

Report No. : EED32M00142401 Page 1 of 93

TEST REPORT

Product : Silencer BT 2.0

Trade mark : Walker's

Model/Type reference : GWP-SLCR2-BT, GWP-SLCR2-BT-XXX,

GWP-SF-SLCR2-BT, GWP-SF-SLCR2-BT-XXX (Where X=0 to 9 or A to Z for different color or

package)

Serial Number : N/A

Report Number : EED32M00142401 **FCC ID** : MV3-GWPSLCR2BT

Date of Issue : Jul. 08, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Country Mate Technology Ltd.
5/F,Blk E, Hing Yip Center, 31 Hing Yip Street,
Kwun Tong, Kln, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Sea

Smile zhong

an (luen)

Reviewed by:

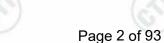
Ware Xin

Ware Xin

Smile Zhong

Date:

Jul. 08, 2020


Sam Chuang

Check No.:3096303496

2 Version

Version No.	Date	(c	Description	<u>S)</u>
00	Jul. 08, 2020		Original	
0				7.50
		(25)		

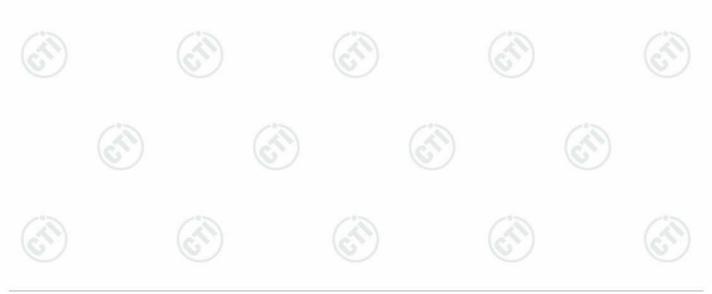
Report No. : EED32M00142401 Page 3 of 93

3 Test Summary

Test Requirement	Test method	Result
47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
	47 CFR Part 15Subpart C Section 15.203/15.247 (c) 47 CFR Part 15Subpart C Section 15.207 47 CFR Part 15Subpart C Section 15.247 (b)(3) 47 CFR Part 15Subpart C Section 15.247 (a)(2) 47 CFR Part 15Subpart C Section 15.247 (e) 47 CFR Part 15Subpart C Section 15.247(d) 47 CFR Part 15Subpart C Section 15.247(d) 47 CFR Part 15Subpart C Section 15.247(d) 47 CFR Part 15Subpart C Section 15.205/15.209 47 CFR Part 15Subpart C Section	47 CFR Part 15Subpart C Section 15.203/15.247 (c) 47 CFR Part 15Subpart C Section 15.207 47 CFR Part 15Subpart C Section 15.247 (b)(3) 47 CFR Part 15Subpart C Section 15.247 (a)(2) 47 CFR Part 15Subpart C Section 15.247 (e) 47 CFR Part 15Subpart C Section 15.247 (d) 47 CFR Part 15Subpart C Section 15.247(d) 47 CFR Part 15Subpart C Section 15.205/15.209 47 CFR Part 15Subpart C Section 15.205/15.209 ANSI C63.10-2013 ANSI C63.10-2013 ANSI C63.10-2013

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.


The tested sample(s) and the sample information are provided by the client.

Model No.: GWP-SLCR2-BT, GWP-SLCR2-BT-XXX, GWP-SF-SLCR2-BT, GWP-SF-SLCR2-BT-XXX (Where X=0 to 9 or A to Z for different color or package)

Only the model GWP-SLCR2-BT was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color or package.

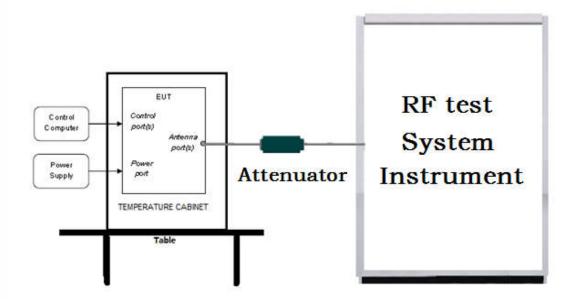
The left and right headphone are same electrical circuit design and color.

Difference: structure mirror, PCB Layout nearly mirror, appearance mirror.

Report No.: EED32M00142401 Page 4 of 93

4 Content

1 COVER PAGE				1
2 VERSION				2
3 TEST SUMMARY		•••••		3
4 CONTENT				4
5 TEST REQUIREMENT				
5.1.1 For Conducted t 5.1.2 For Radiated Er 5.1.3 For Conducted I 5.2 TEST ENVIRONMENT	test setup missions test setup Emissions test setup			5 6 6
6 GENERAL INFORMATIO	ON			7
6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICAT 6.4 DESCRIPTION OF SUP 6.5 TEST LOCATION 6.6 DEVIATION FROM STA 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION	NO OF EUT TION SUBJECTIVE TO THIS SIPORT UNITS NDARDS I STANDARD CONDITIONS REQUESTED BY THE CUSTOR RTAINTY (95% CONFIDENCE	TANDARD		7 8 8 8
7 EQUIPMENT LIST	•••••	•••••	•••••	10
8 RADIO TECHNICAL REG				
Appendix A): 6dB Occ Appendix B): Conduct Appendix C): Band-ec Appendix D): RF Con- Appendix E): Power S Appendix F): Antenna Appendix G): AC Pow Appendix H): Restricte	cupied Bandwidthted Peak Output Power dge for RF Conducted Emducted Spurious Emission Spectral Density Requirement ver Line Conducted Emissed bands around fundame	nissionssionsionental frequency (Radiate	ed)	
PHOTOGRAPHS OF TEST				
PHOTOGRAPHS OF EUT	CONSTRUCTIONAL DE	TAILS		78



Report No. : EED32M00142401 Page 5 of 93

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

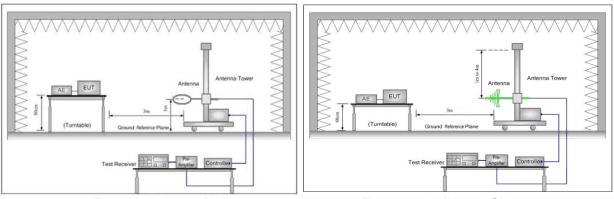


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

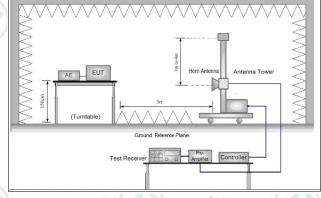
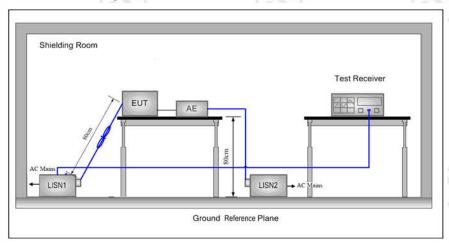
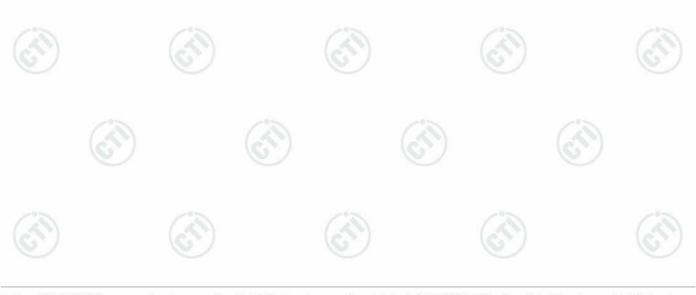



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			(0)
Temperature:	24.0 °C		
Humidity:	53 % RH	nico (nico	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
Test Mode	TX/KX	Low(L)	Middle(M)	High(H)	
05014	0.4001411 0.400.1411	Channel 0	Channel 19	Channel 39	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

6 General Information

6.1 Client Information

Applicant:	Country Mate Technology Ltd.
Address of Applicant:	5/F,Blk E, Hing Yip Center, 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong
Manufacturer:	Country Mate Technology Ltd.
Address of Manufacturer:	5/F,Blk E, Hing Yip Center, 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong
Factory:	Concord Electronic (Huizhou) Ltd.
Address of Factory:	21, Ping An Rd, Shuikou Street, Hui Cheng District , Huizhou City, Guangdong Province, China

6.2 General Description of EUT

Product Name:	Silencer BT 2.0
Model No.(EUT):	GWP-SLCR2-BT, GWP-SLCR2-BT-XXX, GWP-SF-SLCR2-BT, GWP-SF-SLCR2-BT-XXX (Where X=0 to 9 or A to Z for different color or package)
Test Model No.:	GWP-SLCR2-BT
Trade mark:	Walker's
EUT Supports Radios application:	BT 5.0 Dual mode, 2402MHz to 2480MHz
Power Supply:	DC 3.8V
Sample Received Date:	May 25, 2020
Sample tested Date:	May 25, 2020 to Jun. 29, 2020

