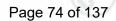
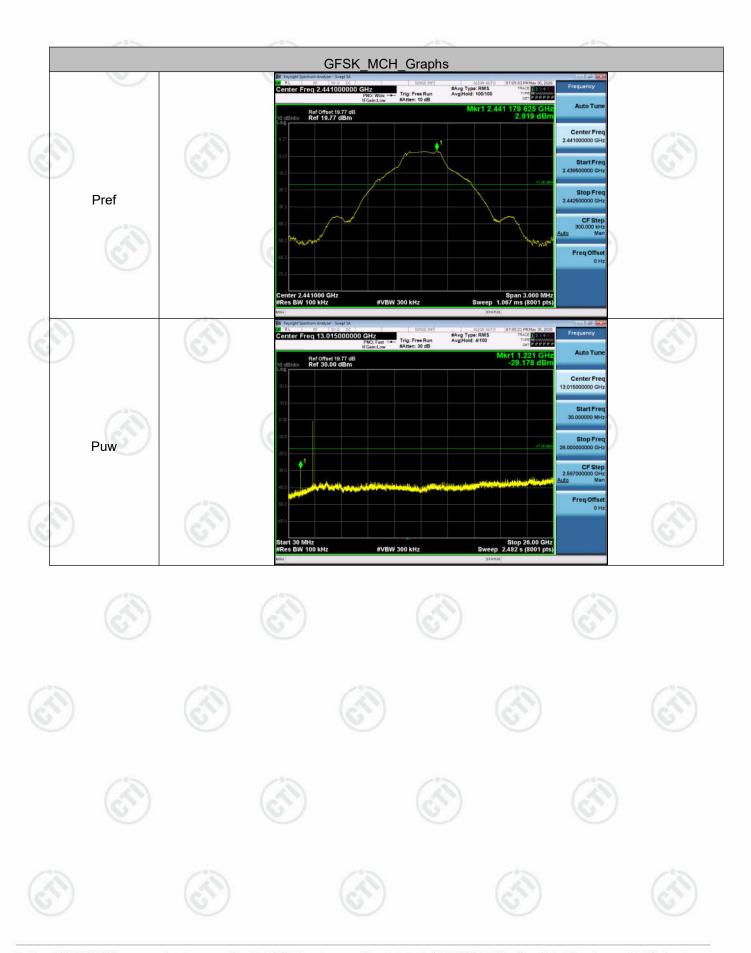
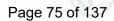


