote:			_							
110.	0 dBu∀/m									
				7					limit1:	
100	~~~~~									
90			********			8				
80										
70						·····				
60							····			
50					·				3	
	1					human	man	in minor	-manuar	nannan
40	with the plan and marked	markenmenterme	markhandhand	winger In Annotation (1979)	m. Norm-Manual					*****
20.0										
1	000.000	20	100	3000	5000	6000	7000 8000	9000	1	18000.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	5775.000	80.30	10.45	90.75	114.00	-23.25	peak			
	5775.000	79.20	10.45	89.65	94.00	-4.35	AVG			

3

4

11550.000

11550.000

29.91

21.07

20.18

20.18

50.09

41.25

74.00

54.00

-23.91

-12.75

peak

AVG

Α	TC								R	eport No.: ATE2 Page	2018141 52 of (
A	TC®	AC F1 Sc	,Bldg,A,C	TE TECH hangyuan N dustry Park,	INOLOG ew Material Nanshan Sł	Port Ke	yuan Rd). , na	Tel: Fax	Site: 2# Chan +86-0755-265(:+86-0755-265	nber 03290 03396
Job No	.: LGW2018	#1806				F	Polarizati	ion: \	/ertical		
Standa	rd: FCC PAF	RT 15C 3M F	Radiated			F	Power So	ource: /	AC 120V	//60Hz	
Test ite	m: Radiatio	n lest	9 0/			1	Date: 18/	07/18/			
FUT:	5 8GHz Dig	ital Wireless	s Headpho	ne		F	-ngineer	Signat	ure: W		
Mode:	TX 5820M	IHz	rioudpile				Distance	3m			
Model:	NS-HAW	HP2									
Manufa	acturer: Coun	try Mate Teo	chnology L	.td							
Note:											
110.	0 dBuV/m										
									limit1:		
100					•••••						
90				Januar		*					
80						-					
70					ļ				********		
60				1					********		
50									×		
40				1	- charger the it light	sal hilmony	montener	insuran	and the second	and a second a second	
	at an at second	and and a second and	-historichitettet	and the second second							
30	Aron Montennesser.				prompris				indensis	an a	
20.0											
1	000.000	20	00	3000	5000	6000 7	7000 8000	9000		18000.0 MHz	
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	5820.000	81. <mark>1</mark> 6	10.66	91.82	114.00	-22.18	peak				
2	5820.000	79.76	10.66	90.42	94.00	-3.58	AVG				
3	11640.000	30.12	20.71	50.83	74.00	-23.17	peak				

54.00

11640.000

4

21.86

20.71

42.57

AVG

-11.43

A	ГС								Re	eport No.: ATE201814 Page 54 of
A'	TC [®]	AC F1 Sci	CURA ,Bldg,A,C ence & In	TE TECH hangyuan N dustry Park,	INOLOO ew Material Nanshan Sl	Port Ke	., LTD yuan Rd ,P.R.Chi). , na	Tel: Fax	Site: 2# Chamber +86-0755-26503290 :+86-0755-2650339
Job No.	.: LGW2018	#1810				F	Polarizati	on: \	/ertical	
Standa	rd: FCC PAR	RT 15C 3M F	Radiated			F	ower So	ource:	AC 120\	//60Hz
est ite	m: Radiatio	n Test				C	Date: 18/	07/18/		
emp.(C)/Hum.(%) 23 C/4	8 %			Т	ime:			
UT:	5.8GHz Dig	ital Wireless	Headpho	one		E	Ingineer	Signat	ure: M	ADE
Node:	TX 5729M	Hz				C	Distance:	3m		
Nodel:	NS-HAWH	HP2								
<i>N</i> anufa	cturer: Coun	try Mate Teo	chnology L	td						
90.0	dBu∀/m									
									limit1:	
80						*******				
70		*******			***********			*******	*********	
60	mainainai			تمتديني						
50	i and on the	Constantino (at one worker	1					
30	enerthy prostor and a substant	to an and a second a	and a second second	and a superior to be and a superior to the	and many many	-and the management of the	When any the form	conversion and	where the state of	ryster my united granetal
40					č					in the second
30										
20					************					
10			1					200100	siasia	1010
			1							
0.0 11	8000.000		20000							26500.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
0	22405.025	10.54	39.35	49.89	74.00	-24.11	peak			
	22405.025	0.02	39.35	39.37	54.00	-14.63	AVG			