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz				(30)
Bluetooth Version:	5.0(BLE)		(0,)		(0,)
Modulation Technique:	DSSS				
Modulation Type:	GFSK				
Number of Channel:	40	(3)		(3)	
Test Power Grade:	Default	(0)		(0)	
Test Software of EUT:	Bluetest3				
Antenna Type and Gain:	Type: FPC Antenna				
245	Gain:0.8dBi		-0-		-0-
Test Voltage:	DC 3.8V				

Report No. : EED32M00142401 Page 8 of 93

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	sociated ment name	Manufacturer	Model	S/N serial number	Certification	Supplied by
AE1	Notebook	DELL	DELL 3490	D245DX2	CE & FCC	DELL

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

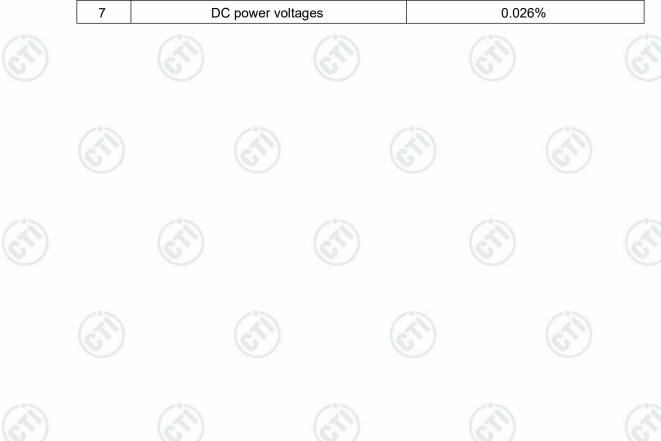
None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.



Report No. : EED32M00142401 Page 9 of 93

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE power conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction aminaism	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32M00142401 Page 10 of 93

7 Equipment List

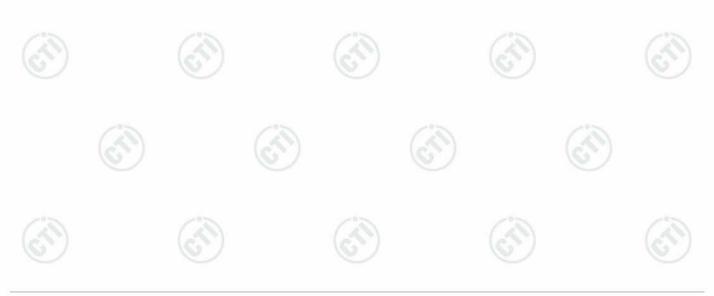
		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	(4)	(<u></u>
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	<u></u>		
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		(A)-	(2)
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		(<u>i</u>

	at 65 Years	- C -		and SE Tree.	C 10 100		
	Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021		
Temperature/ Humidity Indicator	Defu	TH128		/	(B)		
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021		
Barometer	changchun	DYM3	1188				

3M Semi/full-anechoic Chamber								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021			
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020			
Multi device Controller	maturo	NCD/070/107 11112			(e/1)			
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020			
Cable line	Fulai(7M)	SF106	5219/6A					
Cable line	Fulai(6M)	SF106	5220/6A					
Cable line	Fulai(3M)	SF106	5216/6A	/ - 30				
Cable line	Fulai(3M)	SF106	5217/6A	(44.7	//			

Page 12 of 93

1.63			(43)		1.63
		3M full-anechoic			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		6.7
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	730	
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		(
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		(S)
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

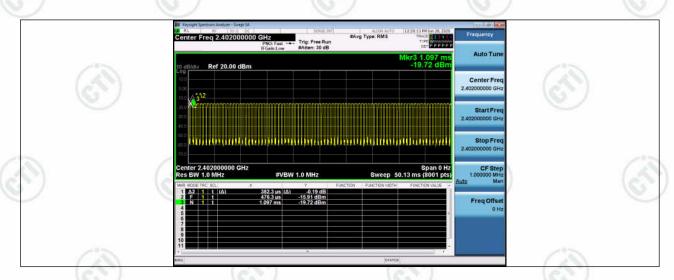

8 Radio Technical Requirements Specification

Reference documents for testing:

Г			
	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

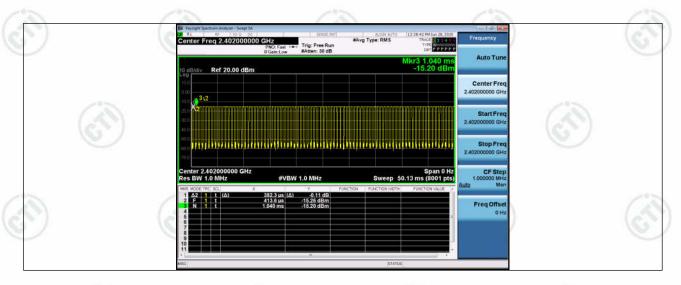


Page 14 of 93

EUT DUTY CYCLE

left ear:

	Duty	Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BLE	0.3823	0.6207	61.60%



Page 15 of 93

Right ear:

(251)	Duty	Cycle	(25)
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BLE	0.3823	0.6264	61.03%

Report No. : EED32M00142401 Page 16 of 93

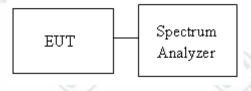
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

		(200)	1
2	Limit	Shall be at least 500kHz	


Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

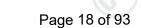
Left ear:

6dB Bandwidth

Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.7116	PASS
BLE	MCH	0.7106	PASS
BLE	HCH	0.7030	PASS

99% OBW

Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0422	PASS
BLE	MCH	1.0425	PASS
BLE	HCH	1.0417	PASS



Right ear:

6dB Bandwidth

Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.7023	PASS
BLE	MCH	0.7064	PASS
BLE	НСН	0.7052	PASS

99% OBW

		and the second s	
Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0406	PASS
BLE	MCH	1.0398	PASS
BLE	НСН	1.0379	PASS

Report No. : EED32M00142401 Page 19 of 93

Test Graphs

Left ear: 6dB Bandwidth

Page 20 of 93

99% OBW

Page 21 of 93

Right ear:

6dB Bandwidth

99% OBW

Report No.: EED32M00142401 Page 23 of 93

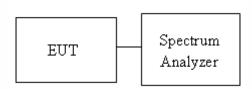
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


		Ø.
Limit	☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]	
	☐ Point-to-point operation	

Test Procedure

Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW≥DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- **4.** Measure and record the result in the test report.

Test Setup

Test Result

Left ear:

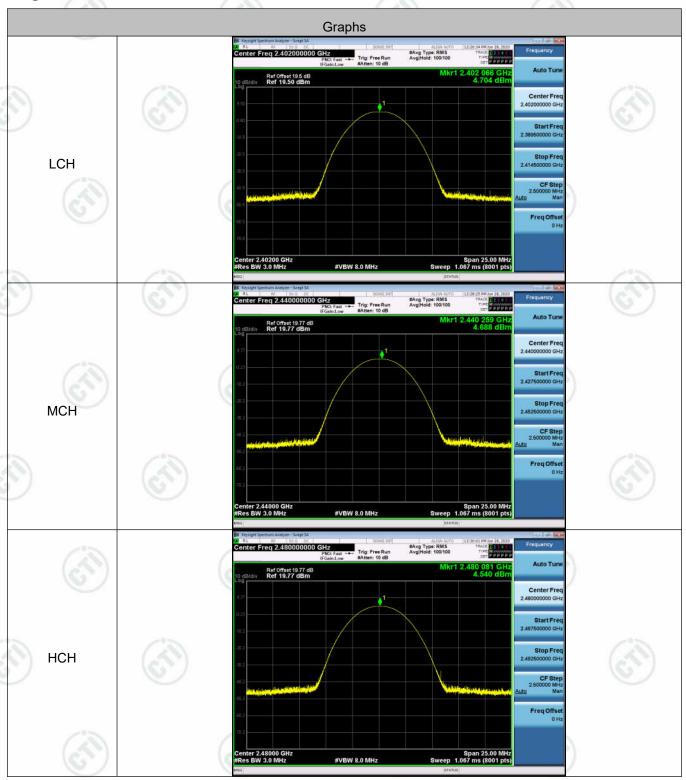
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	3.361	PASS
BLE	MCH	3.434	PASS
BLE	HCH	3.512	PASS

Right ear:

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	4.704	PASS
BLE	MCH	4.688	PASS
BLE	HCH	4.54	PASS

Test Graphs

Left ear:



Right ear:

Report No. : EED32M00142401 Page 27 of 93

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Page 28 of 93

Result Table Left ear:

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	3.231	-58.731	-16.77	PASS
BLE	HCH	3.141	-51.880	-16.86	PASS

Right ear:

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	4.700	-58.789	-15.3	PASS
BLE	НСН	4.426	-50.834	-15.57	PASS

Report No. : EED32M00142401 Page 29 of 93

Test Graphs Left ear:

Page 30 of 93

Right ear:

Report No.: EED32M00142401 Page 31 of 93

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Result Table

Left ear:

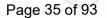
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	3.075	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	2.794	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	3.316	<limit< td=""><td>PASS</td></limit<>	PASS