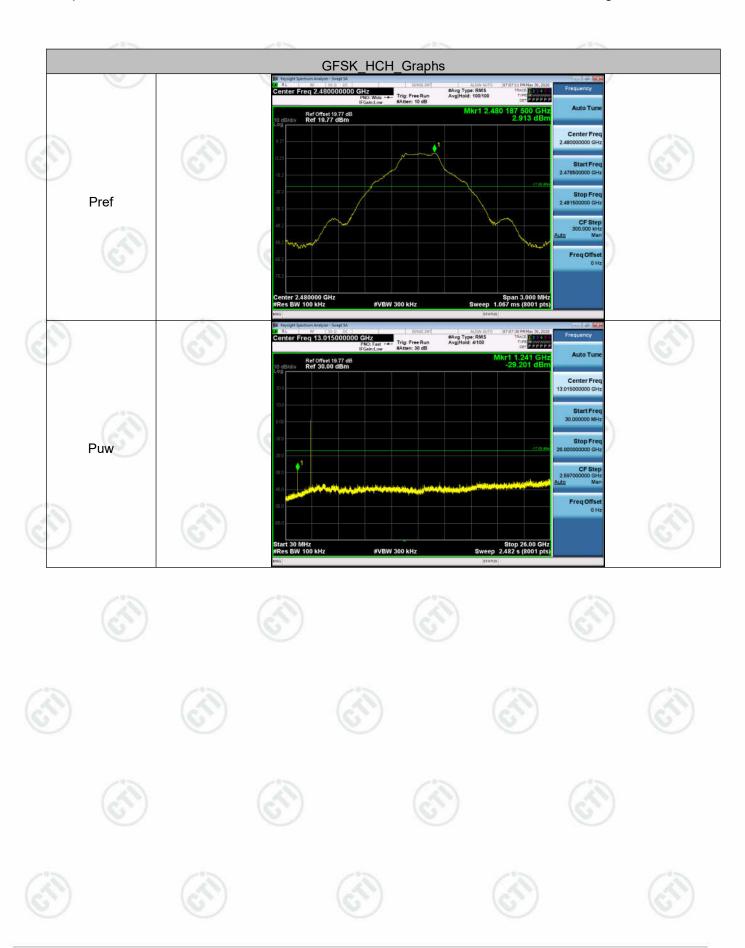


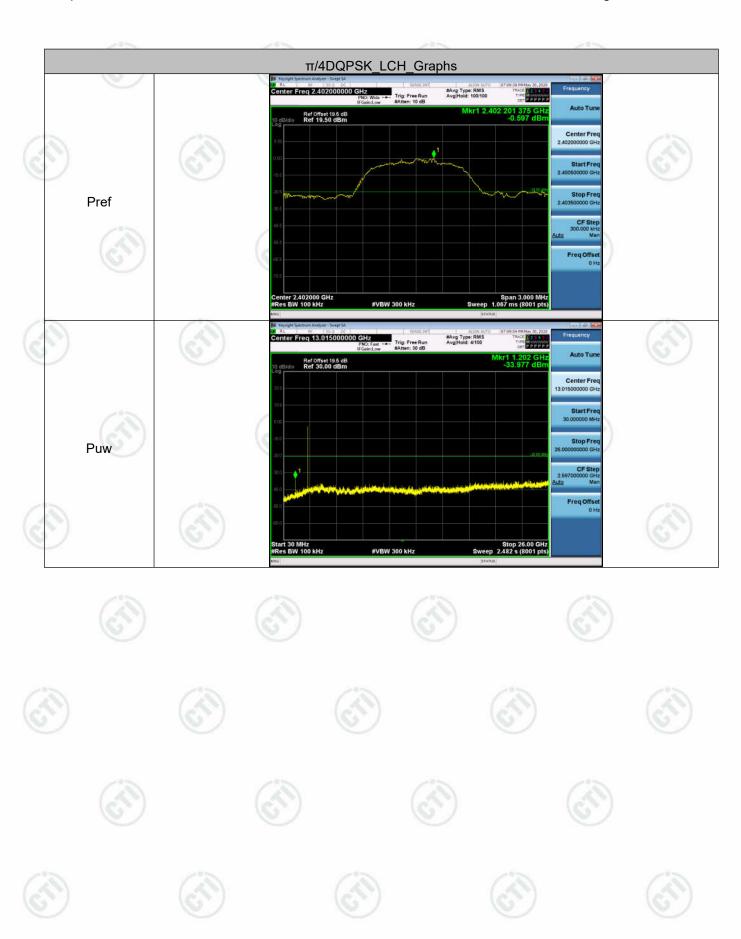
Page 73 of 137

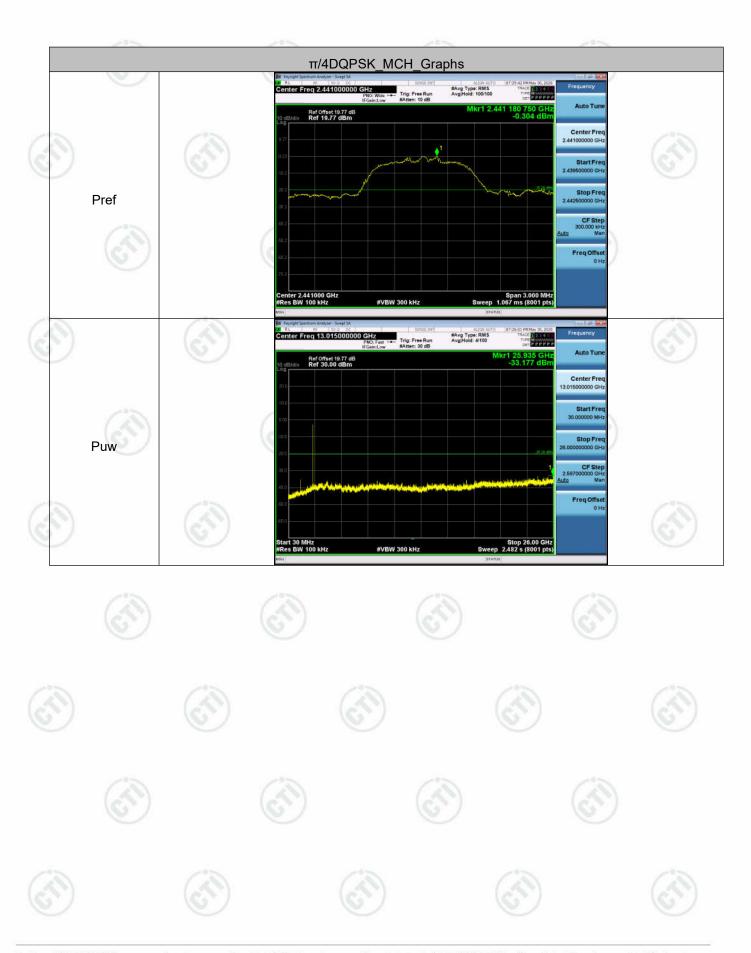




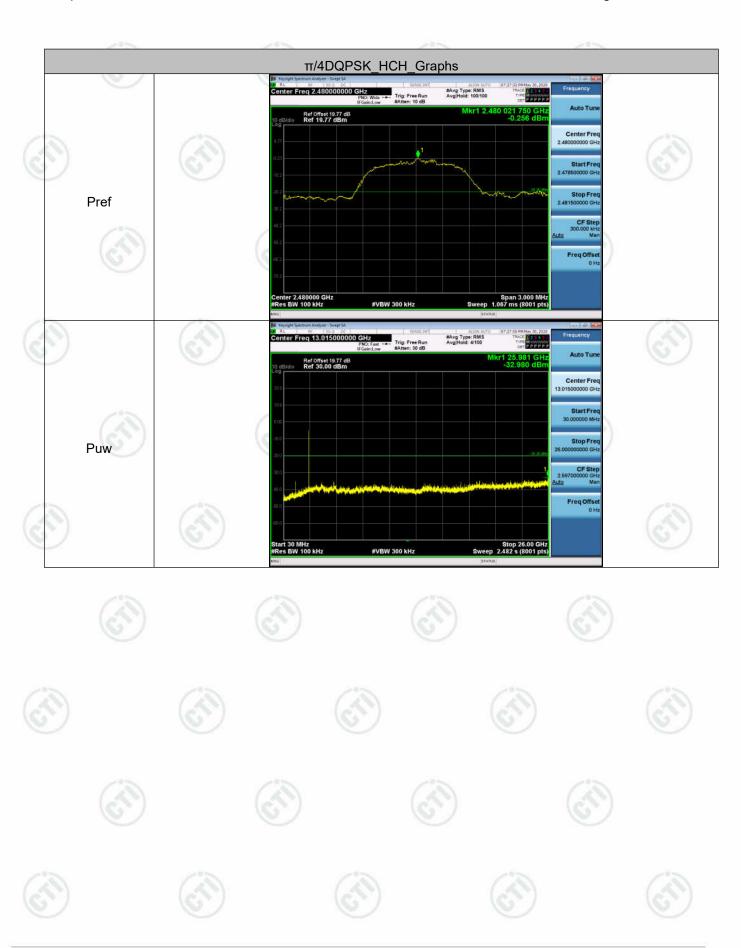




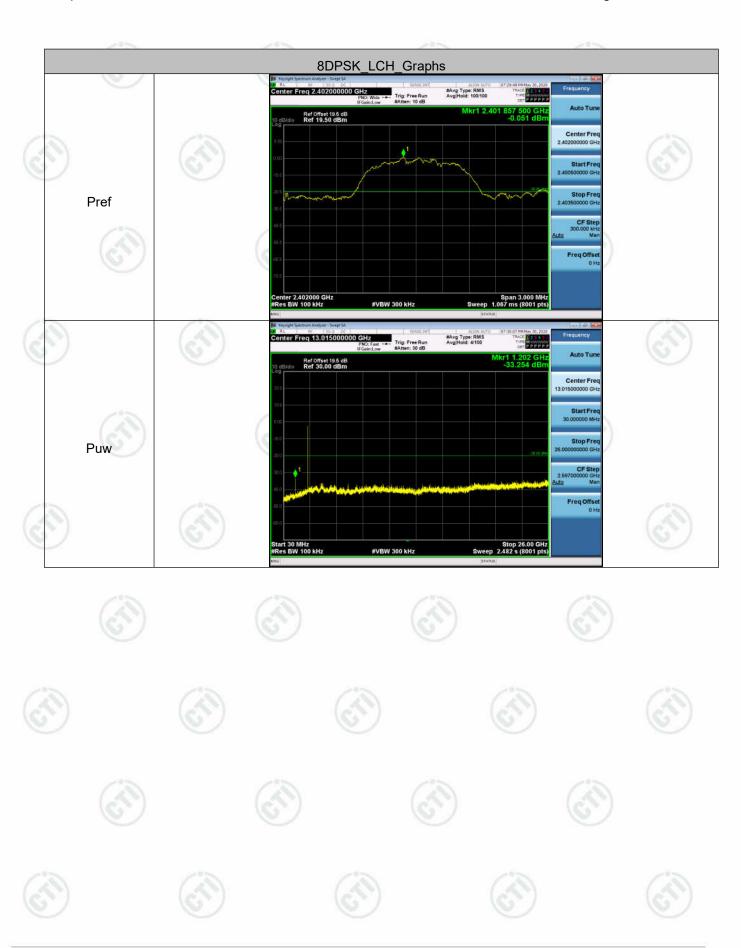




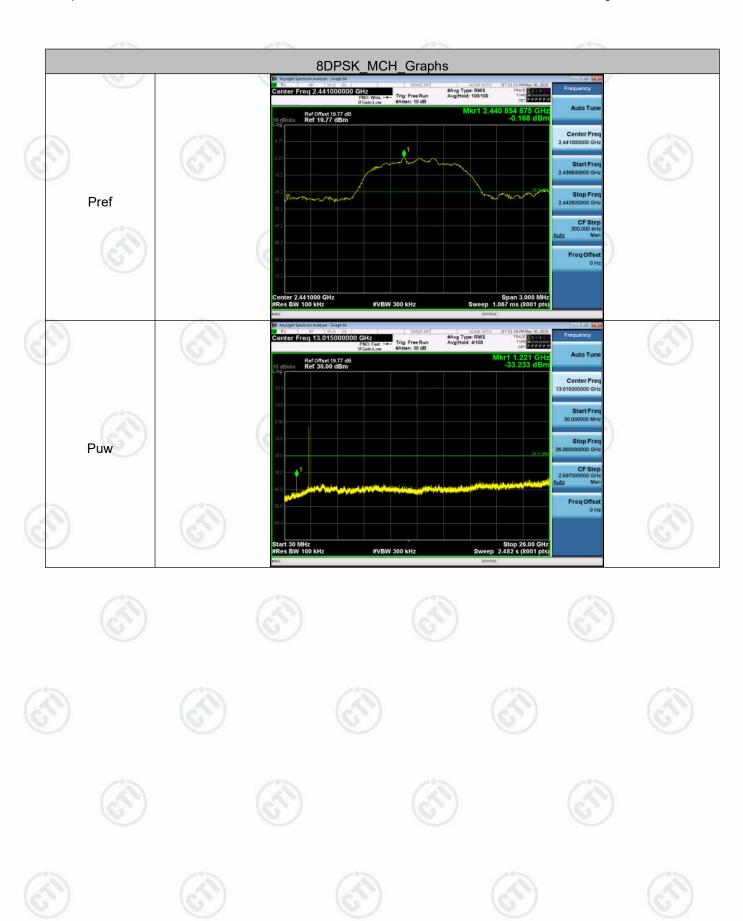
Page 76 of 137



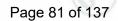
Page 77 of 137

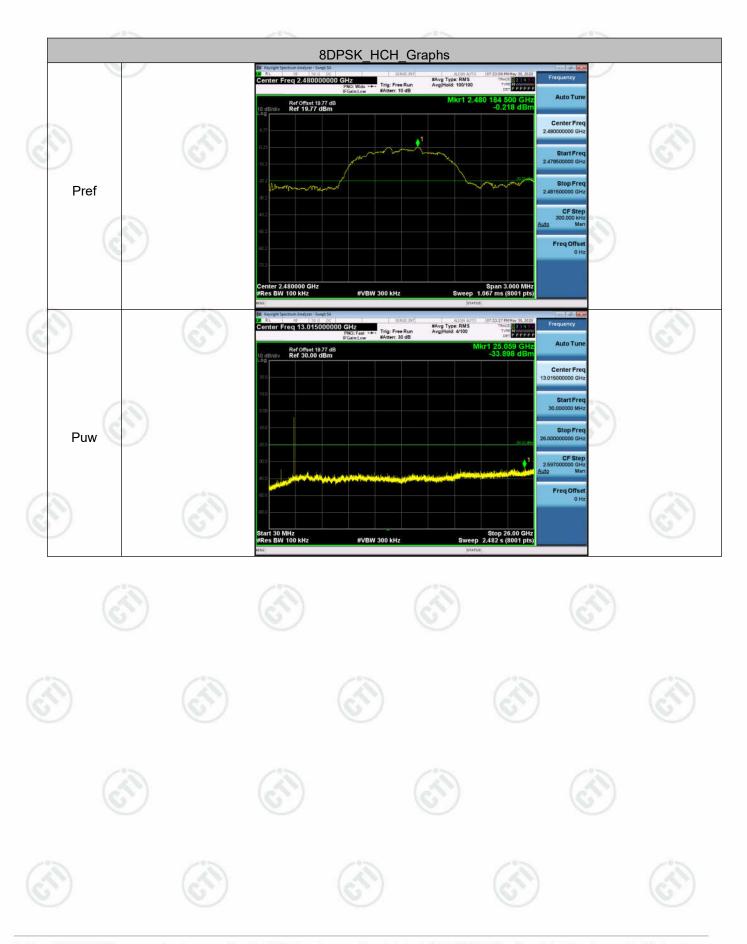


Page 78 of 137



Page 79 of 137





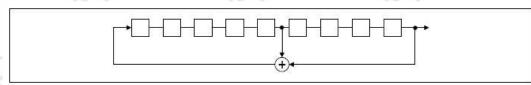
Page 80 of 137



Appendix H) Pseudorandom Frequency Hopping Sequence

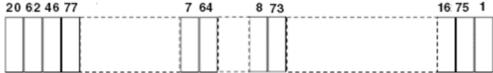
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

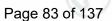
EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73


Each frequency used equally on the average by each transmitter.

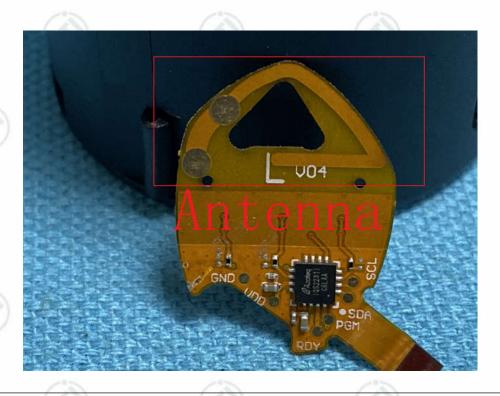
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix I) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

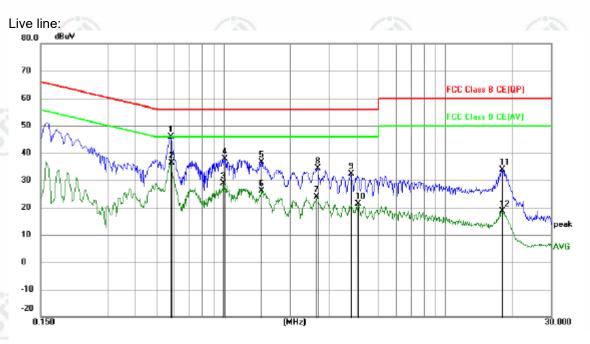
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.8dBi.

Left ear:



	Test Procedure:	Test frequency range :150KHz-	30MHz					
		1) The mains terminal disturba	nce voltage test was	conducted in a shie	lded room.			
		2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2 which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not						
		exceeded. 3) The tabletop EUT was place reference plane. And for flothorizontal ground reference	or-standing arrangem		_			
		The test was performed with EUT shall be 0.4 m from the reference plane was bonde	h a vertical ground re e vertical ground refer	ence plane. The ve	ertical ground			
9		was placed 0.8 m from t ground reference plane fo plane. This distance was be All other units of the EUT a LISN 2. In order to find the maximum all of the interface cables.	the boundary of the user LISNs mounted of the closest point associated equipment emission, the relation	init under test and in top of the group ints of the LISN 1 and the test 0. The positions of experience in the content was at least 0.	bonded to a nd reference and the EUT. 8 m from the juipment and			
	Limit:	conducted measurement.	Limit /a	IDV				
	Lillic.	Frequency range (MHz)	Limit (c Quasi-peak	Average	_0_			
		0.15-0.5	66 to 56*	56 to 46*				
		/ > //		1				
1		0 5 5	EG					
		0.5-5	56	46				
		0.5-5 5-30	56 60	50				
			60	50	e range 0.15			

Page 86 of 137


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Product : Silencer BT 2.0 Model/Type reference : GWP-SLCR2-BT

Temperature : 22° **Humidity** : 49%

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5775	35.81	10.00	45.81	56.00	-10.19	QP	
2	*	0.5820	26.29	9.99	36.28	46.00	-9.72	AVG	
3		0.9960	19.14	9.74	28.88	46.00	-17.12	AVG	
4		1.0140	28.02	9.74	37.76	56.00	-18.24	QP	
5		1.4730	26.81	9.76	36,57	56.00	-19.43	QP	
6		1,4819	16.27	9.76	26.03	46.00	-19.97	AVG	
7		2.6295	13.98	9.79	23.77	46.00	-22.23	AVG	
8		2.6610	24.50	9.79	34.29	56.00	-21.71	QP	
9		3.7500	22.48	9.78	32.26	56.00	-23.74	QP	
10		4.0425	11.66	9.78	21.44	46.00	-24.56	AVG	
11		17.9565	24.01	9.84	33.85	60.00	-26.15	QP	
12		17.9565	8.91	9.84	18.75	50.00	-31.25	AVG	

Neutral line:

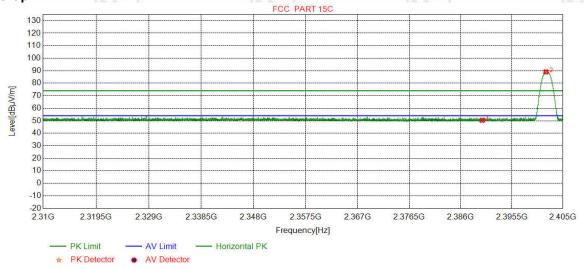
		Level	Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.5775	37.73	10.00	47.73	56.00	-8.27	QP	
2	0.5775	27.35	10.00	37.35	46.00	-8.65	AVG	
3	0.9915	18.23	9.74	27.97	46.00	-18.03	AVG	
4	1.0184	29.83	9.74	39.57	56.00	-16.43	QP	
5	1.4910	28.06	9.76	37.82	56.00	-18.18	QP	
6	1.4955	16.42	9.76	26.18	46.00	-19.82	AVG	
7	2.3955	14.92	9.79	24.71	46.00	-21.29	AVG	
8	2.6565	26.42	9.79	36.21	56.00	-19.79	QP	
9	2.6700	14.89	9.79	24.68	46.00	-21.32	AVG	
10	2.9310	25.01	9.78	34.79	56.00	-21.21	QP	
11	17.9834	29.99	9.84	39.83	60.00	-20.17	QP	
12	17.9834	18.06	9.84	27.90	50.00	-22.10	AVG	

Notes:

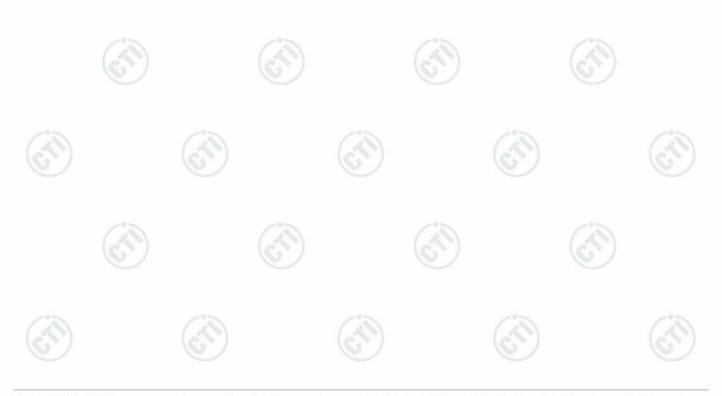
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix K) Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
		Above 1011	Peak	1MHz	3MHz	Peak	185
٠)	(Above 1GHz	Peak	1MHz	10Hz	Average	5
	Test Procedure:	Below 1GHz test procedu a. The EUT was placed or		ating table	0.8 meter	s above the c	ırounc
		at a 3 meter semi-anecd determine the position of the EUT was set 3 met was mounted on the top c. The antenna height is videtermine the maximum polarizations of the antended. For each suspected emithe antenna was tuned table was turned from 0 to the test-receiver system and width with Maximum.	hoic camber. The of the highest rad ters away from the of a variable-he aried from one man value of the field enna are set to maission, the EUT variable to heights from 1 degrees to 360 m was set to Pea	e table wand table was alter to food strength hake the name arrand meter to degrees to	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its v 4 meters a o find the r	of the process of the	which which was the was the wa
		f. Place a marker at the e frequency to show com bands. Save the spectr	nd of the restricte pliance. Also mea	asure any	emissions	s in the restric	
		for lowest and highest of	• •	•	•	wor and mod	uiatio
		for lowest and highest of Above 1GHz test procedurg. Different between above to fully Anechoic Chammetre(Above 18GHz the houst the EUT in the left. The radiation measurer Transmitting mode, and j. Repeat above procedur	re as below: e is the test site, ber and change f e distance is 1 m owest channel, t nents are perforn I found the X axis	change fr form table neter and the Highes ned in X, s positioni	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i	Anechoic Chato 1.5 metre). positioning for t is worse cas	ambei
	Limit:	g. Different between abov to fully Anechoic Chammetre (Above 18GHz the b. Test the EUT in the li. The radiation measurer Transmitting mode, and j. Repeat above procedure.	re as below: e is the test site, ber and change f e distance is 1 m owest channel, t nents are perforn I found the X axis es until all frequen	change fr form table neter and the Highes ned in X, s positioni encies me	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i	Anechoic Chato 1.5 metre). positioning for t is worse cas	ambei
	Limit:	g. Different between abov to fully Anechoic Chammetre(Above 18GHz th. b. Test the EUT in the li. The radiation measurer Transmitting mode, and	re as below: e is the test site, ber and change f e distance is 1 m owest channel, t nents are perforn I found the X axis	change fr form table neter and the Highes ned in X, s positioni encies me	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa	Anechoic Cha to 1.5 metre). positioning for t is worse cas as complete.	ambei
	Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li i. The radiation measurer Transmitting mode, and j. Repeat above procedur	re as below: e is the test site, ber and change f ie distance is 1 m owest channel , t ments are perform I found the X axis es until all freque	change fr form table neter and the Highes ned in X, s positioni encies me	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa	Anechoic Cha to 1.5 metre). positioning for t is worse cas as complete.	ambe
	Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz	re as below: e is the test site, ber and change f a distance is 1 m owest channel , t ments are perform I found the X axis res until all freque Limit (dBuV/m 40.0	change fr form table neter and the Highes ned in X, s positioni encies me	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe	Anechoic Chato 1.5 metre). positioning for t is worse cases complete. mark eak Value	ambe
	Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz	re as below: e is the test site, ber and change f ie distance is 1 m owest channel , t ments are perform I found the X axis res until all freque Limit (dBuV/m 40.0 43.5	change fr form table neter and the Highes ned in X, s positioni encies me	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe	Anechoic Cha to 1.5 metre). cositioning for t is worse cas as complete. mark eak Value	ambe
	Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	re as below: e is the test site, ber and change f ie distance is 1 m owest channel , t ments are perform I found the X axis res until all freque Limit (dBuV/m 40.0 43.5 46.0	change fr form table neter and the Highes ned in X, s positioni encies me	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Chato 1.5 metre). positioning for t is worse cas as complete. mark eak Value eak Value	ambe
	Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	channel re as below: e is the test site, ber and change f ae distance is 1 m owest channel , t ments are perform I found the X axis res until all freque Limit (dBuV/m 40.0 43.5 46.0 54.0	change fr form table neter and the Highes ned in X, s positioni encies me	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe Averag	Anechoic Chato 1.5 metre). cositioning for tis worse cases complete. mark ceak Value ceak Value ceak Value	ambei

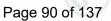

Page 89 of 137

Test plot as follows:

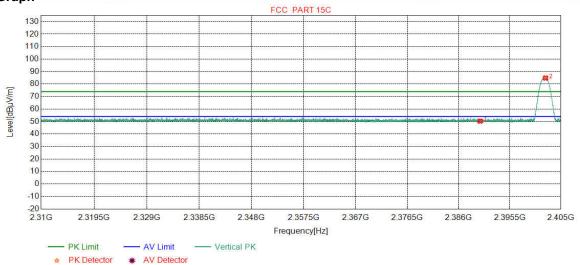

Left ear:

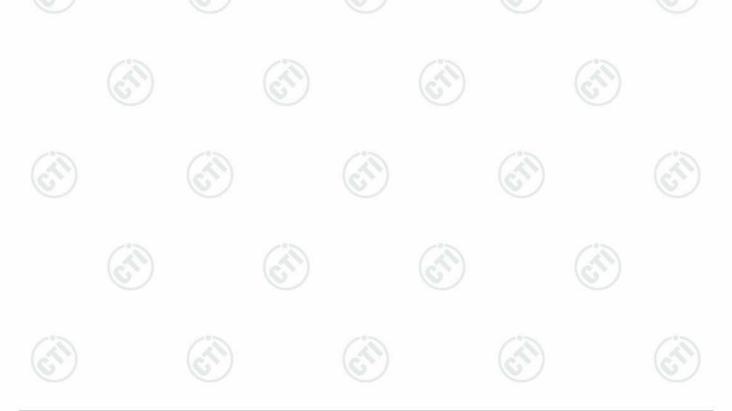
Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

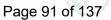


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.87	50.37	74.00	23.63	Pass	Horizontal
2	2401.8458	32.26	13.31	-43.12	86.59	89.04	74.00	-15.04	Pass	Horizontal

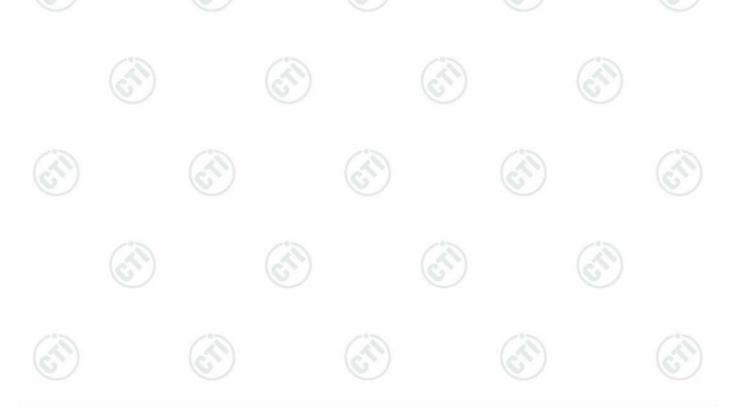




Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

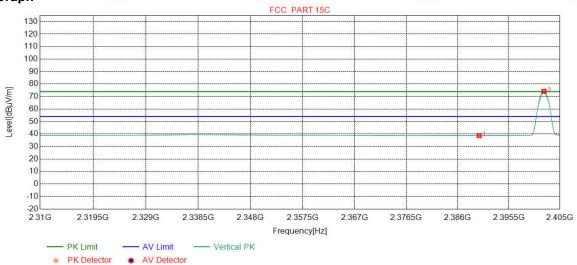


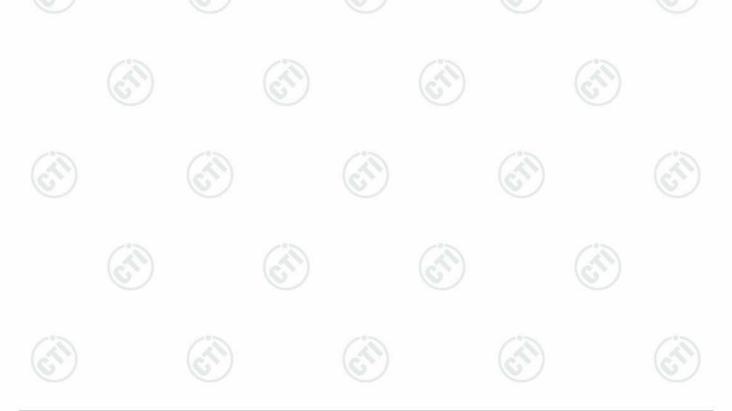
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.80	50.30	74.00	23.70	Pass	Vertical
2	2402.1371	32.26	13.31	-43.12	82.37	84.82	74.00	-10.82	Pass	Vertical



Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

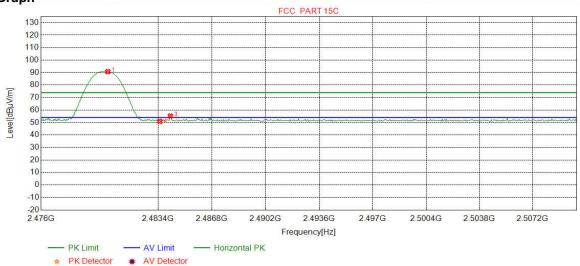
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.29	38.79	54.00	15.21	Pass	Horizontal
2	2402.0548	32.26	13.31	-43.12	75.78	78.23	54.00	-24.23	Pass	Horizontal

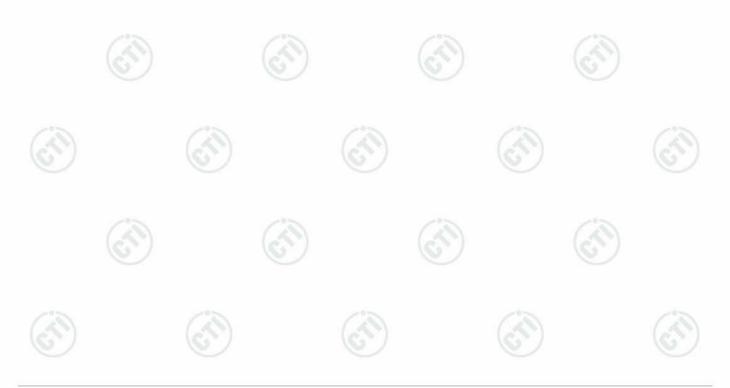




Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

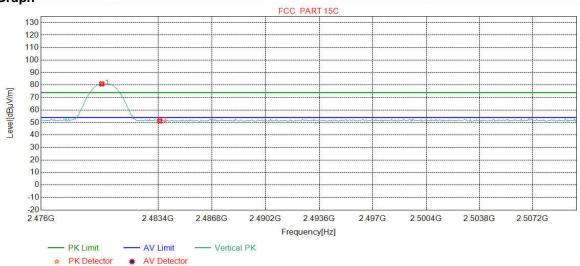
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.24	38.74	54.00	15.26	Pass	Vertical
2	2402.0231	32.26	13.31	-43.12	71.80	74.25	54.00	-20.25	Pass	Vertical

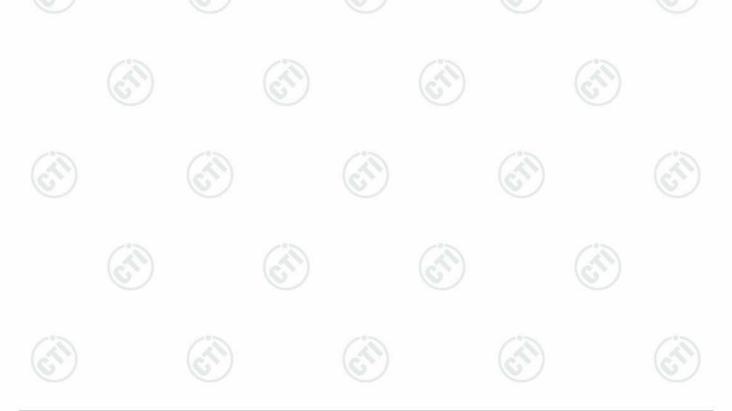




Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2128	32.37	13.39	-43.10	88.07	90.73	74.00	-16.73	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.33	50.98	74.00	23.02	Pass	Horizontal
3	2484.1702	32.38	13.37	-43.10	52.56	55.21	74.00	18.79	Pass	Horizontal