Report No.: ATE20181411 Page 55 of 64

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

		30	ence a m	uusuy Fain,	Nalisliali Ol	lenzhen,	F.R.On	lia				
Job N	o.: LGW2018	#1812				F	Polarizati	on: H	lorizonta	al		
Stand	ard: FCC PAF	RT 15C 3M F	Radiated			F	Power Sc	ource: A	C 120	//60Hz		
Test it	tem: Radiatio	n Test				0	Date: 18/	07/18/				
Temp	.(C)/Hum.(%) 23 C/4	8 %			Т	Time:					
EUT:	5.8GHz Dig	ital Wireless	Headpho	ne		E	Ingineer	Signatu	ure: W	ADE		
Mode:	TX 5775M	IHz				C	Distance:	3m				
Model	: NS-HAW	HP2										
Manuf	facturer: Coun	try Mate Teo	hnology L	td								
Note:												
90.	.0 dBuV/m											
									limit1:	-		
80						******						
70												
70												
60												
			-									
50	permission	warmen and and and and and and and and and an	minement	and a second and a s	manimum	and and a second	Mulanonnan	when we we want	un manthering	underself and an and an an		
40					2							
40					••••							
30			4									
20		*********							*******			
10												
,0												
0.0			1									
	18000.000		20000							26500.0 MHz		
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
1	21941.932	10.66	39.30	49.96	74.00	-24.04	peak					
2	21941.932	0.21	39.30	39.51	54.00	-14.49	AVG					

	TC								R	eport No.: ATE2018141 Page 56 of (
										1 age 50 01
	B	AC	CURA	TE TECH	NOLOG	Y CO	., LTD).		Site: 2# Chamber
A		F1 Sci	,Bldg,A,C ence & In	hangyuan Ne dustry Park,I	ew Material Nanshan Sh	Port Ke	yuan Rd P.R.Chi	, na	Tel: Fax	+86-0755-26503290 ::+86-0755-26503396
Job No.	.: LGW2018	#1813				F	Polarizati	ion: \	/ertical	
Standar	rd: FCC PAR	T 15C 3M F	Radiated			F	Power Sc	ource:	AC 120\	//60Hz
est ite	m: Radiatio	n Test				0	Date: 18/	07/18/		
emp.(C)/Hum.(%) 23 C/4	8 %			1	ime:			
UT:	5.8GHz Dig	ital Wireless	Headpho	one		E	Engineer	Signat	ure: W	/ADE
lode:	TX 5775M	Hz				0	Distance:	3m		
Aodel:	NS-HAW	HP2								
Manufa	cturer: Count	try Mate Teo	hnoloay L	td						
lote:										
lote.										
90.0	dBu¥/m									
									limit1:	-
80										
70										
60										
50		and		1						
50	free man and a surface of	and the second	and the second second	and the second second	and the second second second second	and the second	and a second second second	areas and the second	earth an a second and a second	here a general procession
40				2						
30				*******		********			********	******
20	· · · · · · · · · · · · · · · · · · ·									
20			1							
10			{							
0.0	9000 000		20000							26500 0 MHz
			20000							20000.0 MH2
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	21322.830	10.48	39.32	49.80	74.00	-24.20	peak			
	21322.830	0.22	39.32	39.54	54.00	-14.46	AVG		1	

A	TC								Re	eport No.: ATE201814 Page 57 of
A	TC®	AC F1 Sci	CURA Bldg,A,C	TE TECH hangyuan N dustry Park,	INOLOG ew Material Nanshan Sł	Y CO Port Ke	., LTD yuan Rd ,P.R.Chi). , na	Tel: Fax	Site: 2# Chamber +86-0755-26503290 :+86-0755-2650339
Job No	.: LGW2018	#1815				F	Polarizati	on: H	Horizonta	al
Standa	rd: FCC PAR	RT 15C 3M F	Radiated			F	ower So	ource:	AC 120	//60Hz
est ite	em: Radiatio	n Test				0	Date: 18/	07/18/		
emp.(C)/Hum.(%) 23 C/4	8 %			Т	Time:			
UT:	5.8GHz Dig	ital Wireless	Headpho	one		E	Ingineer	Signat	ure: M	ADE
lode:	TX 5820M	Hz				0	Distance:	3m		
lodel:	NS-HAW	HP2								
Manufa	acturer: Count	try Mate Teo	hnology L	td						
Jote:										
12121										
_										
90.0	dBuV/m									
									limit1:	-
80								*******		
70					*********					******
60										
50	were the second second	N/1-Vingeneration	municipal and a low and	month work	elined and a superior and	and the second second	mushinger	And an and a start a st	manner	and
40			-	2						
40			1							
30										
20						identidan la		********		
10										
						0140343		1000/200	12223222	
0.0	0000.000		20002							20500 01111
1	8000.000		20000							26500.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	20898.265	11.30	38.38	49.68	74.00	-24.32	peak			
2	20898.265	1.16	38.38	39.54	54.00	-14.46	AVG			

9. AC POWER LINE CONDUCTED EMISSION

9.1.Block Diagram of Test Setup

9.2.Test System Setup

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Frequency	Limit $dB(\mu V)$						
(MHz)	Quasi-peak Level	Average Level					
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *					
0.50 - 5.00	56.0	46.0					
5.00 - 30.00	60.0	50.0					
NOTE1: The lower limit shall	ll apply at the transition freque	ncies.					
NOTE2: The limit decreases	NOTE2: The limit decreases linearly with the logarithm of the frequency in the range						
0.15MHz to 0.50M	Hz.						