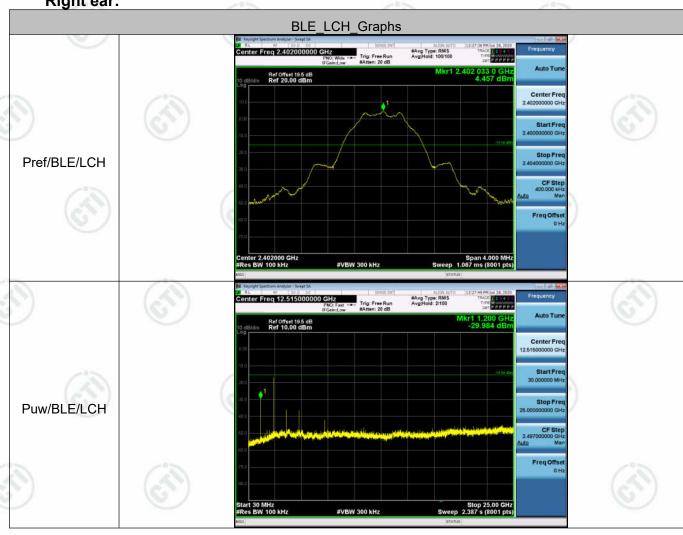
Right ear:


Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	4.457	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	мсн	4.497	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	4.29	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32M00142401 Page 33 of 93

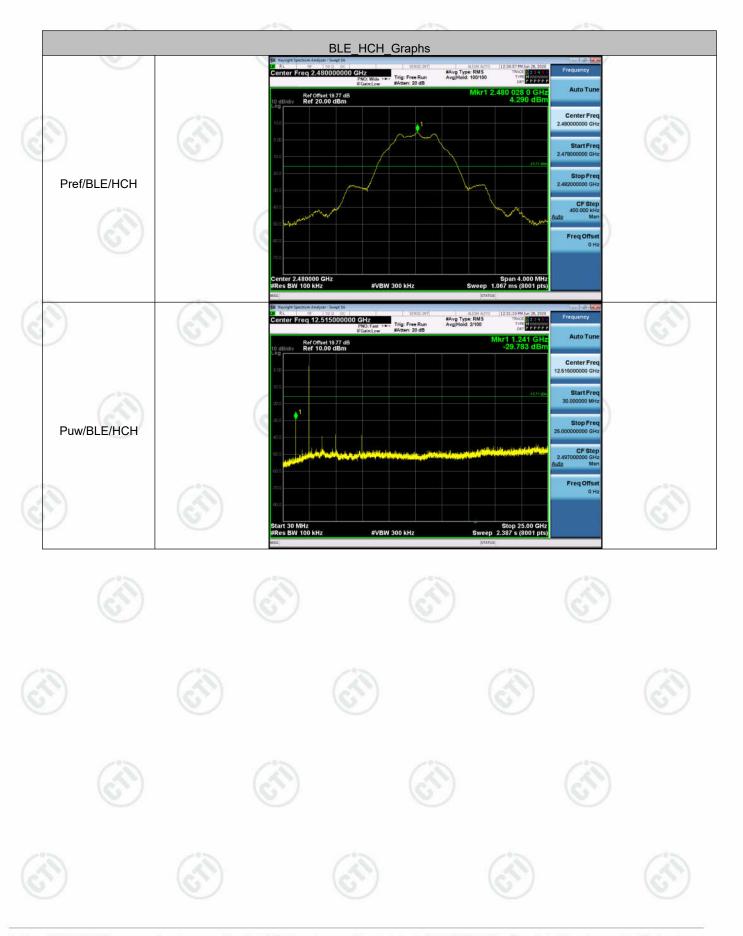
Test Graphs





Page 36 of 93





Page 38 of 93

Report No. : EED32M00142401 Page 39 of 93

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit 6	 ✓ Antenna not exceed 6 dBi : 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation :
	i diffe to point operation .

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

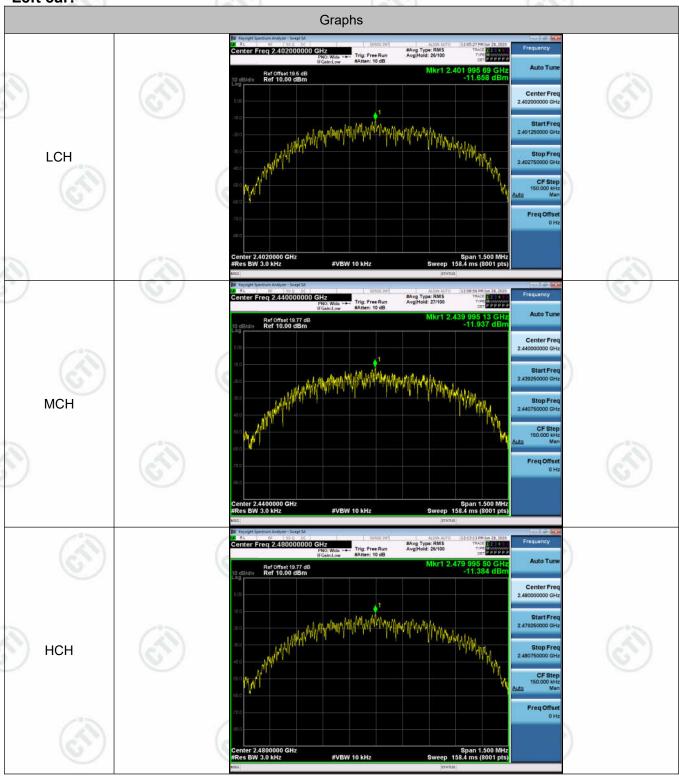
Test Setup

Report No. : EED32M00142401 Page 40 of 93

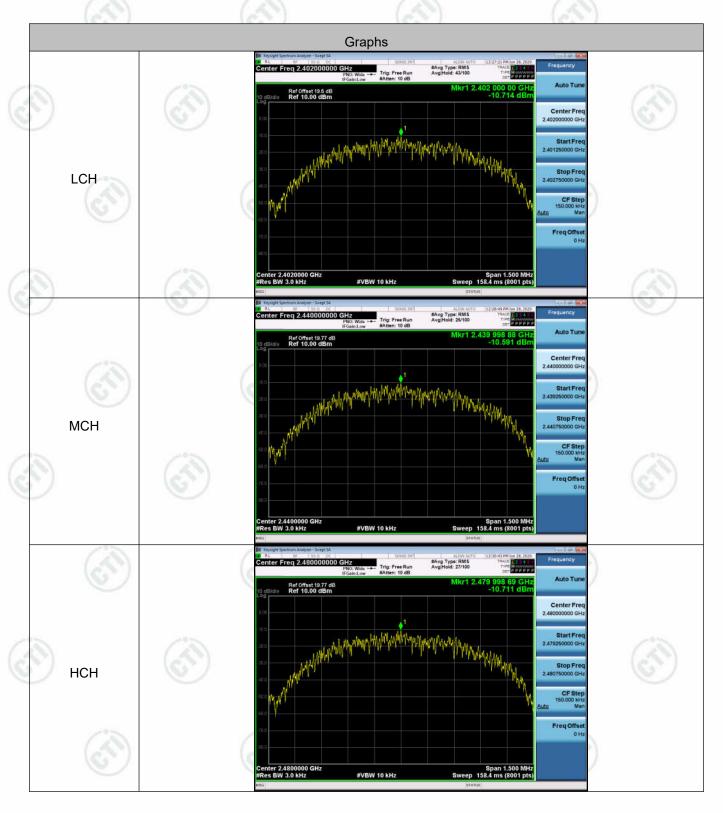
Result Table Left ear:

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-11.658	PASS
BLE	MCH	-11.937	PASS
BLE	HCH	-11.384	PASS

Right ear:


Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-10.714	PASS
BLE	MCH	-10.591	PASS
BLE	нсн	-10.711	PASS

Test Graphs Left ear:



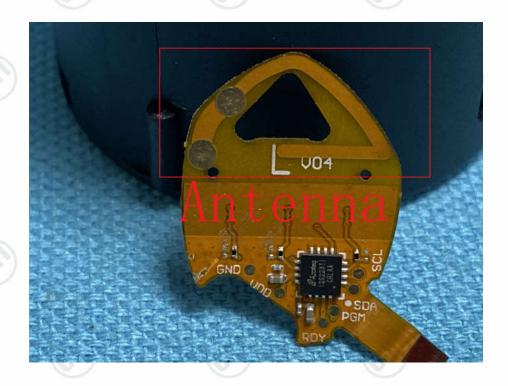
Right ear:

Report No.: EED32M00142401 Page 43 of 93

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

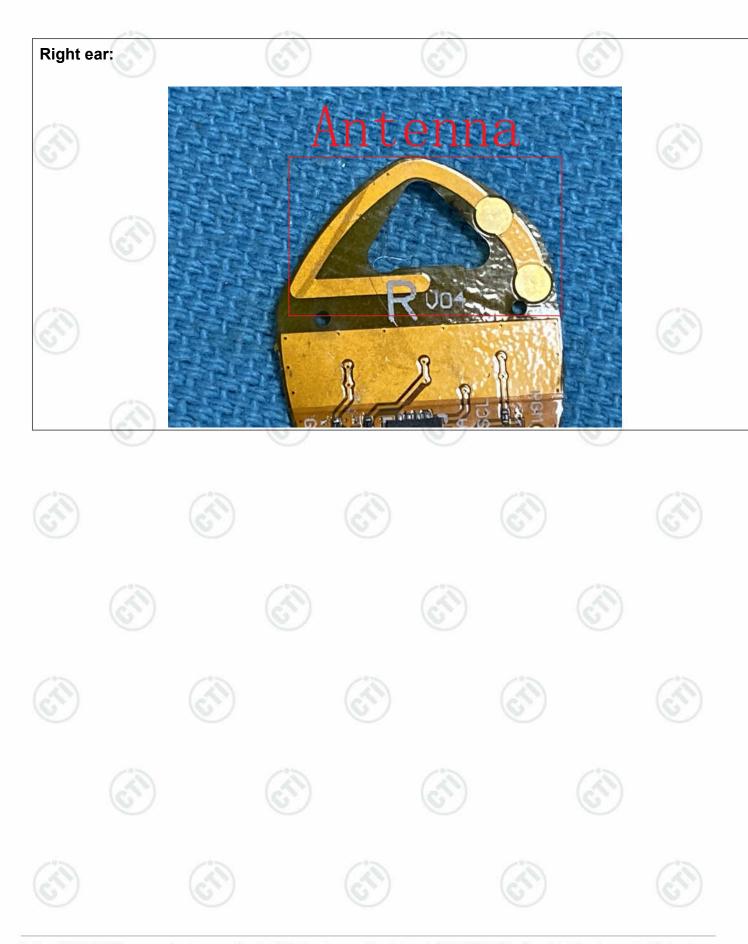

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

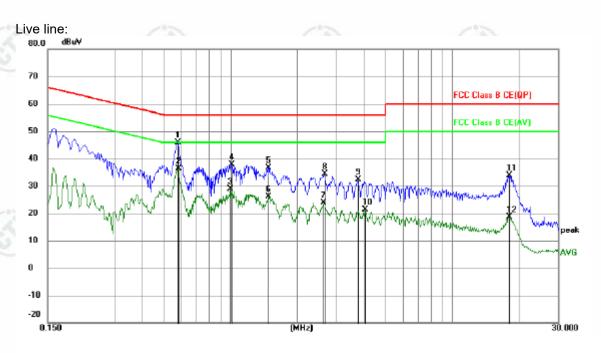
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.8dBi.

Left ear:



Report No. : EED32M00142401 Page 45 of 93

Appendix G): AC Power Line Conducted Emission

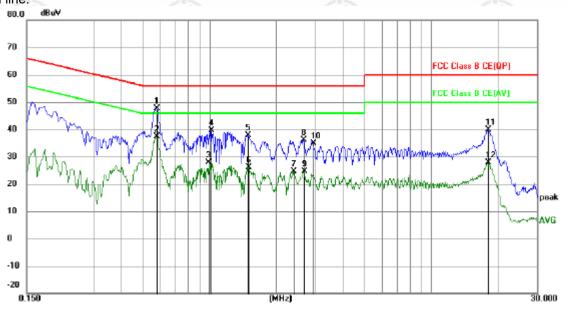

Test Procedure:	Test frequency range :150KHz-	30MHz		
	1)The mains terminal disturban	ce voltage test was c	onducted in a shiel	ded room.
	2) The EUT was connected to	AC power source thro	ough a LISN 1 (Lir	ne Impedance
	Stabilization Network) which			
	power cables of all other ur			
	which was bonded to the gr			
	for the unit being measured multiple power cables to a s exceeded.	-	-	
	3)The tabletop EUT was place	d upon a non-metalli	c table 0.8m abov	e the ground
	reference plane. And for floo horizontal ground reference	or-standing arrangem		
	4) The test was performed wit	h a vertical ground r	eference plane. Th	ne rear of the
	EUT shall be 0.4 m from the			
	reference plane was bonde	<u> </u>		
	1 was placed 0.8 m from the	-		
	ground reference plane fo			
	plane. This distance was be	•		
	All other units of the EUT and LISN 2.	nd associated equipm	ieni was ai ieasi u	.8 m from the
	5) In order to find the maximum	omission the relativ	o positions of oqui	nmont and al
	of the interface cables n			
	conducted measurement.	idot bo onangod d	0001ding 10 71110	. 000.10 011
Limit:				
Limit:		Limit (d	lΒμV)	
Limit:	Frequency range (MHz)	Limit (d Quasi-peak	BμV) Average	
Limit:	Frequency range (MHz) 0.15-0.5	•	· ·	
Limit:	- 0	Quasi-peak	Average	
Limit:	0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*	(in)
Limit:	0.15-0.5 0.5-5	Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50	ne range 0.15
Limit:	0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz.	Quasi-peak 66 to 56* 56 60 with the logarithm of	Average 56 to 46* 46 50 the frequency in the	ne range 0.15
Limit:	0.15-0.5 0.5-5 5-30 * The limit decreases linearly w	Quasi-peak 66 to 56* 56 60 with the logarithm of	Average 56 to 46* 46 50 the frequency in the	ne range 0.15
	0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz.	Quasi-peak 66 to 56* 56 60 with the logarithm of	Average 56 to 46* 46 50 the frequency in the	ne range 0.15
Measurement Data	0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is application.	Quasi-peak 66 to 56* 56 60 with the logarithm of the sable at the transition	Average 56 to 46* 46 50 the frequency in the frequency	ne range 0.15
Measurement Data An initial pre-scan was	0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is applicately between the live and neutral limits.	Quasi-peak 66 to 56* 56 60 with the logarithm of the stable at the transition ones with peak detectors.	Average 56 to 46* 46 50 the frequency in the frequency or.	
Measurement Data An initial pre-scan was Quasi-Peak and Avera	0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is application.	Quasi-peak 66 to 56* 56 60 with the logarithm of the stable at the transition ones with peak detectors.	Average 56 to 46* 46 50 the frequency in the frequency or.	
Measurement Data An initial pre-scan was	0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is applicately between the live and neutral limits.	Quasi-peak 66 to 56* 56 60 with the logarithm of the stable at the transition ones with peak detectors.	Average 56 to 46* 46 50 the frequency in the frequency or.	
Measurement Data An initial pre-scan was Quasi-Peak and Avera	0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is applicately between the live and neutral limits.	Quasi-peak 66 to 56* 56 60 with the logarithm of the stable at the transition ones with peak detectors.	Average 56 to 46* 46 50 the frequency in the frequency or.	
Measurement Data An initial pre-scan was Quasi-Peak and Avera	0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is applicately between the live and neutral limits.	Quasi-peak 66 to 56* 56 60 with the logarithm of the stable at the transition ones with peak detectors.	Average 56 to 46* 46 50 the frequency in the frequency or.	

Page 46 of 93

Product : Silencer BT 2.0 Model/Type reference : GWP-SLCR2-BT

Temperature : 22° Humidity : 49%

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5775	35.81	10.00	45.81	56.00	-10.19	QP	
2	*	0.5820	26.29	9.99	36.28	46.00	-9.72	AVG	
3		0.9960	19.14	9.74	28.88	46.00	-17.12	AVG	
4		1.0140	28.02	9.74	37.76	56.00	-18.24	QP	
5		1.4730	26.81	9.76	36.57	56.00	-19.43	QP	
6		1,4819	16.27	9.76	26.03	46.00	-19.97	AVG	
7		2.6295	13.98	9.79	23.77	46.00	-22.23	AVG	
8		2.6610	24.50	9.79	34.29	56.00	-21.71	QP	
9		3.7500	22.48	9.78	32.26	56.00	-23.74	QP	
10		4.0425	11.66	9.78	21.44	46.00	-24.56	AVG	
11		17.9565	24.01	9.84	33.85	60.00	-26.15	QP	
12		17.9565	8.91	9.84	18.75	50.00	-31.25	AVG	



Neutral line:

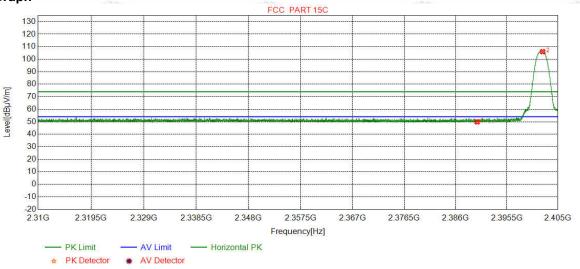
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.5775	37.73	10.00	47.73	56.00	-8.27	QP	
2		0.5775	27.35	10.00	37.35	46.00	-8.65	AVG	
3		0.9915	18.23	9.74	27.97	46.00	-18.03	AVG	
4		1.0184	29.83	9.74	39.57	56.00	-16.43	QP	
5		1.4910	28.06	9.76	37.82	56.00	-18.18	QP	
6		1.4955	16.42	9.76	26.18	46.00	-19.82	AVG	
7		2.3955	14.92	9.79	24.71	46.00	-21.29	AVG	
8		2.6565	26.42	9.79	36.21	56.00	-19.79	QP	
9		2.6700	14.89	9.79	24.68	46.00	-21.32	AVG	
10		2.9310	25.01	9.78	34.79	56.00	-21.21	QP	
11		17.9834	29.99	9.84	39.83	60.00	-20.17	QP	
12		17.9834	18.06	9.84	27.90	50.00	-22.10	AVG	

Notes:

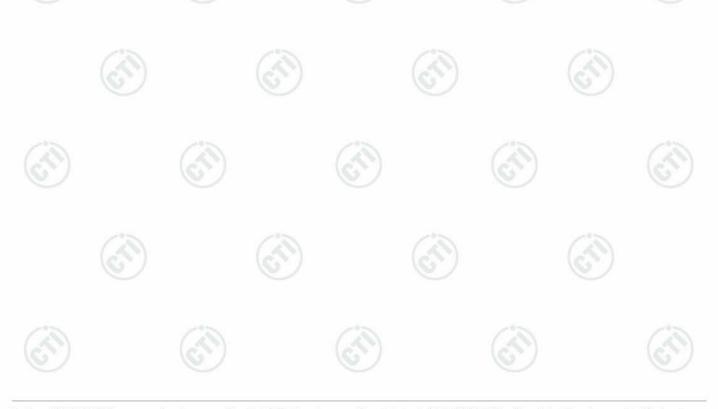
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark						
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak						
		Peak	1MHz	3MHz	Peak						
	Above 1GHz	Peak	1MHz	10Hz	Average						
Test Procedure:	Below 1GHz test procedu	ıre as below:	0	1	/	9					
	Test method Refer as KDE a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the and d. For each suspected er the antenna was tuned was turned from 0 deg e. The test-receiver system	 at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, w was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground determine the maximum value of the field strength. Both horizontal and vertipolarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. 									
	f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest	end of the restric npliance. Also m rum analyzer plo channel	easure any	emission	s in the restric						
	f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Chamas 18GHz the distance is h. Test the EUT in the low. The radiation measure Transmitting mode, an	end of the restrict of pliance. Also manufacture as below: The is the test site of the change form and table of the change form and the cha	e, change fin table 0.8 le is 1.5 me the Highest remed in X, kis positioni	remissions for each por form Semi- meter to 1 ter). t channel Y, Z axis p ing which i	s in the restrict ower and mode Anechoic Cha .5 meter(Aborositioning for t is worse cas	ulatio ambe					
Limit:	f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, an j. Repeat above procedure.	end of the restrict opliance. Also manument analyzer place channel were as below: We is the test site of the change form and table of the channel of the ch	e, change fin table 0.8 le is 1.5 me the Highest ormed in X, xis positioniuencies me	remissions for each por form Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe ve					
Limit:	f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, and j. Repeat above procedure. Frequency	end of the restrict repliance. Also manufacture and the channel when the test site of the channel street and table wheat channel street are performents are performents.	e, change firm table 0.8 le is 1.5 me the Highest remed in X, xis positioniuencies me //m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe ve					
Limit:	f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, an j. Repeat above procedure.	end of the restrict opliance. Also manument analyzer place channel were as below: We is the test site of the change form and table of the channel of the ch	e, change fin table 0.8 le is 1.5 me the Highest remed in X, kis positioni uencies me //m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe ove					
imit:	f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chamman 18GHz the distance is horizontal to the final test of the f	end of the restrict repliance. Also manufacture and the channel when the state of the channel of	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, xis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark eak Value	ulatio ambe ove					
Limit:	f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chamalaghz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, and j. Repeat above procedure. Frequency 30MHz-88MHz	end of the restrict opliance. Also manufacture as below: If ye is the test site of the change form and table of the change form and table owest channel, ments are performents are performents are performents are until all frequency. Limit (dBµV. 40.6)	e, change fin table 0.8 le is 1.5 me the Highest freed in X, kis positioniuencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe ove					
Limit:	f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chamman 18GHz the distance is horizontal to fully Anechoic Chamman 18GHz the distance is horizontal the first the EUT in the left. The radiation measure Transmitting mode, and journal transmitted mode, and journal transmitting mode, and journal transmitted mode	end of the restrict opliance. Also manufacture as below: The restrict of the r	e, change fin table 0.8 le is 1.5 me the Highest ormed in X, xis positioniquencies me me (m @3m)	remissions for each por for eac	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark eak Value eak Value eak Value	ulatio ambe ove					
imit:	f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chamalaghz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, and j. Repeat above procedum Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	end of the restrict oppliance. Also manufacture as below: If e is the test site of the change form of the change of	e, change fin table 0.8 le is 1.5 me the Highest fin med in X, xis positioni uencies me	remissions for each por for eac	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark eak Value eak Value	ulatio ambe					


Report No. : EED32M00142401 Page 49 of 93

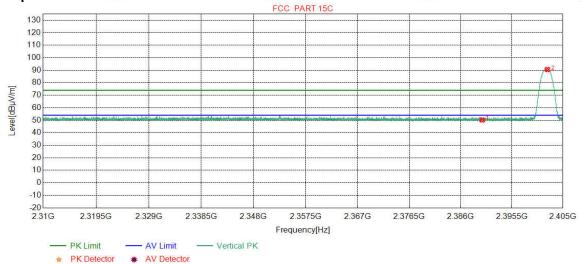
Test plot as follows:

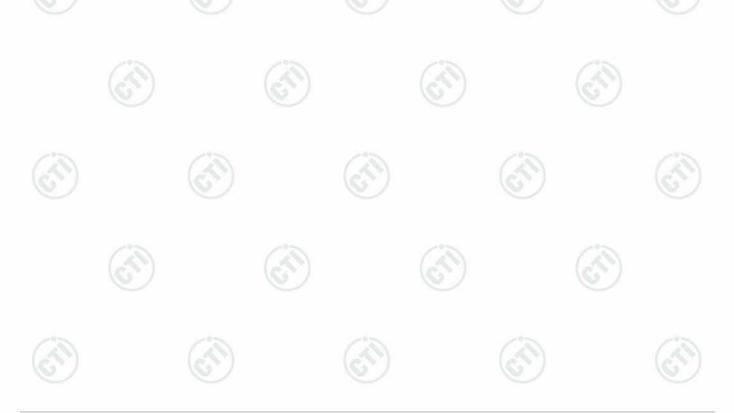

Left ear:

Mode:	BLE GFSK Transmitting	Channel:	2402	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.36	49.86	74.00	24.14	Pass	Horizontal
2	2402.1625	32.26	13.31	-43.12	103.57	106.02	74.00	-32.02	Pass	Horizontal

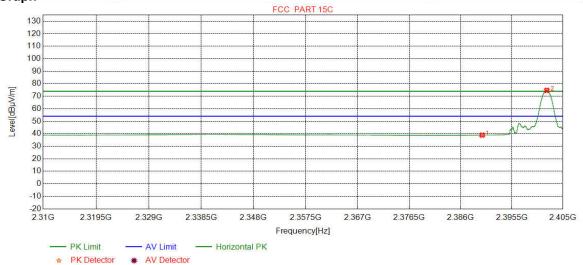


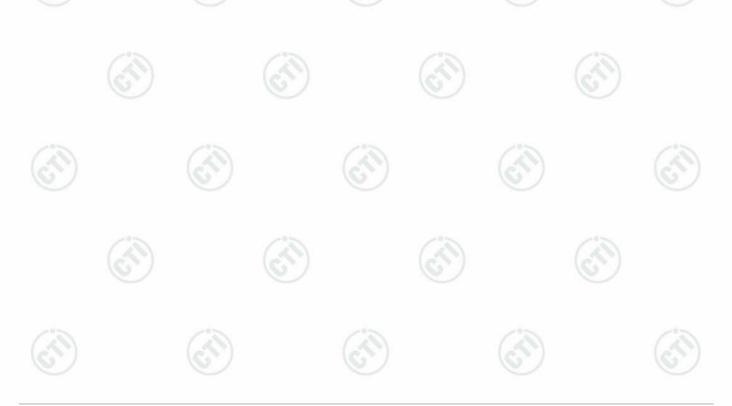

Page	50	of	93
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.67	50.17	74.00	23.83	Pass	Vertical
2	2402.1118	32.26	13.31	-43.12	88.09	90.54	74.00	-16.54	Pass	Vertical



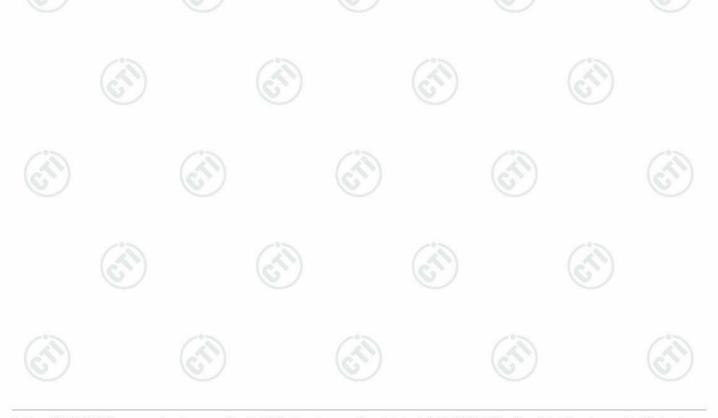

Page	51	of 93
------	----	-------

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.43	38.93	54.00	15.07	Pass	Horizontal
2	2402.0041	32.26	13.31	-43.12	72.25	74.70	54.00	-20.70	Pass	Horizontal