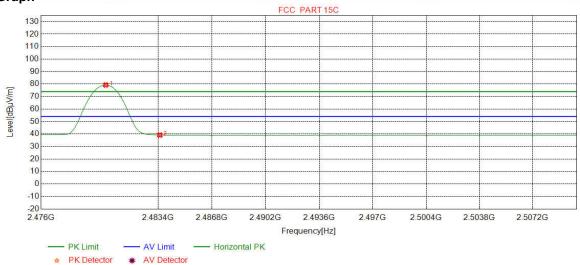


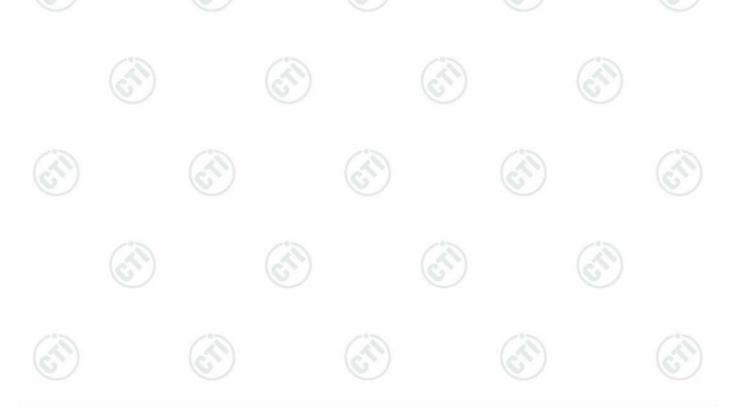


Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

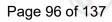
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8298	32.37	13.39	-43.10	78.27	80.93	74.00	-6.93	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.59	51.24	74.00	22.76	Pass	Vertical

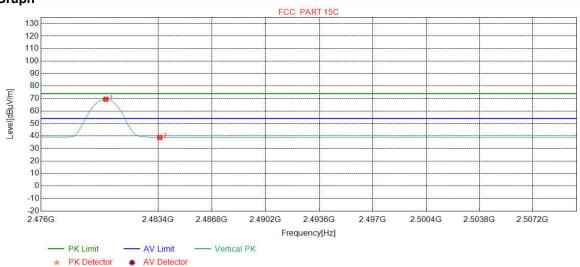


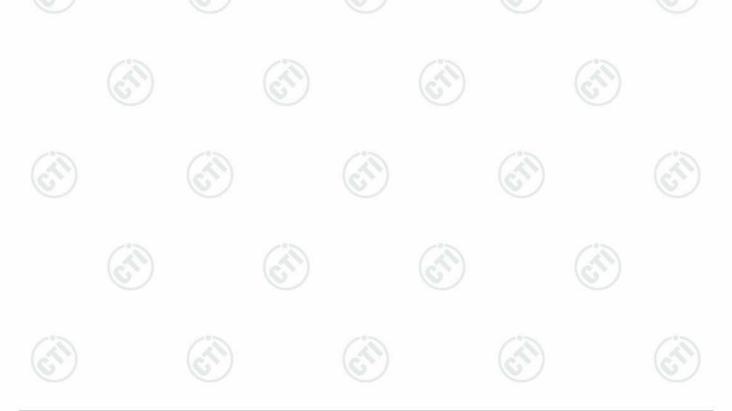


Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

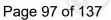


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	76.60	79.26	54.00	-25.26	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.53	39.18	54.00	14.82	Pass	Horizontal

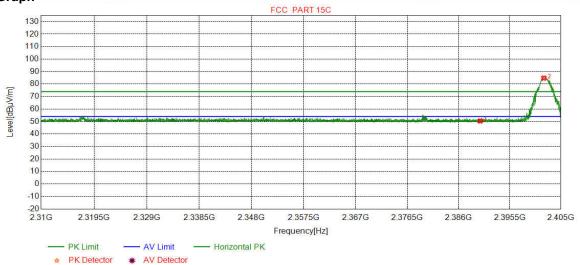


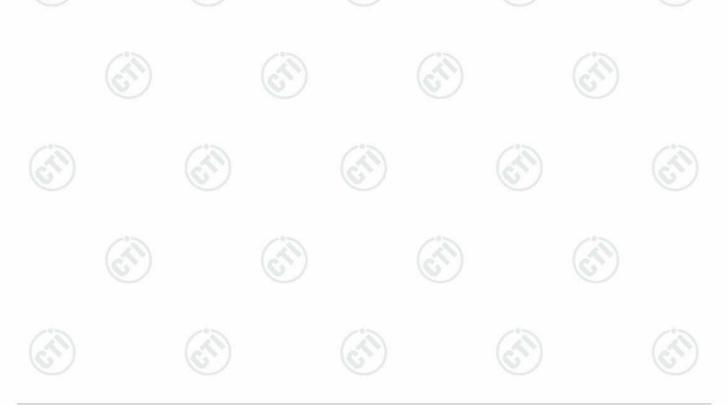


Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		



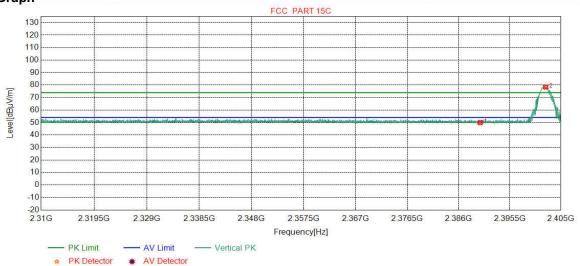
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	66.75	69.41	54.00	-15.41	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.23	38.88	54.00	15.12	Pass	Vertical

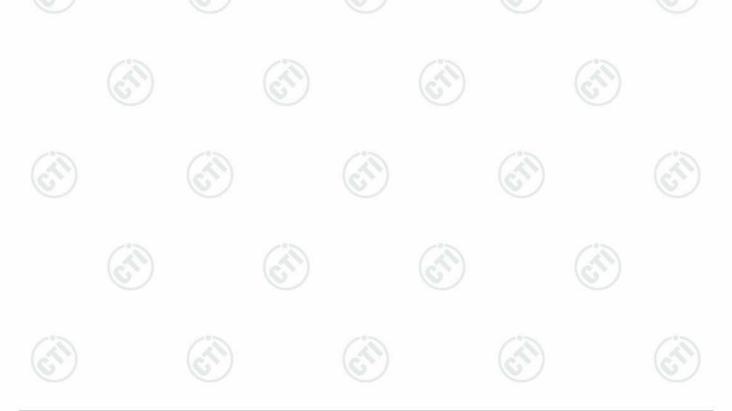




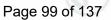
Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.94	50.44	74.00	23.56	Pass	Horizontal
2	2401.8205	32.26	13.31	-43.12	82.32	84.77	74.00	-10.77	Pass	Horizontal

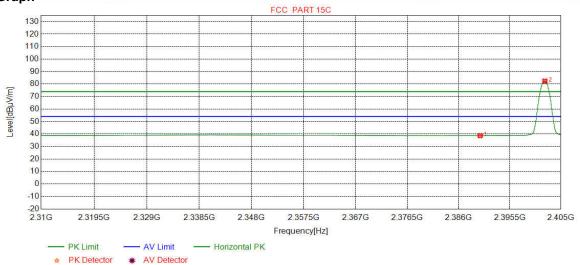


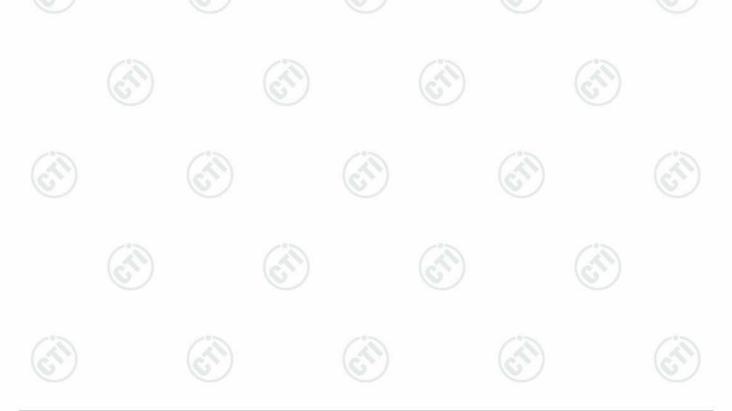


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

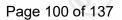


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.49	49.99	74.00	24.01	Pass	Vertical
2	2402.1688	32.26	13.31	-43.12	75.96	78.41	74.00	-4.41	Pass	Vertical

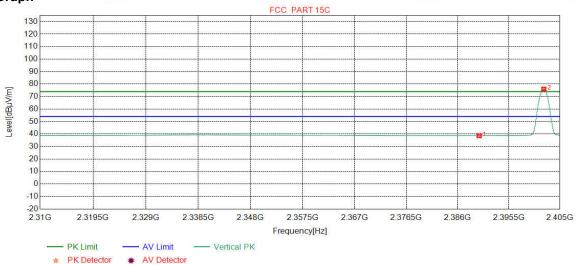


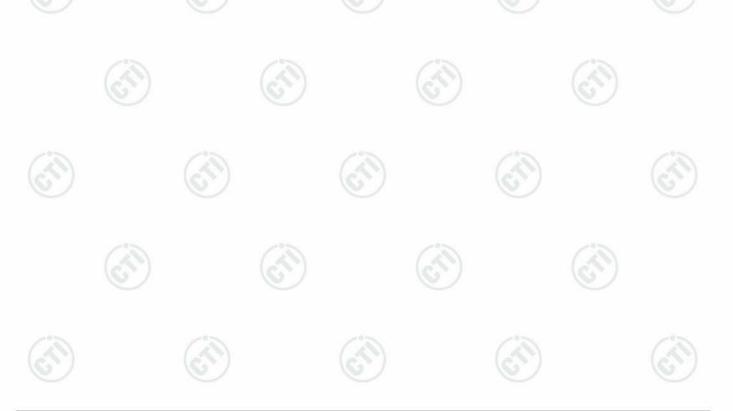


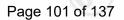
Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		



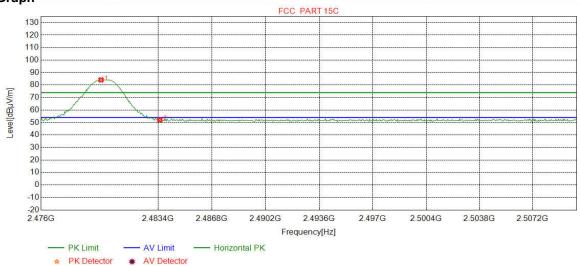
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.21	38.71	54.00	15.29	Pass	Horizontal
2	2402.0231	32.26	13.31	-43.12	79.93	82.38	54.00	-28.38	Pass	Horizontal

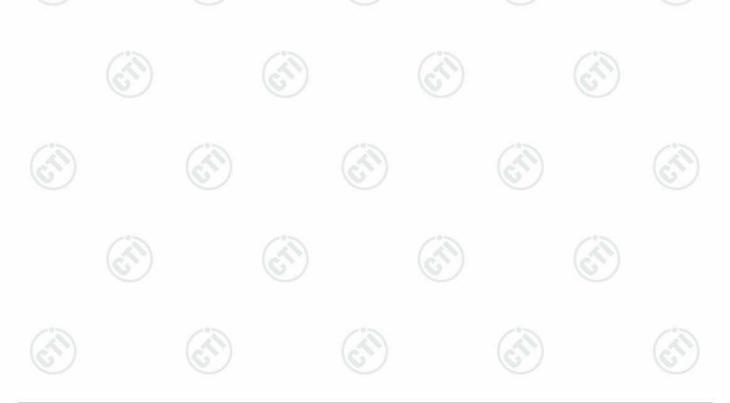





Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.16	38.66	54.00	15.34	Pass	Vertical
2	2402.0041	32.26	13.31	-43.12	73.52	75.97	54.00	-21.97	Pass	Vertical