9.3. Power Line Conducted Emission Measurement Limits

9.4. Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

9.5. Operating Condition of EUT

9.5.1. Setup the EUT and simulator as shown as Section 9.1.

- 9.5.2. Turn on the power of all equipment.
- 9.5.3. Let the EUT work in test mode and measure it.

9.6.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2014 on Conducted Emission Measurement. The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.5	51.1	34.2	56.0	46.0	4.9	11.8	Pass

9.7.Data Sample

Frequency(MHz) = Emission frequency in MHz

 $\begin{array}{l} Transducer\ value(dB) = Insertion\ loss\ of\ LISN + Cable\ Loss\\ Level(dB\mu V) = Quasi-peak\ Reading/Average\ Reading + Transducer\ value\ Limit\ (dB\mu V) = Limit\ stated\ in\ standard \end{array}$

Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

9.8. Power Line Conducted Emission Measurement Results

Pass.

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT:	5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2
Manufacturer:	Country Mate Technology Ltd
Operating Condition:	Wireless communication
Test Site:	1#Shielding Room
Operator:	WADE
Test Specification:	N 120V/60Hz
Comment:	Mains port
Start of Test:	7/23/2018 /

SCAN TABLE: "V 9K-30MHz fin"

.on:	SUB_STD_VTERN	M2 1.70		
) Step	Detector N	Meas.	IF	Transducer
uency Width]	Time	Bandw.	
0 kHz 100.0 Hz	z QuasiPeak 1	1.0 s	200 Hz 1	NSLK8126 2008
	Average			
MHz 5.0 kHz	QuasiPeak 1	1.0 s	9 kHz	NSLK8126 2008
	Average			
	on: Juency Width 0 kHz 100.0 H: MHz 5.0 kHz	on:SUB_STD_VTER 	on:SUB_STD_VTERM2 1.70 Step Detector Meas. uency Width Time 1 0 kHz 100.0 Hz QuasiPeak 1.0 s Average MHz 5.0 kHz QuasiPeak 1.0 s Average	on:SUB_STD_VTERM2 1.70 Step Detector Meas. IF uency Width Time Bandw. 0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz Average MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz Average

MEASUREMENT RESULT: "BBY-0723-1_fin"

7/23/2018

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.165000	51.00	10.5	65	14.2	QP	N	GND
0.190000	45.10	10.5	64	18.9	QP	N	GND
0.890000	30.80	10.8	56	25.2	QP	N	GND
6.160000	27.30	11.2	60	32.7	QP	N	GND

MEASUREMENT RESULT: "BBY-0723-1_fin2"

7/23/2018

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	29.00	10.5	55	26.0	AV	N	GND
0.505000	34.90	10.7	46	11.1	AV	N	GND
1.015000	19.80	10.8	46	26.2	AV	N	GND
5.590000	16.10	11.2	50	33.9	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT:5.8GHz Digital Wireless Headphone M/N:NS-HAWHP2Manufacturer:Country Mate Technology LtdOperating Condition:Wireless communicationTest Site:1#Shielding RoomOperator:WADETest Specification:L 120V/60HzComment:Mains portStart of Test:7/23/2018 /

SCAN TABLE: "V 9K-30MHz fin"

Snort Desc	ription:	_5	UB_STD_VIE	RMZ 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak Average	1.0 s	200 Hz	NSLK8126 2008
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "BBY-0723-2 fin"

7/23/2018

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	41.40	10.5	66	24.6	QP	L1	GND
0.500000	47.70	10.7	56	8.3	QP	L1	GND
1.005000	41.40	10.8	56	14.6	QP	L1	GND
5.280000	30.20	11.2	60	29.8	QP	L1	GND

MEASUREMENT RESULT: "BBY-0723-2_fin2"

7/23/2018

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	22.90	10.5	56	33.1	AV	L1	GND
0.500000	40.10	10.7	46	5.9	AV	L1	GND
1.000000	26.40	10.8	46	19.6	AV	L1	GND
5.220000	18.20	11.2	50	31.8	AV	L1	GND

10.ANTENNA REQUIREMENT

10.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2. Antenna Construction

Device is equipped with unique antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

----- THE END OF TEST REPORT ------