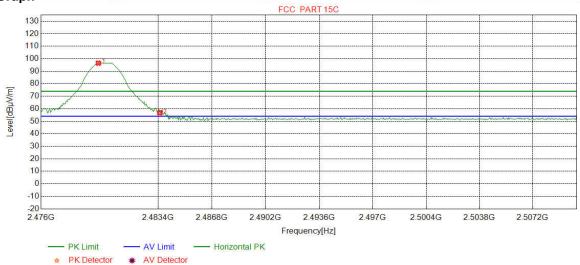


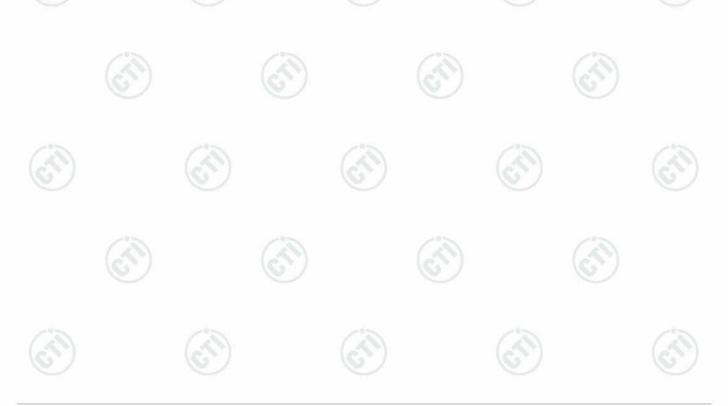

Page	52	of	93	
------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.22	38.72	54.00	15.28	Pass	Vertical
2	2402.0041	32.26	13.31	-43.12	67.54	69.99	54.00	-15.99	Pass	Vertical

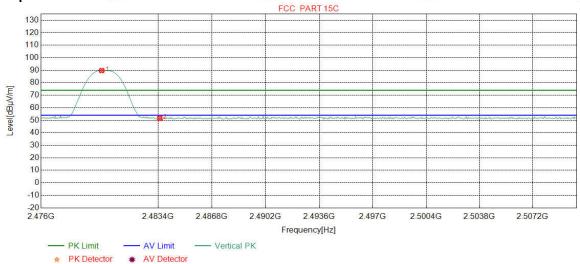



Page !	53 of	93
--------	-------	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6170	32.37	13.39	-43.10	93.79	96.45	74.00	-22.45	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	54.09	56.74	74.00	17.26	Pass	Horizontal

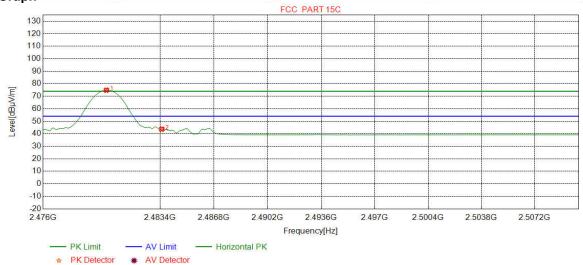


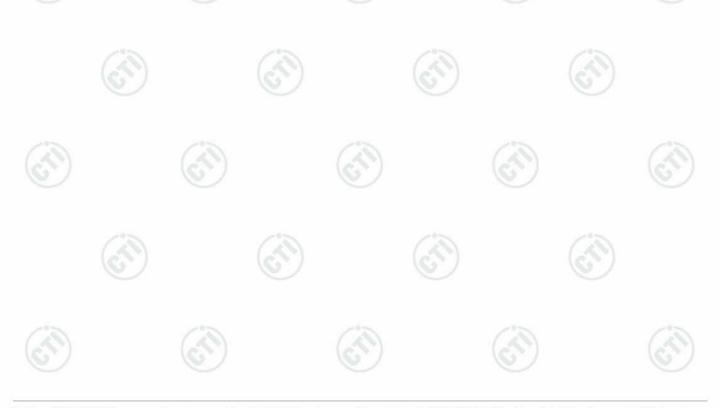
Page	54	of	93	
------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

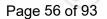
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8298	32.37	13.39	-43.10	87.06	89.72	74.00	-15.72	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.95	51.60	74.00	22.40	Pass	Vertical

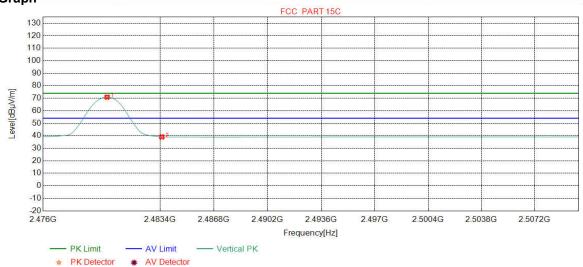


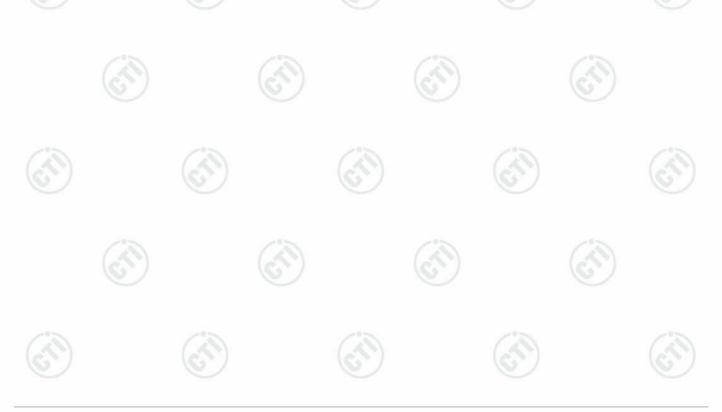

Page	55	of	93
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	72.18	74.84	54.00	-20.84	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	41.04	43.69	54.00	10.31	Pass	Horizontal

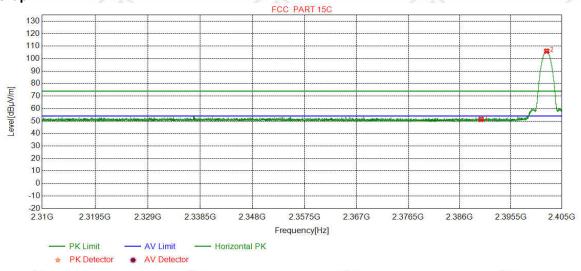




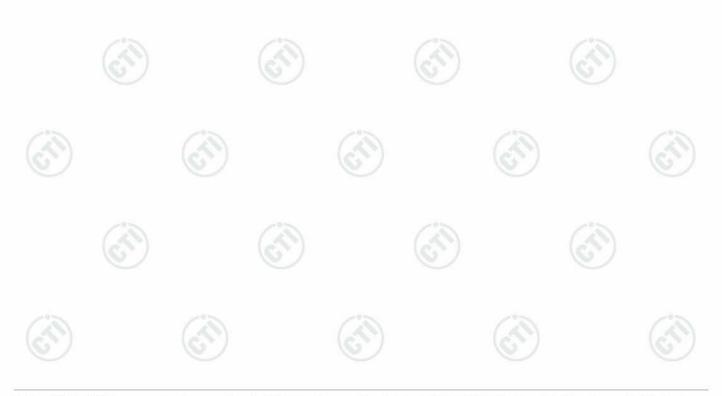
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	68.22	70.88	54.00	-16.88	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.44	39.09	54.00	14.91	Pass	Vertical



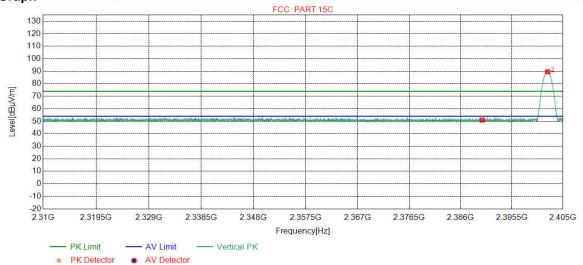
Report No.: EED32M00142401 Page 57 of 93

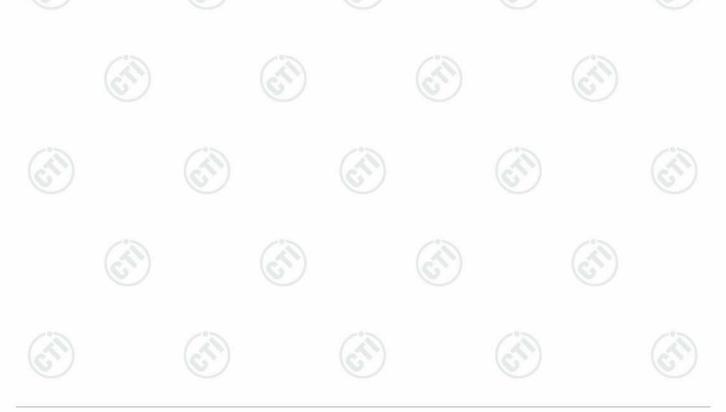

Right ear:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

Ant Cable Pream Freq. Reading Level Limit Margin Factor NO loss Result gain **Polarity** [MHz] [dBµV] $[dB\mu V/m]$ [dBµV/m] [dB] [dB] [dB] [dB] **Pass** 1 2390.0000 32.25 74.00 22.67 13.37 -43.12 48.83 51.33 Horizontal Pass 2 32.26 13.31 -43.12 105.99 2402.1688 103.54 74.00 -31.99 Horizontal