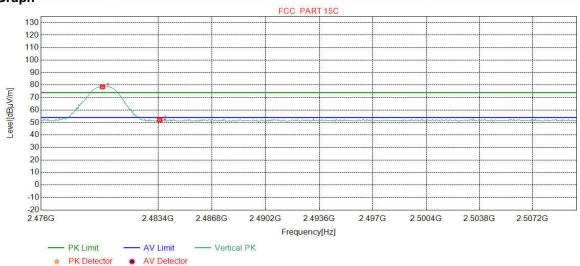


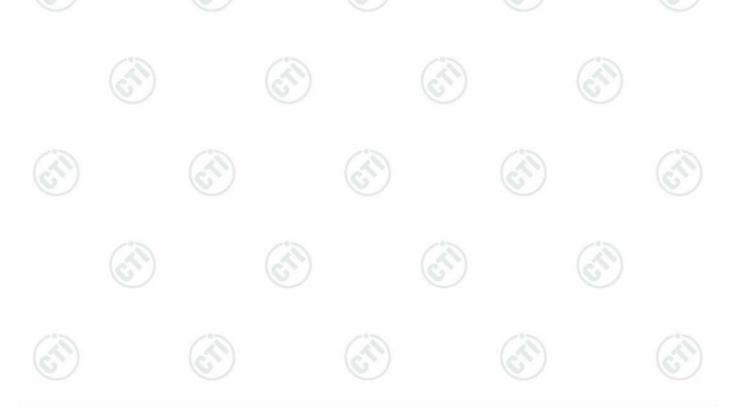


Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	81.48	84.14	74.00	-10.14	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.55	52.20	74.00	21.80	Pass	Horizontal

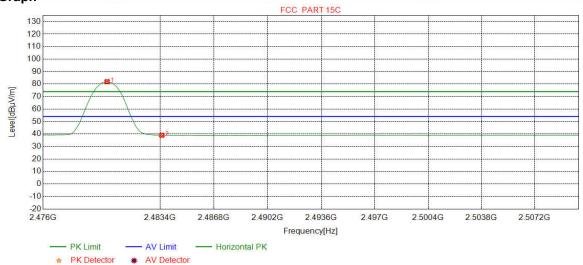


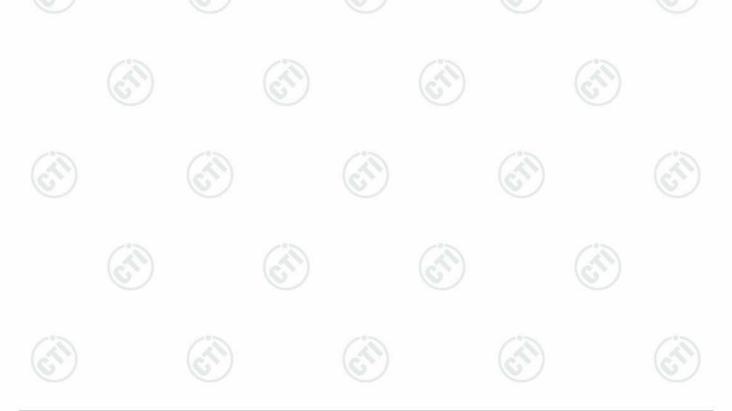


Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

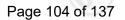
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8723	32.37	13.39	-43.10	75.97	78.63	74.00	-4.63	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.52	52.17	74.00	21.83	Pass	Vertical

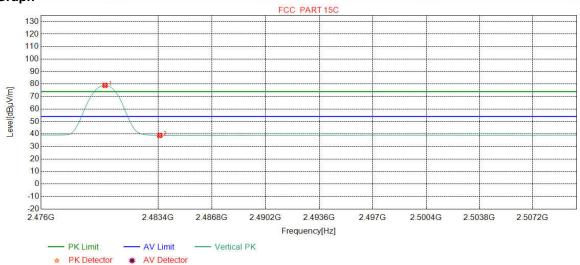


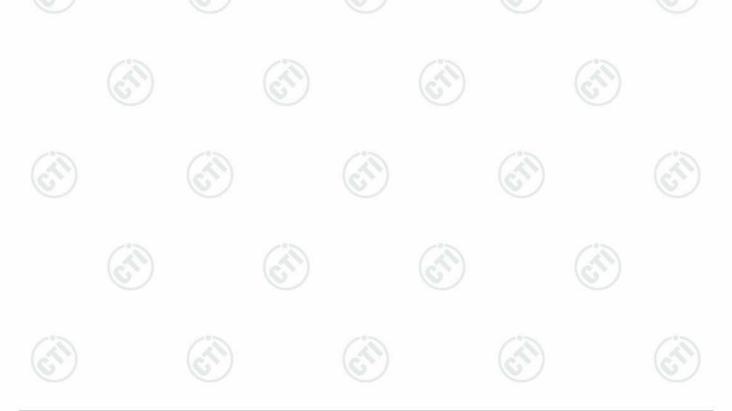

Page 103 of 137

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	79.31	81.97	54.00	-27.97	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.35	39.00	54.00	15.00	Pass	Horizontal

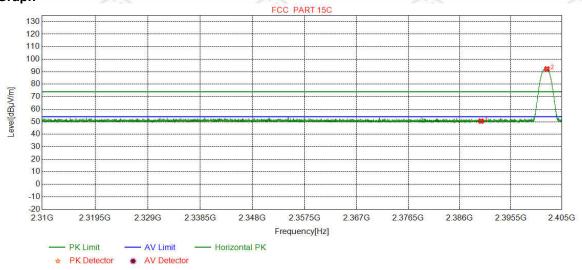




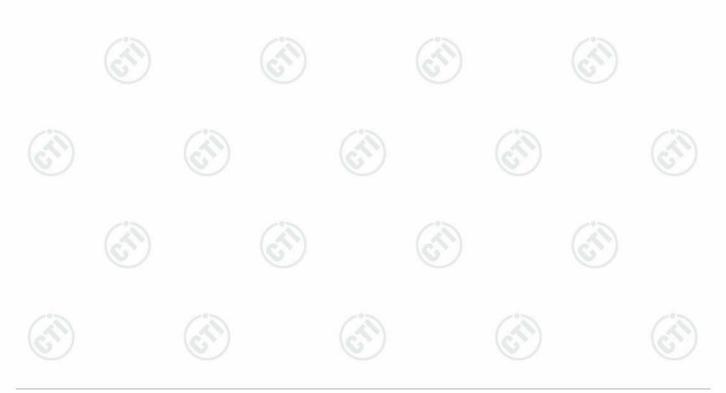
Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	76.34	79.00	54.00	-25.00	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.26	38.91	54.00	15.09	Pass	Vertical

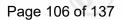


Report No.: EED32M00142402 Page 105 of 137

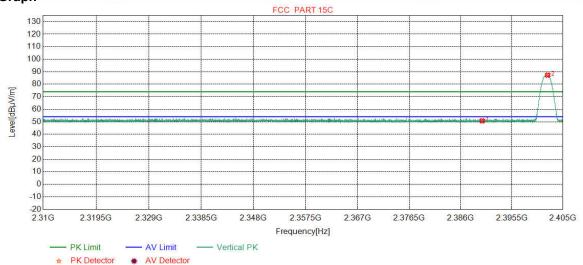

Right ear:

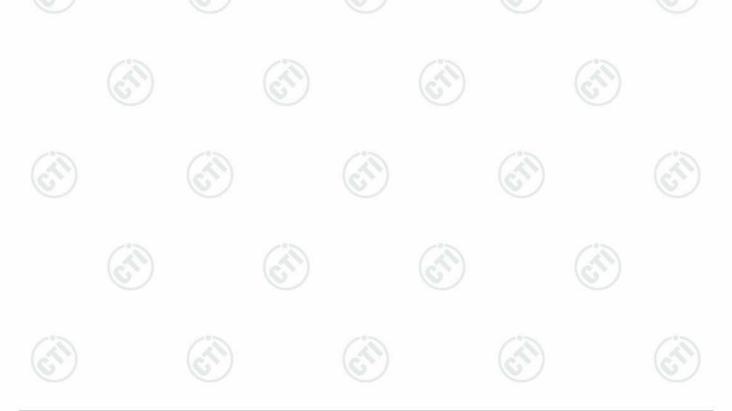
Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK	<u>'</u>	

Test Graph

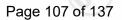


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.00	50.50	74.00	23.50	Pass	Horizontal
2	2402.2195	32.26	13.31	-43.12	89.74	92.19	74.00	-18.19	Pass	Horizontal

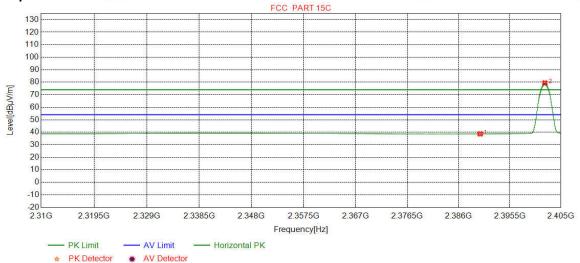


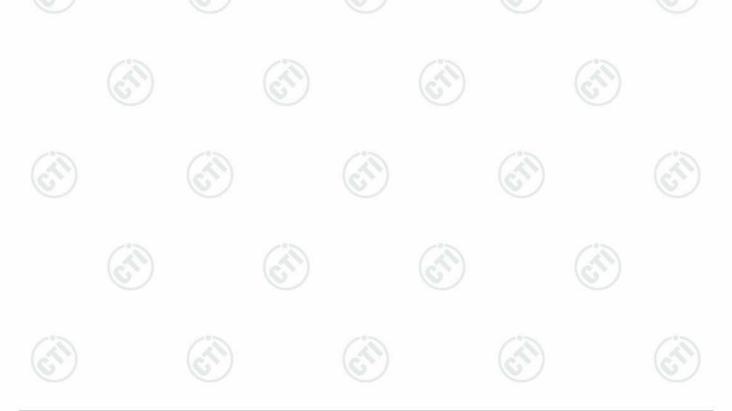


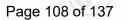
Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		



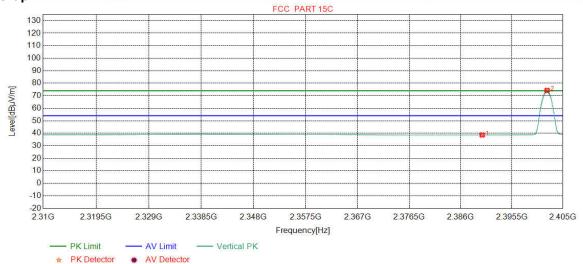
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.24	50.74	74.00	23.26	Pass	Vertical
2	2402.1688	32.26	13.31	-43.12	84.79	87.24	74.00	-13.24	Pass	Vertical

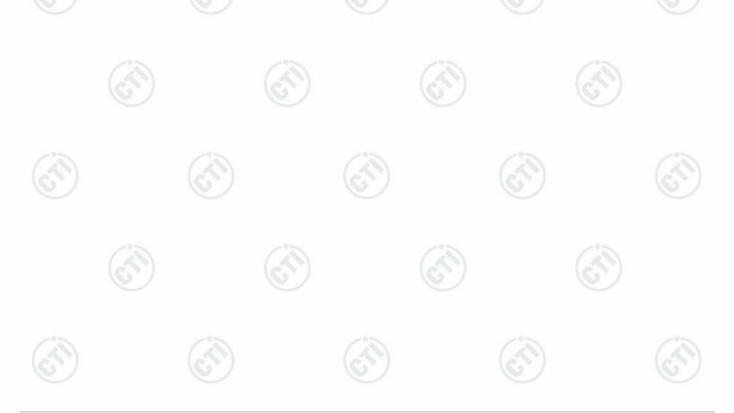





Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

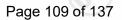
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.22	38.72	54.00	15.28	Pass	Horizontal
2	2402.0168	32.26	13.31	-43.12	76.94	79.39	54.00	-25.39	Pass	Horizontal



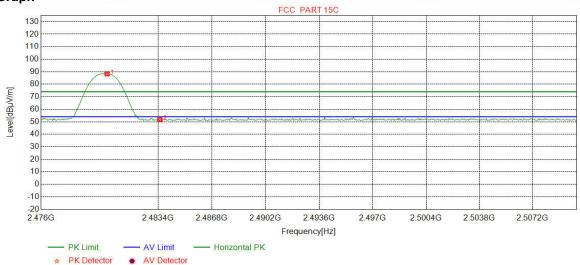


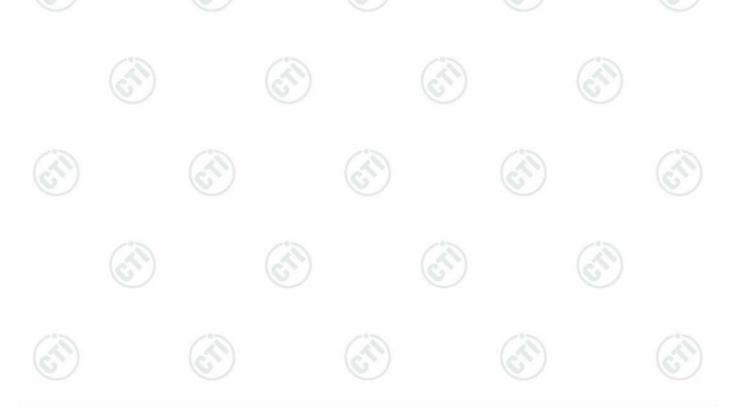
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph



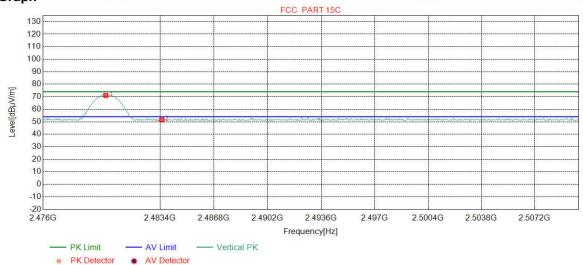
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.15	38.65	54.00	15.35	Pass	Vertical
2	2402.0611	32.26	13.31	-43.12	71.83	74.28	54.00	-20.28	Pass	Vertical

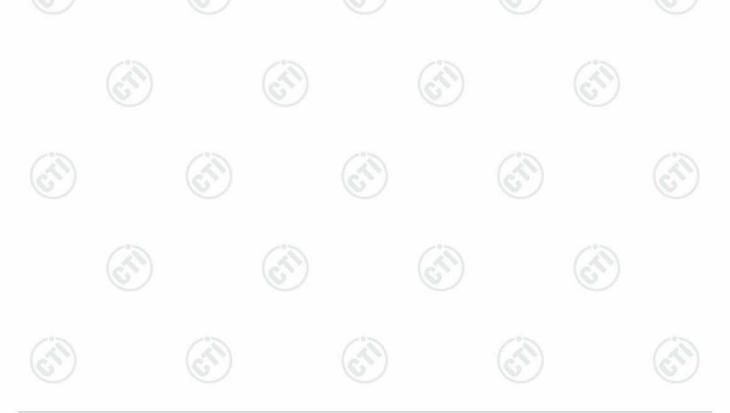




Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

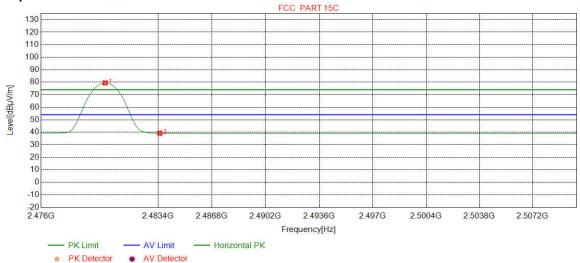
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1702	32.37	13.39	-43.10	85.62	88.28	74.00	-14.28	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.16	51.81	74.00	22.19	Pass	Horizontal

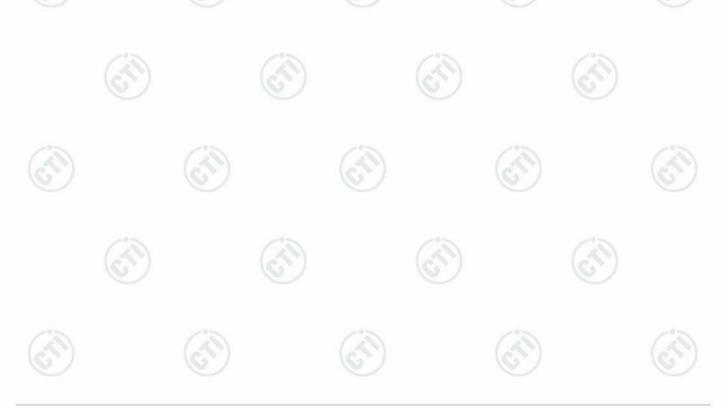




Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

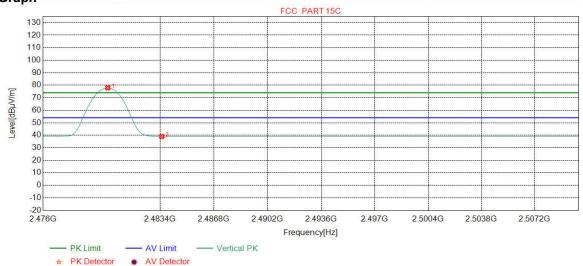
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	68.41	71.07	74.00	2.93	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.86	51.51	74.00	22.49	Pass	Vertical

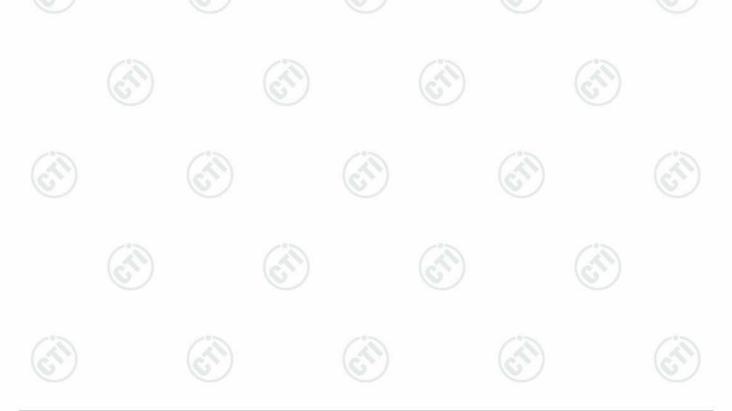




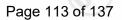
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	76.77	79.43	54.00	-25.43	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.55	39.20	54.00	14.80	Pass	Horizontal

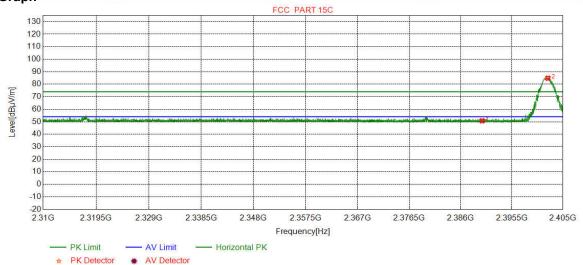


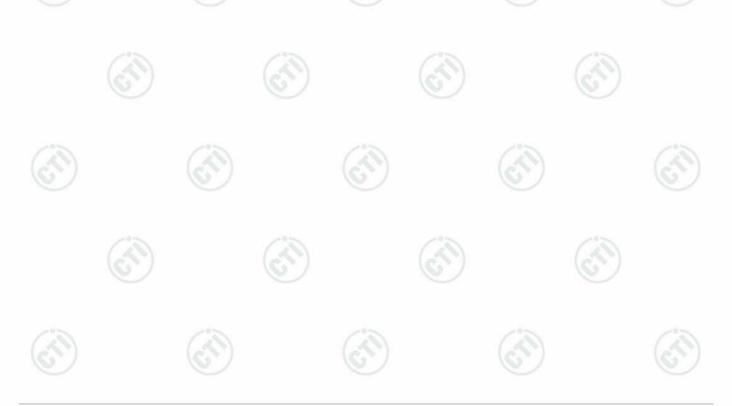


Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

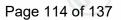


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	75.28	77.94	54.00	-23.94	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.37	39.02	54.00	14.98	Pass	Vertical

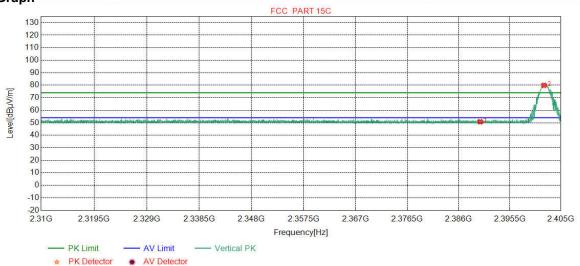


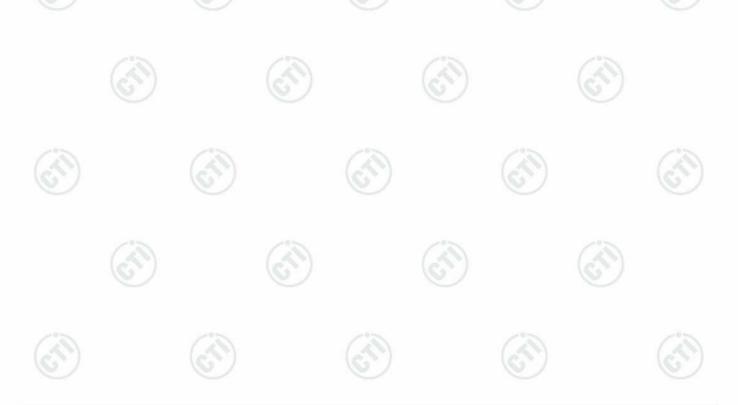


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

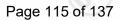


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.24	50.74	74.00	23.26	Pass	Horizontal
2	2402.2005	32.26	13.31	-43.12	82.35	84.80	74.00	-10.80	Pass	Horizontal

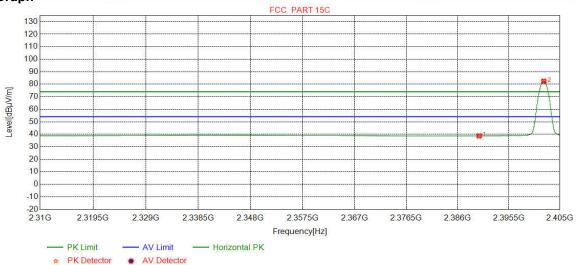


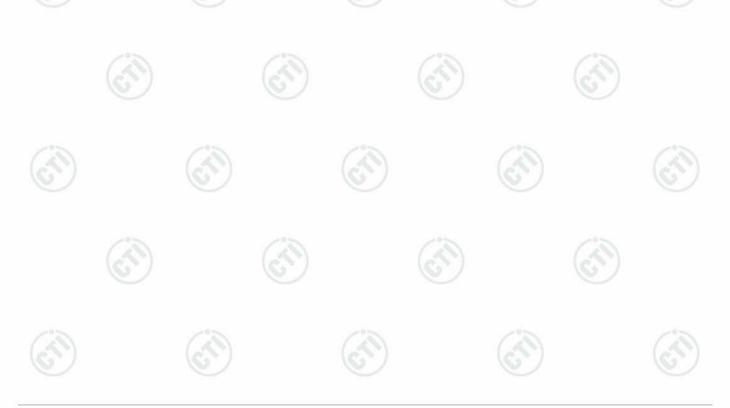


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		



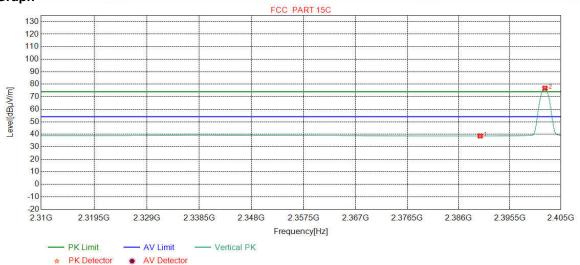
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.26	50.76	74.00	23.24	Pass	Vertical
2	2401.8521	32.26	13.31	-43.12	77.45	79.90	74.00	-5.90	Pass	Vertical