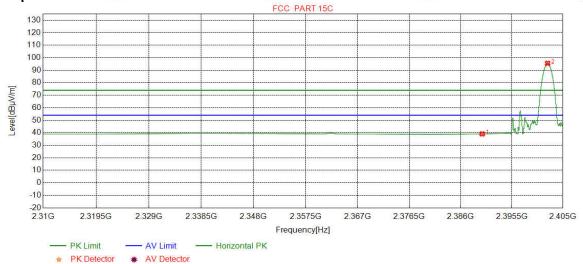


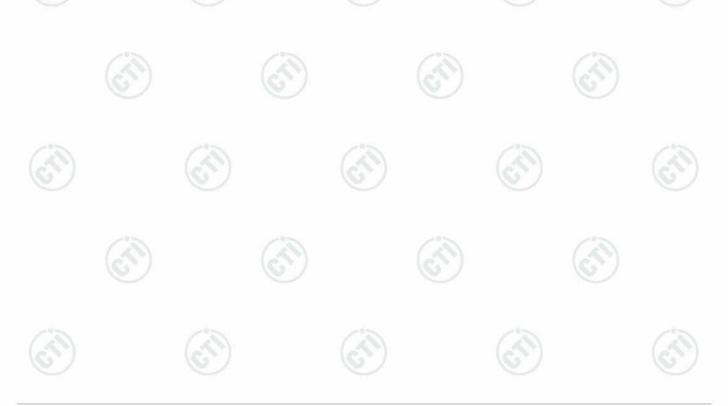

Page	58	of 9	93
------	----	------	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.43	50.93	74.00	23.07	Pass	Vertical
2	2402.1561	32.26	13.31	-43.12	87.16	89.61	74.00	-15.61	Pass	Vertical

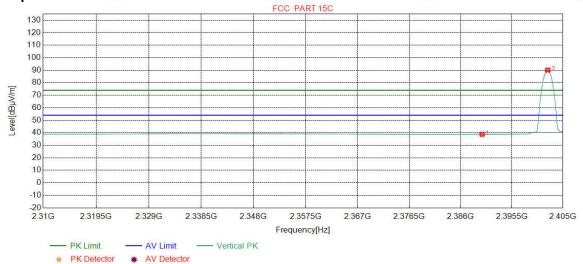


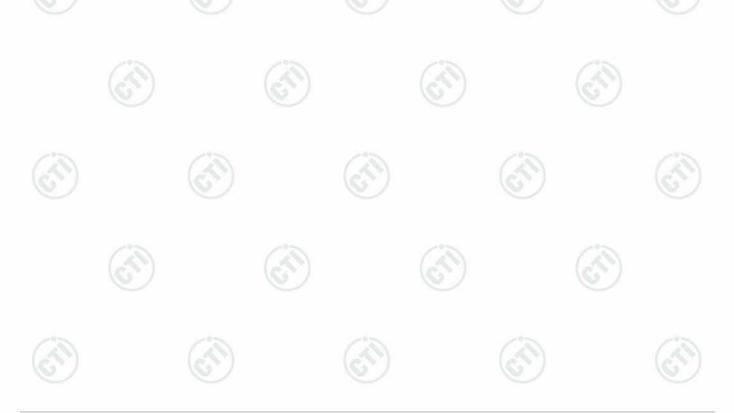

Page	59	of	93
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.59	39.09	54.00	14.91	Pass	Horizontal
2	2402.1561	32.26	13.31	-43.12	93.07	95.52	54.00	-41.52	Pass	Horizontal

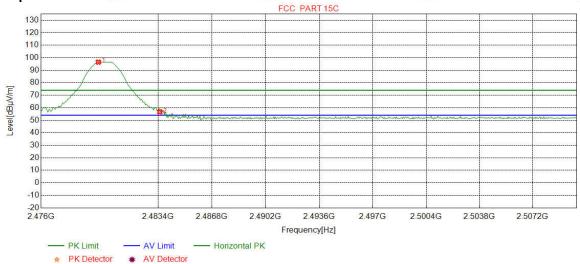


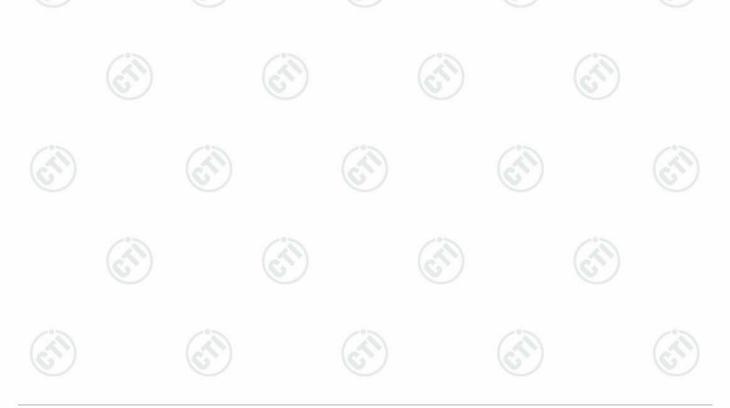

Page	60	of 93	
------	----	-------	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.25	38.75	54.00	15.25	Pass	Vertical
2	2402.1815	32.26	13.31	-43.12	87.67	90.12	54.00	-36.12	Pass	Vertical

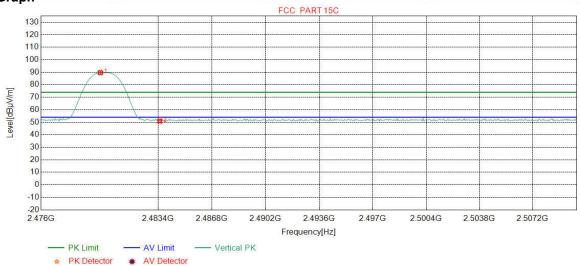


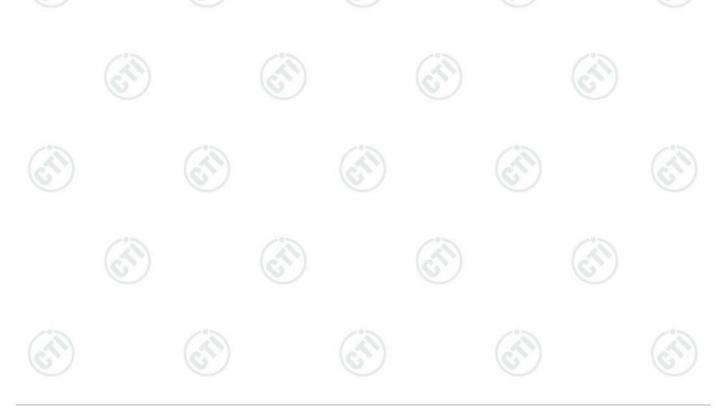

Page	61	of 93
------	----	-------

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6170	32.37	13.39	-43.10	93.79	96.45	74.00	-22.45	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	54.07	56.72	74.00	17.28	Pass	Horizontal

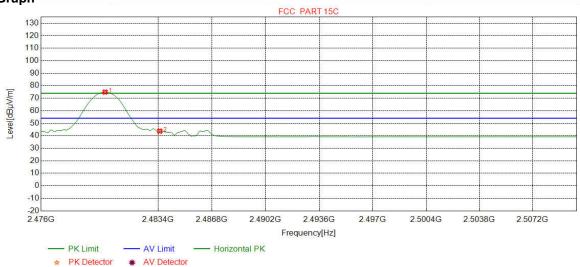



Page 6	2 of 93
--------	---------

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	87.00	89.66	74.00	-15.66	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.27	50.92	74.00	23.08	Pass	Vertical

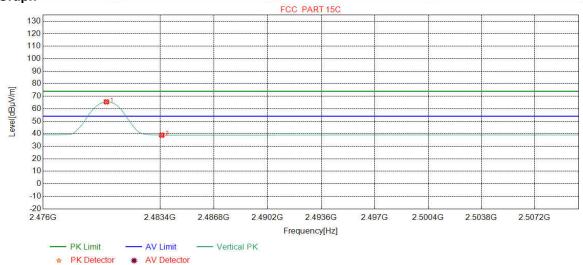


Page	63	of	93	
------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

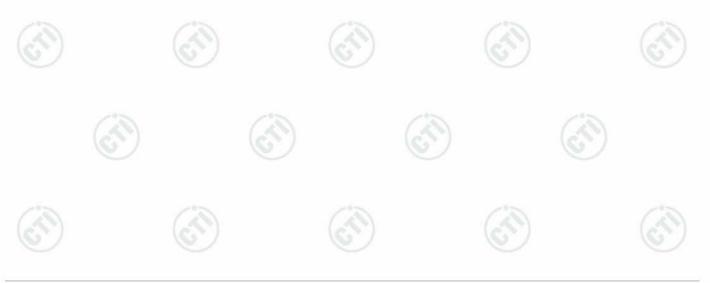
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	72.25	74.91	54.00	-20.91	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	41.05	43.70	54.00	10.30	Pass	Horizontal



Page	64	of	93	
------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	62.82	65.48	54.00	-11.48	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.24	38.89	54.00	15.11	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32M00142401 Page 65 of 93

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
\	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(41)	Ab 4015	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

	n	าเ	t.
_,		ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0.)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32M00142401 Page 66 of 93

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Left ear:

Mode	:		BLE GF	SK Transn	nitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	45.06	25.56	40.00	14.44	Pass	Н	PK
2	60.5581	11.45	0.90	-31.81	36.12	16.66	40.00	23.34	Pass	Н	PK
3	124.5845	8.51	1.31	-32.04	40.35	18.13	43.50	25.37	Pass	Н	PK
4	240.0260	11.94	1.84	-31.90	41.82	23.70	46.00	22.30	Pass	Н	PK
5	433.2693	15.93	2.46	-31.84	41.80	28.35	46.00	17.65	Pass	Н	PK
6	649.9890	19.40	3.10	-32.07	40.55	30.98	46.00	15.02	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	44.70	25.20	40.00	14.80	Pass	V	PK
8	150.0010	7.55	1.45	-32.01	46.87	23.86	43.50	19.64	Pass	V	PK
9	195.0135	10.43	1.64	-31.94	45.84	25.97	43.50	17.53	Pass	V	PK
10	304.0524	13.29	2.07	-31.60	42.48	26.24	46.00	19.76	Pass	V	PK
11	433.2693	15.93	2.46	-31.84	42.38	28.93	46.00	17.07	Pass	V	PK
12	649.9890	19.40	3.10	-32.07	41.54	31.97	46.00	14.03	Pass	V	PK

Right ear:

Mode	:		BLE GF	SK Transm	nitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	44.42	24.92	40.00	15.08	Pass	Н	PK
2	125.0695	8.44	1.32	-32.05	41.81	19.52	43.50	23.98	Pass	Н	PK
3	240.0260	11.94	1.84	-31.90	42.20	24.08	46.00	21.92	Pass	Н	PK
4	299.9780	13.20	2.06	-31.40	41.30	25.16	46.00	20.84	Pass	Н	PK
5	433.2693	15.93	2.46	-31.84	42.26	28.81	46.00	17.19	Pass	Н	PK
6	827.6138	21.23	3.46	-31.96	39.38	32.11	46.00	13.89	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	44.71	25.21	40.00	14.79	Pass	V	PK
8	59.3939	11.70	0.89	-31.82	38.87	19.64	40.00	20.36	Pass	V	PK
9	150.0010	7.55	1.45	-32.01	47.24	24.23	43.50	19.27	Pass	V	PK
10	240.0260	11.94	1.84	-31.90	43.05	24.93	46.00	21.07	Pass	V	PK
11	433.2693	15.93	2.46	-31.84	42.54	29.09	46.00	16.91	Pass	V	PK
12	649.9890	19.40	3.10	-32.07	40.88	31.31	46.00	14.69	Pass	V	PK

Page 67 of 93

Transmitter Emission above 1GHz Left ear:

Mode	Mode:			FSK Transr	mitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1300.2300	28.20	2.75	-42.78	54.65	42.82	74.00	31.18	Pass	Н	PK
2	3059.0039	33.22	4.81	-43.10	50.33	45.26	74.00	28.74	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	49.66	45.91	74.00	28.09	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	46.20	46.16	74.00	27.84	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.75	48.92	74.00	25.08	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	46.50	51.51	74.00	22.49	Pass	Н	PK
7	1698.2698	29.71	3.20	-42.67	51.16	41.40	74.00	32.60	Pass	V	PK
8	3054.0036	33.22	4.82	-43.10	50.30	45.24	74.00	28.76	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	48.21	44.46	74.00	29.54	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	46.13	46.09	74.00	27.91	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	46.49	48.66	74.00	25.34	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	47.16	52.17	74.00	21.83	Pass	V	PK

Mode	:		BLE GF	SK Transm	itting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readi ng [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1402.8403	28.30	2.90	-42.69	54.32	42.83	74.00	31.17	Pass	Н	PK
2	2166.1166	31.93	3.65	-43.16	52.87	45.29	74.00	28.71	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	48.22	44.72	74.00	29.28	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	46.09	46.22	74.00	27.78	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.21	48.54	74.00	25.46	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	46.03	51.22	74.00	22.78	Pass	Н	PK
7	1785.8786	30.29	3.29	-42.70	51.14	42.02	74.00	31.98	Pass	V	PK
8	3191.0127	33.28	4.64	-43.11	50.27	45.08	74.00	28.92	Pass	V	PK
9	4880.0000	34.50	4.80	-42.80	47.97	44.47	74.00	29.53	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	46.64	46.77	74.00	27.23	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	46.90	49.23	74.00	24.77	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	46.58	51.77	74.00	22.23	Pass	V	PK

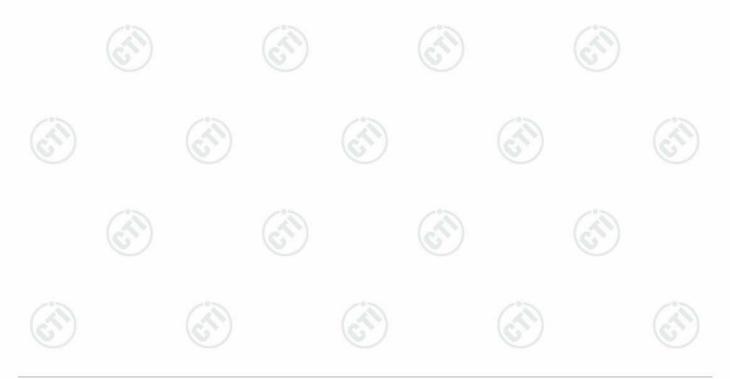
Mode	:		BLE G	FSK Trans	mitting			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cabl e loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1417.8418	28.32	2.92	-42.76	54.09	42.57	74.00	31.43	Pass	Н	PK
2	3415.0277	33.37	4.52	-43.10	51.38	46.17	74.00	27.83	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	50.11	46.63	74.00	27.37	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	47.07	47.35	74.00	26.65	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.49	48.95	74.00	25.05	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.78	52.28	74.00	21.72	Pass	Н	PK
7	1656.2656	29.43	3.15	-42.77	51.83	41.64	74.00	32.36	Pass	V	PK
8	3286.0191	33.31	4.54	-43.09	50.55	45.31	74.00	28.69	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	47.62	44.14	74.00	29.86	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	47.06	47.34	74.00	26.66	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	47.52	49.98	74.00	24.02	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.02	51.52	74.00	22.48	Pass	V	PK

Right ear:

Mode	:		BLE GF	SK Transn	nitting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1673.0673	29.54	3.17	-42.72	51.34	41.33	74.00	32.67	Pass	Н	PK
2	3419.0279	33.37	4.51	-43.10	50.93	45.71	74.00	28.29	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	48.48	44.73	74.00	29.27	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	46.28	46.24	74.00	27.76	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	47.42	49.59	74.00	24.41	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	47.31	52.32	74.00	21.68	Pass	Н	PK
7	1632.4632	29.27	3.12	-42.82	51.87	41.44	74.00	32.56	Pass	V	PK
8	2825.9826	32.92	4.23	-43.09	51.16	45.22	74.00	28.78	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	47.38	43.63	74.00	30.37	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	47.62	47.58	74.00	26.42	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	48.82	50.99	74.00	23.01	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	46.58	51.59	74.00	22.41	Pass	V	PK

Mode:			BLE GF	SK Transn	nitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1383.8384	28.28	2.87	-42.69	53.81	42.27	74.00	31.73	Pass	Н	PK
2	3441.0294	33.38	4.45	-43.10	51.09	45.82	74.00	28.18	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	49.32	45.82	74.00	28.18	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	46.53	46.66	74.00	27.34	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.22	48.55	74.00	25.45	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	46.03	51.22	74.00	22.78	Pass	Н	PK
7	1924.2924	31.20	3.42	-43.01	51.08	42.69	74.00	31.31	Pass	V	PK
8	3074.0049	33.23	4.78	-43.10	50.18	45.09	74.00	28.91	Pass	V	PK
9	4880.0000	34.50	4.80	-42.80	48.42	44.92	74.00	29.08	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	47.01	47.14	74.00	26.86	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	47.75	50.08	74.00	23.92	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	46.28	51.47	74.00	22.53	Pass	V	PK

Mode:			BLE GF	SK Transn	nitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1717.4717	29.84	3.21	-42.67	51.55	41.93	74.00	32.07	Pass	Н	PK
2	3060.0040	33.22	4.81	-43.10	50.40	45.33	74.00	28.67	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.46	44.98	74.00	29.02	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	47.16	47.44	74.00	26.56	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	47.19	49.65	74.00	24.35	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.08	51.58	74.00	22.42	Pass	Н	PK
7	1276.6277	28.18	2.72	-42.82	52.45	40.53	74.00	33.47	Pass	V	PK
8	3076.0051	33.23	4.77	-43.10	50.71	45.61	74.00	28.39	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	47.52	44.04	74.00	29.96	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	47.06	47.34	74.00	26.66	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	45.85	48.31	74.00	25.69	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.79	52.29	74.00	21.71	Pass	V	PK


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