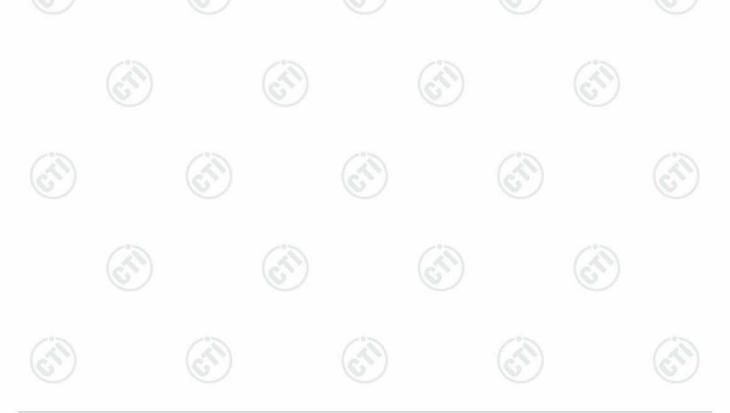




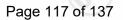
Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.20	38.70	54.00	15.30	Pass	Horizontal
2	2402.0041	32.26	13.31	-43.12	79.96	82.41	54.00	-28.41	Pass	Horizontal

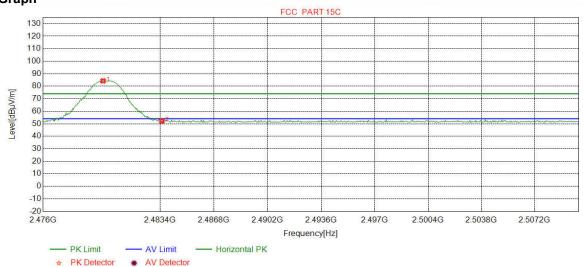


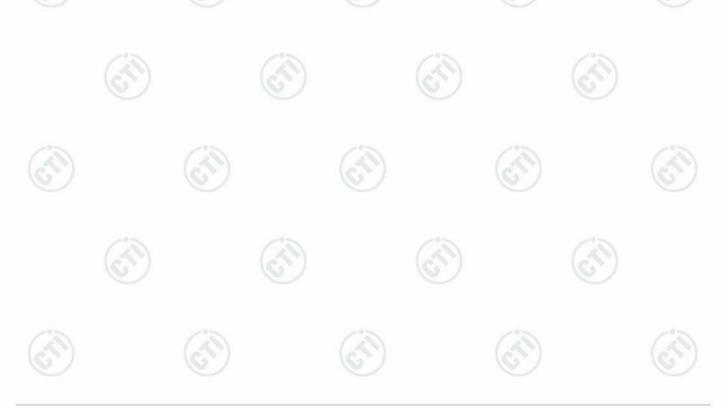


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		



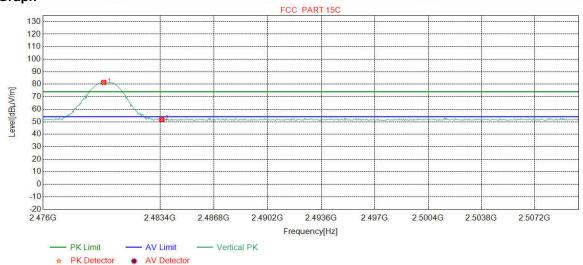
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.17	38.67	54.00	15.33	Pass	Vertical
2	2402.0295	32.26	13.31	-43.12	74.33	76.78	54.00	-22.78	Pass	Vertical

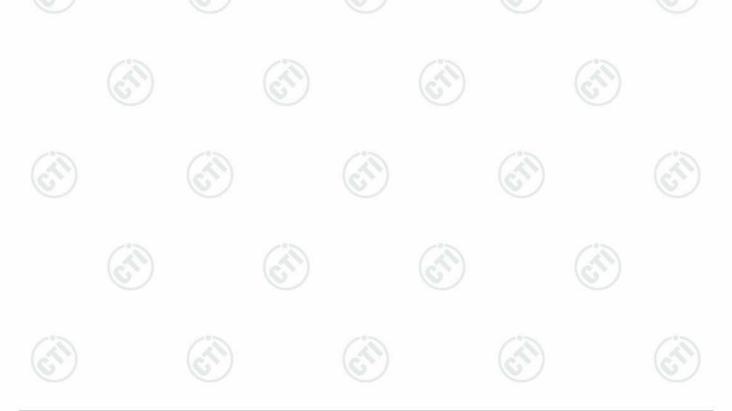




Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

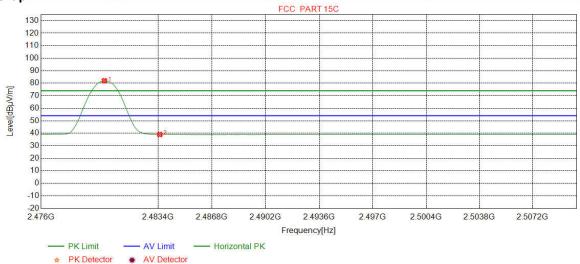
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	81.60	84.26	74.00	-10.26	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.54	52.19	74.00	21.81	Pass	Horizontal

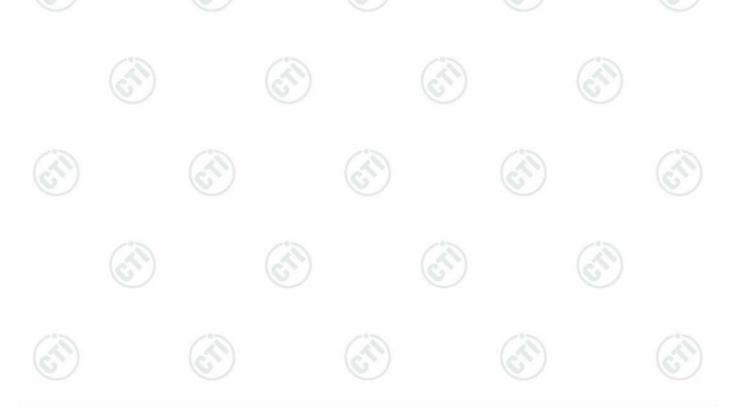




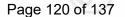
Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8298	32.37	13.39	-43.10	78.79	81.45	74.00	-7.45	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.10	51.75	74.00	22.25	Pass	Vertical

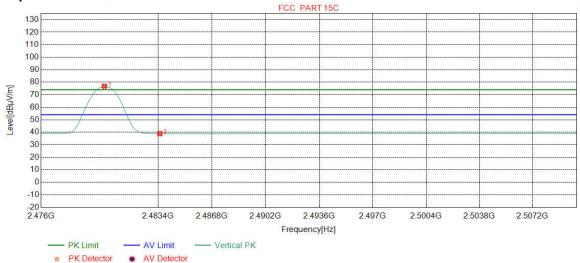




Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

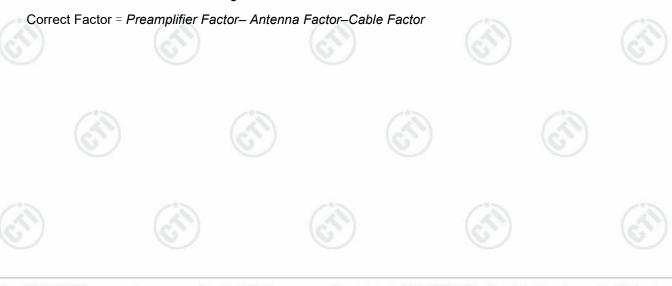

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	79.35	82.01	54.00	-28.01	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.39	39.04	54.00	14.96	Pass	Horizontal



Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	74.15	76.81	54.00	-22.81	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.26	38.91	54.00	15.09	Pass	Vertical


Note

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Appendix L) Radiated Spurious Emissions

Receiver Setup:		_				1
-	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	13
.")	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	(65)
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
	Ab 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
	7 355	/ 353				/ 10.1

Test Procedure:

Below 1GHz test procedure as below:


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)		-	300	
	0.490MHz-1.705MHz	24000/F(kHz)	<u> </u>	-	30	
	1.705MHz-30MHz	30	-	-	30	
	30MHz-88MHz	100	40.0	Quasi-peak	3	0
	88MHz-216MHz	150	43.5	Quasi-peak	3	(P)
	216MHz-960MHz	200	46.0	Quasi-peak	3	2/
	960MHz-1GHz	500	54.0	Quasi-peak	3	

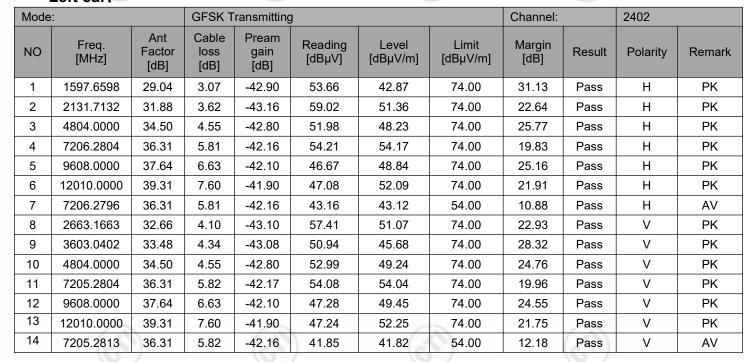
	A1	1011-	500	54.0	A		
(chi)	Note: 15.3 emi: app	ssions is 20dl licable to the	B above the n	naximum perr ider test. This	Average mit on peak ra mitted average s peak limit ap	e emission lin	nit

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Left ear:

Mode	:		8DPSK	Transmittir	ng			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	59.5880	11.67	0.90	-31.82	49.82	30.57	40.00	9.43	Pass	Н	PK
2	150.0010	7.55	1.45	-32.01	45.58	22.57	43.50	20.93	Pass	Н	PK
3	240.0260	11.94	1.84	-31.90	41.46	23.34	46.00	22.66	Pass	Н	PK
4	360.0270	14.52	2.27	-31.84	42.05	27.00	46.00	19.00	Pass	Н	PK
5	600.0290	19.00	2.96	-31.50	40.50	30.96	46.00	15.04	Pass	Н	PK
6	844.9785	21.44	3.50	-31.82	38.52	31.64	46.00	14.36	Pass	Н	PK
7	59.0059	11.76	0.89	-31.83	42.92	23.74	40.00	16.26	Pass	V	PK
8	150.0010	7.55	1.45	-32.01	48.93	25.92	43.50	17.58	Pass	V	PK
9	195.0135	10.43	1.64	-31.94	46.14	26.27	43.50	17.23	Pass	V	PK
10	299.9780	13.20	2.06	-31.40	42.37	26.23	46.00	19.77	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	41.27	31.70	46.00	14.30	Pass	V	PK
12	844.9785	21.44	3.50	-31.82	38.67	31.79	46.00	14.21	Pass	V	PK

Right ear:


Mode	:		8DPSK	Transmittir	ng			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	46.71	27.21	40.00	12.79	Pass	Н	PK
2	59.6850	11.65	0.90	-31.81	53.18	33.92	40.00	6.08	Pass	Н	PK
3	195.0135	10.43	1.64	-31.94	45.66	25.79	43.50	17.71	Pass	Н	PK
4	240.0260	11.94	1.84	-31.90	40.77	22.65	46.00	23.35	Pass	Н	PK
5	360.0270	14.52	2.27	-31.84	43.42	28.37	46.00	17.63	Pass	Н	PK
6	649.9890	19.40	3.10	-32.07	40.98	31.41	46.00	14.59	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	46.36	26.86	40.00	13.14	Pass	V	PK
8	59.0059	11.76	0.89	-31.83	43.72	24.54	40.00	15.46	Pass	V	PK
9	195.0135	10.43	1.64	-31.94	46.48	26.61	43.50	16.89	Pass	V	PK
10	299.9780	13.20	2.06	-31.40	42.80	26.66	46.00	19.34	Pass	V	PK
11	433.2693	15.93	2.46	-31.84	40.67	27.22	46.00	18.78	Pass	V	PK
12	600.0290	19.00	2.96	-31.50	39.67	30.13	46.00	15.87	Pass	V	PK

Transmitter Emission above 1GHz Left ear:

Mode	:		GFSK T	ransmitting]			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1661.8662	29.47	3.15	-42.75	52.86	42.73	74.00	31.27	Pass	Н	PK
2	2123.3123	31.87	3.61	-43.17	61.01	53.32	74.00	20.68	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	52.86	49.37	74.00	24.63	Pass	Н	PK
4	7323.2882	36.42	5.85	-42.13	57.32	57.46	74.00	16.54	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	46.69	49.01	74.00	24.99	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.89	46.77	51.97	74.00	22.03	Pass	Н	PK
7	7323.2884	36.42	5.85	-42.14	44.04	44.17	54.00	9.83	Pass	Н	AV
8	1906.2906	31.08	3.42	-42.97	51.11	42.64	74.00	31.36	Pass	V	PK
9	4266.0844	34.17	4.47	-42.89	51.90	47.65	74.00	26.35	Pass	V	PK
10	4882.0000	34.50	4.81	-42.80	53.35	49.86	74.00	24.14	Pass	V	PK
11	7323.2882	36.42	5.85	-42.13	57.65	57.79	74.00	16.21	Pass	V	PK
12	9764.0000	37.71	6.71	-42.10	48.13	50.45	74.00	23.55	Pass	V	PK
13	12205.0000	39.42	7.67	-41.89	45.95	51.15	74.00	22.85	Pass	V	PK
14	7323.2882	36.42	5.85	-42.14	48.80	48.93	54.00	5.07	Pass	V	AV

Mode	:		GFSK T	ransmitting)			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2124.9125	31.87	3.61	-43.17	56.32	48.63	74.00	25.37	Pass	Н	PK
2	3989.0659	33.79	4.33	-43.00	50.75	45.87	74.00	28.13	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	51.10	47.62	74.00	26.38	Pass	Н	PK
4	7439.2960	36.54	5.85	-42.11	53.17	53.45	74.00	20.55	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.87	48.33	74.00	25.67	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.13	51.63	74.00	22.37	Pass	Н	PK
7	1843.4843	30.67	3.37	-42.82	50.50	41.72	74.00	32.28	Pass	V	PK
8	3989.0659	33.79	4.33	-43.00	52.97	48.09	74.00	25.91	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	55.31	51.83	74.00	22.17	Pass	V	PK
10	7440.2960	36.54	5.85	-42.11	57.04	57.32	74.00	16.68	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	47.35	49.81	74.00	24.19	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.14	51.64	74.00	22.36	Pass	V	PK
13	7440.2950	36.54	5.85	-42.11	49.80	50.08	54.00	3.92	Pass	V	AV

Mode	:		8DPSK	Transmittir	ng			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1595.4595	29.03	3.07	-42.91	55.23	44.42	74.00	29.58	Pass	Н	PK
2	2126.3126	31.88	3.62	-43.18	59.66	51.98	74.00	22.02	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	48.55	44.80	74.00	29.20	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	49.03	48.99	74.00	25.01	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.48	48.65	74.00	25.35	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	46.39	51.40	74.00	22.60	Pass	Н	PK
7	1780.8781	30.25	3.29	-42.70	51.20	42.04	74.00	31.96	Pass	V	PK
8	4253.0835	34.15	4.50	-42.89	55.41	51.17	74.00	22.83	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	52.49	48.74	74.00	25.26	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	51.86	51.82	74.00	22.18	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	47.33	49.50	74.00	24.50	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	47.41	52.42	74.00	21.58	Pass	V	PK

Page 126 of 137

	1:29	2.1				1.2	6.41		1 100		
Mode	:		8DPSK	Transmittir	ng			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1329.8330	28.23	2.79	-42.75	53.40	41.67	74.00	32.33	Pass	Н	PK
2	2123.9124	31.87	3.61	-43.17	56.90	49.21	74.00	24.79	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	47.48	43.99	74.00	30.01	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	46.47	46.61	74.00	27.39	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	46.91	49.23	74.00	24.77	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.89	45.50	50.70	74.00	23.30	Pass	Н	PK
7	2132.3132	31.89	3.63	-43.18	54.92	47.26	74.00	26.74	Pass	V	PK
8	3985.0657	33.79	4.33	-43.00	52.14	47.26	74.00	26.74	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	47.18	43.69	74.00	30.31	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	46.97	47.11	74.00	26.89	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	46.99	49.31	74.00	24.69	Pass	V	PK
12	12205.0000	39.42	7.67	-41.89	46.89	52.09	74.00	21.91	Pass	V	PK

Mode	e:		8DPSK	Transmittir	ng			Channel:		2480	
N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1331.6332	28.23	2.79	-42.75	54.50	42.77	74.00	31.23	Pass	Н	PK
2	2123.9124	31.87	3.61	-43.17	60.51	52.82	74.00	21.18	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	47.74	44.26	74.00	29.74	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	48.70	48.98	74.00	25.02	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	47.08	49.54	74.00	24.46	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.55	52.05	74.00	21.95	Pass	Н	PK
7	2131.3131	31.88	3.62	-43.17	52.59	44.92	74.00	29.08	Pass	V	PK
8	4248.0832	34.15	4.51	-42.90	51.47	47.23	74.00	26.77	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	47.53	44.05	74.00	29.95	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	47.90	48.18	74.00	25.82	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	45.94	48.40	74.00	25.60	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.48	51.98	74.00	22.02	Pass	V	PK

Right ear:

Mode	:		GFSK T	ransmitting	3			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2132.7133	31.89	3.63	-43.18	61.25	53.59	74.00	20.41	Pass	Н	PK
2	3996.0664	33.80	4.33	-43.00	54.24	49.37	74.00	24.63	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	56.16	52.41	74.00	21.59	Pass	Н	PK
4	7206.2804	36.31	5.81	-42.16	59.81	59.77	74.00	14.23	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.69	48.86	74.00	25.14	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	47.12	52.13	74.00	21.87	Pass	Н	PK
7	7206.2796	36.31	5.81	-42.16	51.82	51.78	54.00	2.22	Pass	Н	AV
8	2126.9127	31.88	3.62	-43.18	57.81	50.13	74.00	23.87	Pass	V	PK
9	3603.0402	33.48	4.34	-43.08	57.09	51.83	74.00	22.17	Pass	V	PK
10	4804.0000	34.50	4.55	-42.80	55.71	51.96	74.00	22.04	Pass	V	PK
11	7205.2804	36.31	5.82	-42.17	61.69	61.65	74.00	12.35	Pass	V	PK
12	9608.0000	37.64	6.63	-42.10	48.44	50.61	74.00	23.39	Pass	V	PK
13	12010.0000	39.31	7.60	-41.90	47.09	52.10	74.00	21.90	Pass	V	PK
14	7205.2807	36.31	5.82	-42.16	45.91	45.88	54.00	8.12	Pass	V	AV

Mode	:		GFSK T	ransmitting)			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2131.3131	31.88	3.62	-43.17	59.46	51.79	74.00	22.21	Pass	Н	PK
2	3662.0441	33.53	4.32	-43.07	58.61	53.39	74.00	20.61	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	56.95	53.46	74.00	20.54	Pass	Н	PK
4	7323.2882	36.42	5.85	-42.13	62.85	62.99	74.00	11.01	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	47.35	49.67	74.00	24.33	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.89	45.73	50.93	74.00	23.07	Pass	Н	PK
7	7323.2878	36.42	5.85	-42.14	53.11	53.24	54.00	0.76	Pass	Н	AV
8	2123.3123	31.87	3.61	-43.17	56.48	48.79	74.00	25.21	Pass	V	PK
9	3662.0441	33.53	4.32	-43.07	53.71	48.49	74.00	25.51	Pass	V	PK
10	4882.0000	34.50	4.81	-42.80	55.09	51.60	74.00	22.40	Pass	V	PK
11	7323.2882	36.42	5.85	-42.13	61.83	61.97	74.00	12.03	Pass	V	PK
12	9764.0000	37.71	6.71	-42.10	47.92	50.24	74.00	23.76	Pass	V	PK
13	12205.0000	39.42	7.67	-41.89	45.80	51.00	74.00	23.00	Pass	V	PK
14	7323.2880	36.42	5.85	-42.14	53.74	53.87	54.00	0.13	Pass	V	AV

Mode	:		GFSK T	ransmitting)			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2130.9131	31.88	3.62	-43.17	59.53	51.86	74.00	22.14	Pass	Н	PK
2	3720.0480	33.58	4.28	-43.06	53.71	48.51	74.00	25.49	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	56.70	53.22	74.00	20.78	Pass	Н	PK
4	7440.2960	36.54	5.85	-42.11	61.38	61.66	74.00	12.34	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.63	48.09	74.00	25.91	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	45.33	50.83	74.00	23.17	Pass	Н	PK
7	7440.2962	36.54	5.85	-42.11	52.79	53.07	54.00	0.93	Pass	Н	AV
8	1712.2712	29.80	3.21	-42.67	52.57	42.91	74.00	31.09	Pass	V	PK
9	4258.0839	34.16	4.49	-42.89	52.73	48.49	74.00	25.51	Pass	V	PK
10	4960.0000	34.50	4.82	-42.80	53.84	50.36	74.00	23.64	Pass	V	PK
11	7439.2960	36.54	5.85	-42.11	58.64	58.92	74.00	15.08	Pass	V	PK
12	9920.0000	37.77	6.79	-42.10	47.41	49.87	74.00	24.13	Pass	V	PK
13	12400.0000	39.54	7.86	-41.90	46.86	52.36	74.00	21.64	Pass	V	PK
14	7439.2968	36.54	5.85	-42.11	46.70	46.98	54.00	7.02	Pass	V	AV

Mode	:		8DPSK	Transmittir	ng			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2127.7128	31.88	3.62	-43.18	59.75	52.07	74.00	21.93	Pass	Н	PK
2	3603.0402	33.48	4.34	-43.08	57.94	52.68	74.00	21.32	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	52.43	48.68	74.00	25.32	Pass	Н	PK
4	7206.2804	36.31	5.81	-42.16	56.37	56.33	74.00	17.67	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	47.81	49.98	74.00	24.02	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	46.89	51.90	74.00	22.10	Pass	Н	PK
7	7206.2810	36.31	5.81	-42.16	33.41	33.37	54.00	20.63	Pass	Н	AV
8	2130.5131	31.88	3.62	-43.17	58.15	50.48	74.00	23.52	Pass	V	PK
9	3603.0402	33.48	4.34	-43.08	56.35	51.09	74.00	22.91	Pass	V	PK
10	4804.0000	34.50	4.55	-42.80	53.63	49.88	74.00	24.12	Pass	V	PK
11	7206.2804	36.31	5.81	-42.16	57.77	57.73	74.00	16.27	Pass	V	PK
12	9608.0000	37.64	6.63	-42.10	51.00	53.17	74.00	20.83	Pass	V	PK
13	12010.0000	39.31	7.60	-41.90	46.67	51.68	74.00	22.32	Pass	V	PK
14	7206.2800	36.31	5.81	-42.16	33.24	33.20	54.00	20.80	Pass	V	AV

Page 129 of 137

Mode	:		8DPSK	Transmittir	ng			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1596.8597	29.04	3.07	-42.91	55.30	44.50	74.00	29.50	Pass	Н	PK
2	3167.0111	33.27	4.60	-43.11	50.43	45.19	74.00	28.81	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	47.46	43.97	74.00	30.03	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	45.99	46.13	74.00	27.87	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	46.58	48.90	74.00	25.10	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.89	45.60	50.80	74.00	23.20	Pass	Н	PK
7	1751.2751	30.06	3.23	-42.68	50.95	41.56	74.00	32.44	Pass	V	PK
8	2666.3666	32.67	4.10	-43.10	55.31	48.98	74.00	25.02	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	48.32	44.83	74.00	29.17	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	47.04	47.18	74.00	26.82	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	48.03	50.35	74.00	23.65	Pass	V	PK
12	12205.0000	39.42	7.67	-41.89	47.85	53.05	74.00	20.95	Pass	V	PK

Mode	:		8DPSK	Transmittir	ng			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2123.7124	31.87	3.61	-43.17	59.37	51.68	74.00	22.32	Pass	Н	PK
2	3996.0664	33.80	4.33	-43.00	52.72	47.85	74.00	26.15	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	47.79	44.31	74.00	29.69	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	47.05	47.33	74.00	26.67	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.72	49.18	74.00	24.82	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	47.46	52.96	74.00	21.04	Pass	Н	PK
7	1841.8842	30.66	3.37	-42.82	50.99	42.20	74.00	31.80	Pass	V	PK
8	3989.0659	33.79	4.33	-43.00	54.53	49.65	74.00	24.35	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	47.69	44.21	74.00	29.79	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	47.11	47.39	74.00	26.61	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.12	48.58	74.00	25.42	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	47.09	52.59	74.00	21.41	Pass	V	PK

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.